CS60020: Foundations of
Algorithm Design and Machine
Learning
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VC Dimension

* N points can be labeled in 2V ways as +/—
o F shatters N if there

exists h € H consistent

for any of these:

VC(H ) =N

An axis-aligned rectangle shatters 4 points only !
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STATISTICAL MACHINE LEARNING



Supervised Learning Tasks - Regression

Weather Prediction

Estimating
Contamination

11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5pm 6 pm

39°F  41°F 44°F 44°F 44°F  44°F  43°F  42°F

Precip: Precip: Precip: Precip: Precip: Precip: Precip: Precip:
10%0 10% 10% 10%0 o o o 9

X = new location
Y = sensor reading



Supervised Learning

Goal: Construct a predictor f : X — Y to minimize

loss function (performance measure)

0J INDU AYERAGE (DOW JONES & CO
as of 22-Jan-2010
11000

,M / S por ts 10500 -

e

: e 7. > Science " N
% News Y=
95007 NO\I)11 UECIOi UECIZi Jarl108 _
Copyright 2010 Yahoo! Inc. htt:7/F inance waoo.con' X = Feb01
Classification: Regression:
PO #Y) E[(£(X) = Y)?]

Probability of Error Mean Squared Error



Regression algorithms

Learning algorithm

Linear Regression

:> Prediction rule

Jn



Replace Expectation with Empirical
Mean

Optimal predictor: f* =arg mfin E[(f(X) —Y)?]

Empirical Minimizer: fn = arg }n']r_l (f(Xi) _ Y;;)Q
=

Empirical mean

Law of Large Numbers:

n—» oo

3" [loss(Y;, £(Xi)] . Exy [loss(Y, £(X))]
=1

S|



Restrict class of predictors
Optimal predictor: f* = arg mfin E[(f(X) —Y)?]

Empirical Minimizer: fn = arg m|@ Z (F(X;) —Y;)2

Class of predictors
Why?
Overfitting!
Empiricial loss minimized by any
function of the form
f(x) = { Yi, x = X,-.tor t=1,....n

any value, otherwise




Restrict class of

predictors
Optimal predictor: f* = arg mfin E[(f(X) — Y)?]
» o -~ 1 N a2
Empirical Minimizer: fn = arg }Tél@ - i;(f(XZ) Y;)

Class of predictors

- Class of Linear functions
- Class of Polynomial functions
- Class of nonlinear functions



Linear Regression

i —arg Z(f(X ) —Y;)2  Least Squares Estimator

FC)

Fr, -Class of Linear functions

Uni--variate case:

f(X) =71 43X P -intercept ‘I‘

“=lo 0o 0O0O0O00 CO0O0 OOO0OO0 ©@WOO00LOO000 WO

X

Multi--variate case:

X)) =f(x®, . xP)Y) =, XD 4 8,x@ ... 4 3,x@)

= XIB where X = [X(l) X(p)]' /8 p— [,6]_ .. ﬁp]T



Linear regression

Y

*Our goal is to estimate w from a training
data of <x;,y;> pairs

*Optimization goal: minimize squared error
(least squares):

argmin Z(yl. - le.)z

» Why least squares?

- minimizes squared distance between
measurements and predicted line

- the math is pretty




Solving Linear Regressionin 1D

* To optimize — closed form:

* We just take the derivative w.r.t. to w and set to O:
< Z(yi_ Wxi)2 = 2Z_xi(yi_ wX,;) =
8W i i
2Zx,~(y,-—wx,-)=0 — Ziny,-—2waixi: 0

X.V. = wx.2 —
iy i




Least Squares Estimator

fl = arg min = Z(f(X) Y;)?

JeFLn
U
B o 1

mj 5Z<Xﬁ Y;)?

= arg min l(Aﬁ ~Y)'(AB-Y)
B n

X, - xD L xP)]
A = ; = s e :
Xn x4 xP

f(X3)

fl(x) =

= X;f3



Least Squares Estimator

N

B = argmin l(Aﬁ—Y)T(AB—Y)z arg min J(3)
g n 6

J(B) = (AB-Y) (AB-Y)

0J(B)




Normal Equations

(ATA)3=ATY

pxp pxl p x1

if (AT A) isinvertible,

3= (ATA) 1ATY fl(x)=xp

Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible.

