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Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + Q(n)

= Q(n lg n) (same as merge sort)

10 10What if the split is always 1 : 9 ?

10 10
1 9T (n) = T( n)+T( n)+Q(n)

What is the solution to this recurrence?



Analysis of “almost-best” case
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O(n) leavesQ(1)

Q(n lg n)
Lucky!
September 21, 2005

…
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More intuition
Suppose we alternate lucky, unlucky,  
lucky, unlucky, lucky, ….

L(n) = 2U(n/2) + Q(n)
U(n) = L(n – 1) +Q(n)

lucky  
unlucky

Solving:
L(n) = 2(L(n/2 – 1) + Q(n/2)) + Q(n)

= 2L(n/2 – 1) + Q(n)
= Q(n lg n)

How can we make sure we are usually lucky?
Lucky!
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Randomized quicksort
IDEA: Partition around a random element.
• Running time is independent of the input  

order.
• No assumptions need to be made about  

the input distribution.
• No specific input elicits the worst-case  

behavior.
• The worst case is determined only by the  

output of a random-number generator.



Randomized quicksort  
analysis

Let T(n) = the random variable for the running  
time of randomized quicksort on an input of size  
n, assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator  
random variable

kX = 1 if PARTITION generates a k : n–k–1split,
0 otherwise.

E[Xk] = Pr{Xk = 1} = 1/n, since all splits are  
equally likely, assuming elements are distinct.
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Analysis (continued)

T(0) + T(n–1) + Q(n) if 0 : n–1split,
T(1) + T(n–2) + Q(n) if 1 : n–2split,

M
T(n–1) + T(0) + Q(n) if n–1 : 0split,

T(n) =

n-1
=å Xk (T(k) +T (n - k -1) +Q(n))

k=0
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Calculating expectation

�

��n-1
E[T(n)] = E�å Xk (T(k) +T (n - k -1)+Q(n))�

�k=0

Take expectations of both sides.
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Calculating expectation

�
�

�å
�

n-1

n-1

�k=0 �
kX (T(k) +T (n - k -1)+Q(n))E[T (n)]= E

= åE[Xk (T(k) +T (n - k -1)+Q(n))]
k=0

Linearity of expectation.
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Calculating expectation

�
�

�å
�

n-1

n-1

�k=0 �
k

= åE[Xk ]×E[T(k) +T (n - k -1)+Q(n)]
k=0

= åE[Xk (T(k) +T (n - k -1)+Q(n))]
k=0
n-1

X (T(k) +T (n - k -1)+Q(n))E[T (n)]= E

Independence of Xk from other random  
choices.
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Calculating expectation

�
�

�å
�

n-1
= 1

k=0 k=0 k=0

n-1

n-1

�k=0 �
k

nåQ(n)
n-1 n-1

[ ]+ 1 E[T(n - k -1)]+ 1
nånåE T (k)

= åE[Xk ]×E[T(k) +T (n - k -1)+Q(n)]
k=0

= åE[Xk (T(k) +T (n - k -1)+Q(n))]
k=0
n-1

X (T(k) +T (n - k -1)+Q(n))E[T (n)]= E

Linearity of expectation; E[Xk] = 1/n .
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Calculating expectation

[

k �
��

X (T(k) +T (n - k -1)+Q(n))E[T (n)]= E

nå

nåQ(n)
nånåE T (k)

�å

n-1

= 2 E[T(k)]+Q(n)
k=1

k=0

n-1 n-1

]+ 1 E[T(n - k -1)]+ 1
n-1

= 1
k=0 k=0

= åE[Xk ]×E[T(k) +T (n - k -1)+Q(n)]
k=0

n-1
= åE[Xk (T(k) +T (n - k -1)+Q(n))]

k=0
n-1

n-1

�k=0 �

Summations have  
identical terms.
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E[T (n)] = 2åE[T(k)]+Q(n)

Hairy recurrence
n-1

nk =2

(The k = 0, 1 terms can be absorbed in the Q(n).)

Prove: E[T(n)] £ an lg n for constant a > 0 .
• Choose a large enough so that an lg n

dominates E[T(n)] for sufficiently small n ³ 2.

Use fact: 2 21 1
2 8å

n-1

k=2
n lg n - nk lg k£ (exercise).
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Quicksort in practice

• Quicksort is a great general-purpose  
sorting algorithm.

• Quicksort is typically over twice as fast  
as merge sort.

• Quicksort can benefit substantially from
code tuning.

• Quicksort behaves well even with  
caching and virtual memory.



HEAP AND HEAPSORT
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Special Types of Trees
• Def: Full binary tree = a 

binary tree in which each 
node is either a leaf or has 
degree exactly 2.

