CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Margin

• Choose *h* with largest margin

x₁: Price

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

VC Dimension

- N points can be labeled in 2^N ways as +/-
- \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these: $VC(\mathcal{H}) = N$

An axis-aligned rectangle shatters 4 points only !

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) X_{I}

STATISTICAL MACHINE LEARNING

Supervised Learning Tasks - Regression

Weather Prediction

Estimating Contamination

X = new location Y = sensor reading

Supervised Learning

Goal: Construct a predictor $f : X \to Y$ to minimize loss function (performance measure)

DJ INDU AVERAGE (DOW JONES & CO as of 22-Jan-2010 10000 10500 10000 9500 Nov11 Dec01 Dec21 Jan08 Copyright 2010 Yahoo! Inc. http://finance.yahoo.com/ X = Feb01

Classification:

$$P(f(X) \neq Y)$$

Probability of Error

Regression:

 $\mathbb{E}[(f(X) - Y)^2]$

Mean Squared Error

Linear Regression

Replace Expectation with Empirical Mean

Optimal predictor:

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

$$\widehat{f}_n = \arg\min_{f\in\mathcal{F}} \left(\frac{1}{n}\sum_{i=1}^n (f(X_i) - Y_i)^2\right)$$

Empirical mean

Law of Large Numbers:

$$\frac{1}{n} \sum_{i=1}^{n} \left[\text{loss}(Y_i, f(X_i)) \right] \xrightarrow{\text{n} \longrightarrow \infty} \mathbb{E}_{XY} \left[\text{loss}(Y, f(X)) \right]$$

Restrict class of predictors

Optimal predictor:

$$f^* = \arg\min_f \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Class of predictors

Why? **Overfitting!** Empiricial loss minimized by any function of the form

 $f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \dots, n \\ \text{any value,} & \text{otherwise} \end{cases}$

Restrict class of predictors

Optimal predictor:

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Class of predictors

- Class of Linear functions
- Class of Polynomial functions
- Class of nonlinear functions

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$
 Least Squares Estimator

Multi--variate case:

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

=
$$X\beta$$
 where $X = [X^{(1)} \dots X^{(p)}], \quad \beta = [\beta_1 \dots \beta_p]^T$

Linear regression in 1D

Y

•Our goal is to estimate w from a training data of $\langle x_i, y_i \rangle$ pairs

•Optimization goal: minimize squared error (least squares):

$$\arg\min_{w} \sum_{i} (y_{i} - wx_{i})^{2}$$

y = wx +	- E
••••	

Х

- Why least squares?
 - minimizes squared distance between measurements and predicted line
 - the math is pretty

Solving Linear Regression in 1D

- To optimize closed form:
- We just take the derivative w.r.t. to w and set to 0:

$$\frac{\partial}{\partial w} \sum_{i} (y_{i} - wx_{i})^{2} = 2 \sum_{i} -x_{i} (y_{i} - wx_{i}) \Rightarrow$$

$$2 \sum_{i} x_{i} (y_{i} - wx_{i}) = 0 \quad \Rightarrow 2 \sum_{i} x_{i} y_{i} - 2 \sum_{i} wx_{i} x_{i} = 0$$

$$\sum_{i} x_{i} y_{i} = \sum_{i} wx_{i}^{2} \Rightarrow$$

$$\sum_{i} x_{i} y_{i} = \sum_{i} wx_{i}^{2} \Rightarrow$$

$$\sum_{i} x_{i} y_{i}$$

$$w = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}$$

Least Squares Estimator

$$\widehat{f}_{n}^{L} = \arg\min_{f \in \mathcal{F}_{L}} \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2} \qquad f(X_{i}) = X_{i}\beta$$

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_{i}\beta - Y_{i})^{2} \qquad \widehat{f}_{n}^{L}(X) = X\widehat{\beta}$$

$$= \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

Least Squares Estimator

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\left. \frac{\partial J(\beta)}{\partial \beta} \right|_{\widehat{\beta}} = 0$$

Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\boldsymbol{\beta}} = \mathbf{A}^T \mathbf{Y}$$
pxp px1 px1

If $(\mathbf{A}^T \mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \widehat{f}_n^L(X) = X \widehat{\beta}$$

When is $(\mathbf{A}^T \mathbf{A})$ invertible ? Recall: Full rank matrices are invertible.

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if **A** is huge.

$$\widehat{\beta} = \arg \min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg \min_{\beta} J(\beta)$$

Treat as optimization problem

<u>Observation</u>: $J(\beta)$ is convex in β . $J(\beta_1) - \int_{\beta_1} \int_{\beta_2} \int_$

Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if **A** is huge.

$$\widehat{\beta} = \arg \min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg \min_{\beta} J(\beta)$$

Since $J(\beta)$ is convex, move along negative of gradient

Stop: when some criterion met e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}\Big|_{\beta^t} < \varepsilon$.

Large $\alpha \Rightarrow$ Fast convergence but larger residual error Also possible oscillations

Small $\alpha \Rightarrow$ Slow convergence but small residual error

Stochastic Gradient Descent

- Gradient descent (also known as Batch Gradient Descent) computes the gradient using the whole dataset
- Stochastic Gradient Descent computes the gradient using a single sample (or a minibatch).

Non-Linear basis function

- So far we only used the observed values $x_1, x_2, ...$
- However, linear regression can be applied in the same way to **functions** of these values
 - Eg: to add a term w x_1x_2 add a new variable $z=x_1x_2$ so each example becomes: $x_1, x_2, \dots z$
- As long as these functions can be directly computed from the observed values the parameters are still linear in the data and the problem remains a multi-variate linear regression problem

$$y = w_0 + w_1 x_1^2 + \dots + w_k x_k^2 + \mathcal{E}$$

Non-linear basis functions

- What type of functions can we use?
- A few common examples:
 - Polynomial: $\phi_j(x) = x^j$ for j=0 ... n

- Gaussian:
$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

- Sigmoid: $\phi_j(x) = \frac{1}{1 + \exp(-s_j x)}$

Any function of the input values can be used. The solution for the parameters of the regression remains the same.

- Logs:
$$\phi_j(x) = \log(x+1)$$

General linear regression problem

Using our new notations for the basis function linear regression can be written as

$$y = \sum_{j=0}^{n} w_j \phi_j(x)$$

- Where $\phi_j(\mathbf{x})$ can be either x_j for multivariate regression or one of the non-linear basis functions we defined
- ... and $\phi_0(\mathbf{x})=1$ for the intercept term

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error

Polynomial Coefficients

	M = 0	M = 1	M=3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Regularization

Penalize large coefficient values

$$J_{\mathbf{X},\mathbf{y}}(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(y^{i} - \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i}) \right)^{2} + \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

Regularization:

$$\ln \lambda = -18$$

Over Regularization

Regularization

9th Order Polynomial

Bias-Variance Tradeoff

 Model too simple: does not fit the data well

- A biased solution

- Model too complex: small changes to the data, solution changes a lot
 - A high-variance solution

Effect of Model Complexity

• If we allow very complicated predictors, we could overfit the training data.