What if (AT A) is not invertible ?



Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.

—~

B8 = arg min l(Aﬂ ~-Y) ' (AB-Y) =argmin J(B)
B n B

Treat as optimization problem

Observation: J(B) is convex in B. How to find the minimizer?

25

J(B1) (B, B)
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Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.
~ 1 .
B = arg mﬂin “(AB-Y)(AB-Y) = arg mﬂln J(3)
n

Since J(PB) is convex, move along negative of gradient

Initialize: g0 step size il
ﬂ 506) I A
Update: t+1 — t_ g ‘ /8 G
i g 72 ap " &}
— Bt_aAT(Aﬁt—Y) aof 7 &
\_'_l
0if 3= gt il e
Stop: when some criterion met e.g. fixed # iterations, or 0J(B) <E.

lgt



Effect of step--size

J(B) J(B)

Large a => Fast convergence but larger residual error
Also possible oscillations

Small a => Slow convergence but small residual error



Stochastic Gradient Descent

* Gradient descent (also known as Batch
Gradient Descent) computes the gradient
using the whole dataset

* Stochastic Gradient Descent computes the
gradient using a single sample (or a mini-
batch).



Non-Linear basis function

« So far we only used the observed values x4,Xs,...

 However, linear regression can be applied in the same
way to functions of these values

— Eg: to add a term w xx, add a new variable z=x4x, so each
example becomes: x4, Xo, .... Z

« As long as these functions can be directly computed
from the observed values the parameters are still linear
In the data and the problem remains a multi-variate linear
regression problem

V=W +wWx+.+twx'+¢&
0 1 1 k k

Slide courtesy of William Cohen



Non-linear basis functions

« What type of functions can we use?
« A few common examples:

- Polynomial: ¢j(x) = xifor j=0 ... n

_ (=) Any function of the input
- Gaussian: 9;(¥) = 752 values can be used. The
Jl solution for the parameters
- Sigmoid: ¢j(x) — of the regression remains
1+ exp(—s x) the same.

-Logs:  ¢,(x)=log(x+1)

Slide courtesy of William Cohen



General linear regression problem

« Using our new notations for the basis function linear
regression can be written as

y =Zw,¢,-<x>

* Where ¢(x) can be either x;for multivariate regression or
one of the non-linear basis functions we defined

e ... and ¢y(x)=1 for the intercept term

Slide courtesy of William Cohen



Ot Order Polynomial

n=10

Slide courtesy of William Cohen



1st Order Polynomial

Slide courtesy of William Cohen



3'd Order Polynomial

Slide courtesy of William Cohen



Oth Order Polynomial

Slide courtesy of William Cohen



Over-fitting

—©— Training
—O— Test

Root-Mean-Square (RMS) Error

Slide courtesy of William Cohen



Polynomial Coefficients

M=0 M=1 M=3 M=9
wy 0.19 0.82 0.31 0.35
w* -1.27 7.99 232.37
w -25.43 -5321.83
w} 17.37 48568.31
w -231639.30
wk 640042.26
w -1061800.52
w* 1042400.18
w -557682.99
Wy 125201.43

Slide courtesy of William Cohen



Regularization

Penalize large coefficient values

JX,y (W) =

Slide courtesy of William Cohen
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Regularization:

In\ = —18

Slide courtesy of William Cohen



Over Regularization

Slide courtesy of William Cohen



Regularization

9th Order Polynomial

Training
Test
-35 -30 -25 -20



Bias-Variance Tradeoff

* Model too simple: does |
not fit the data well of ?

— A biased solution o

Q

[T 5

* Model too complex: small
changes to the data, t
solution changes a lot ol

— A high-variance solution




Effect of Model Complexity

* |f we allow very complicated predictors, we
could overfit the training data.

Prediction 4, ‘, . —
Error fixed # training data
\ /’/
\\ /
\\\ /
AN «— true risk
f\\\ /
NN -
- \\\:f S /‘"/
empirical risk NTT—
i e -
underfitting overfitting Complexity

Best

Model {}

Empirical risk is no longer a
good indicator of true risk