• Def: Complete binary tree 
= a binary tree in which all 
leaves are on the same level 
and all internal nodes have 
degree 2.

Full binary tree
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Definitions
• Height of a node = the number of edges on the longest simple 

path from the node down to a leaf
• Level of a node = the length of a path from the root to the 

node
• Height of tree = height of root node 

2
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1
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3

9 10

Height of root = 3

Height of (2)= 1 Level of (10)= 2
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Useful Properties
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The Heap Data Structure

• Def: A heap is a nearly complete binary tree 
with the following two properties:
– Structural property: all levels are full, except 

possibly the last one, which is filled from left to 
right

– Order (heap) property: for any node x
Parent(x) ≥ x

Heap

5

7

8

4

2

From the heap property, it 
follows that:
“The root is the maximum 
element of the heap!”

A heap is a binary tree that is filled in order
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Array Representation of Heaps
• A heap can be stored as an array 

A.
– Root of tree is A[1]
– Left child of A[i] = A[2i]
– Right child of A[i] = A[2i + 1]
– Parent of A[i] = A[ ëi/2û ]
– Heapsize[A] ≤ length[A]

• The elements in the subarray 
A[(ën/2û+1) .. n] are leaves
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Heap Types

• Max-heaps (largest element at root), have the 
max-heap property:
– for all nodes i, excluding the root: 

A[PARENT(i)] ≥ A[i]

• Min-heaps (smallest element at root), have 
the min-heap property:
– for all nodes i, excluding the root: 

A[PARENT(i)] ≤ A[i]
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Adding/Deleting Nodes
• New nodes are always inserted at the bottom 

level (left to right)

• Nodes are removed from the bottom level 
(right to left)
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Operations on Heaps
• Maintain/Restore the max-heap property
– MAX-HEAPIFY

• Create a max-heap from an unordered array
– BUILD-MAX-HEAP

• Sort an array in place
– HEAPSORT

• Priority queues
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Maintaining the Heap Property
• Suppose a node is smaller than a child

– Left and Right subtrees of i are max-heaps
• To eliminate the violation:

– Exchange with larger child
– Move down the tree
– Continue until node is not smaller than 

children
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Example
MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[2] « A[4]

A[4] violates the heap property

A[4] « A[9]

Heap property restored
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Maintaining the Heap Property
• Assumptions:

– Left and Right 
subtrees of i
are max-heaps

– A[i] may be 
smaller than 
its children

Alg: MAX-HEAPIFY(A, i, n)
1. l ← LEFT(i)
2. r ← RIGHT(i)
3. if l ≤ n and A[l] > A[i]
4. then largest ←l
5. else largest ←i
6. if r ≤ n and A[r] > A[largest]
7. then largest ←r
8. if largest ¹ i
9. then exchange A[i] ↔ A[largest]
10. MAX-HEAPIFY(A, largest, n)
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MAX-HEAPIFY Running Time
• Intuitively:

• Running time of MAX-HEAPIFY is O(lgn)

• Can be written in terms of the height of the 

heap, as being O(h)

– Since the height of the heap is ëlgnû

h

2h
O(h)

-
-
-
-
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Building a Heap

Alg: BUILD-MAX-HEAP(A)
1. n = length[A]

2. for i ← ën/2û downto 1
3. do MAX-HEAPIFY(A, i, n)

• Convert an array A[1 … n] into a max-heap (n = length[A])

• The elements in the subarray A[(ën/2û+1) .. n] are leaves

• Apply MAX-HEAPIFY on elements between 1 and ën/2û

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

4 1 3 2 16 9 10 14 8 7A:
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Example:         A 4 1 3 2 16 9 10 14 8 7
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Running Time of BUILD MAX HEAP

Þ Running time: O(nlgn)

• This is not an asymptotically tight upper 
bound

Alg: BUILD-MAX-HEAP(A)
1. n = length[A]
2. for i ← ën/2û downto 1
3. do MAX-HEAPIFY(A, i, n) O(lgn)

O(n)
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Running Time of BUILD MAX HEAP
• HEAPIFY takes O(h)Þ the cost of HEAPIFY on a node i is 

proportional to the height of the node i in the tree

Height Level

h0 = 3 (ëlgnû)

h1 = 2

h2 = 1

h3 = 0

i = 0

i = 1

i = 2

i = 3  (ëlgnû)

No. of nodes

20

21

22

23

hi = h – i   height of the heap rooted at level i
ni = 2i number of nodes at level i

i

h

i
ihnnT å

=

=Þ
0

)( ( )ih
h

i

i -=å
=0
2 )(nO=
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Running Time of BUILD MAX HEAP

i

h

i
ihnnT å

=

=
0

)( Cost of HEAPIFY at level i * number of nodes at that level

( )ih
h

i

i -=å
=0
2 Replace the values of ni and hi computed before

h
h

i
ih
ih 2

20
å
=

-

-
= Multiply by 2h both at the nominator and denominator and

write 2i as
i-2
1

å
=

=
h

k
k

h k
0 2

2 Change variables: k = h - i

å
¥

=

£
0 2k

k
kn The sum above is smaller than the sum of all elements to ¥

and h = lgn

)(nO= The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)
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Heapsort
• Goal:

– Sort an array using heap representations

• Idea:

– Build a max-heap from the array

– Swap the root (the maximum element) with the last 

element in the array

– “Discard” this last node by decreasing the heap size

– Call MAX-HEAPIFY on the new root

– Repeat this process until only one node remains 
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Example: A=[7, 4, 3, 1, 2]

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

MAX-HEAPIFY(A, 1, 1)
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Alg: HEAPSORT(A)

1. BUILD-MAX-HEAP(A)

2. for i ← length[A] downto 2

3. do exchange A[1] ↔ A[i]

4. MAX-HEAPIFY(A, 1, i - 1)

• Running time: O(nlgn) --- Can 
be shown to be Θ(nlgn)

O(n)

O(lgn)

n-1 times
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Priority Queues

12 4  
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Operations 
on Priority Queues

• Max-priority queues support the following 

operations:

– INSERT(S, x): inserts element x into set S

– EXTRACT-MAX(S): removes and returns element 

of S with largest key

– MAXIMUM(S): returns element of S with largest 

key

– INCREASE-KEY(S, x, k): increases value of 
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HEAP-MAXIMUM
Goal:
– Return the largest element of the 

heap

Alg: HEAP-MAXIMUM(A)
1. return A[1]

Running time: O(1)

Heap A:

Heap-Maximum(A) returns 7
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HEAP-EXTRACT-MAX
Goal:

– Extract the largest element of the heap (i.e., return the max value 
and also remove that element from the heap 

Idea: 
– Exchange the root element with the last
– Decrease the size of the heap by 1 element
– Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: Root is the largest element
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Example: HEAP-EXTRACT-MAX

8

2 4

14

7

1

16
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9 3
max = 16
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2 4

14
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9 3

Heap size decreased with 1

4

2 1

8

7

14

10

9 3

Call MAX-HEAPIFY(A, 1, n-1)
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HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

1. if n < 1

2. then error “heap underflow”

3. max ← A[1]

4. A[1] ← A[n]

5. MAX-HEAPIFY(A, 1, n-1) remakes heap

6. return max
Running time: O(lgn)
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HEAP-INCREASE-KEY
• Goal:
– Increases the key of an element i in the heap

• Idea:
– Increment the key of A[i] to its new value
– If the max-heap property does not hold anymore: 

traverse a path toward the root to find the proper 
place for the newly increased key

8

2 4

14

7

1

16

10

9 3i
Key [i] ← 15
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Example: HEAP-INCREASE-KEY
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HEAP-INCREASE-KEY
Alg: HEAP-INCREASE-KEY(A, i, key)

1. if key < A[i]
2. then error “new key is smaller than current key”
3. A[i] ← key
4. while i > 1 and A[PARENT(i)] < A[i]
5. do exchange A[i] ↔ A[PARENT(i)]
6. i ← PARENT(i)

• Running time: O(lgn)
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2 4
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16

10

9 3i

Key [i] ← 15
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-¥

MAX-HEAP-INSERT
• Goal:

– Inserts a new element into a 

max-heap

• Idea:

– Expand the max-heap with a 

new element whose key is -¥

– Calls HEAP-INCREASE-KEY to set 

the key of the new node to its 

correct value and maintain the 

max-heap property
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Example: MAX-HEAP-INSERT

-¥
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Insert value 15:
- Start by inserting -¥

15
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Increase the key to 15
Call HEAP-INCREASE-KEY on A[11] = 15
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The restored heap containing
the newly added element
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MAX-HEAP-INSERT

Alg:MAX-HEAP-INSERT(A, key, n)

1. heap-size[A] ← n + 1

2. A[n + 1] ← -¥

3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

-¥
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14
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16

10

9 3
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Summary

• We can perform the following operations on heaps:
– MAX-HEAPIFY O(lgn)

– BUILD-MAX-HEAP O(n)

– HEAP-SORT O(nlgn)

– MAX-HEAP-INSERT O(lgn)

– HEAP-EXTRACT-MAX O(lgn)

– HEAP-INCREASE-KEY O(lgn)

– HEAP-MAXIMUM O(1)

Average
O(lgn)



49

Priority Queue Using Linked List

Average: O(n)

Increase key: O(n)

Extract max key: O(1)

12 4  


