CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

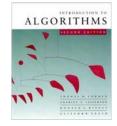


Best-case analysis (*For intuition only!*)

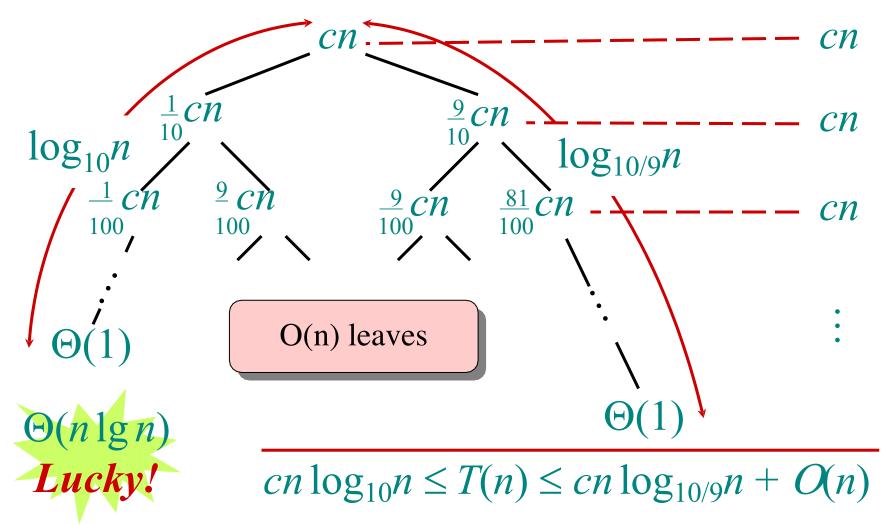
If we're lucky, PARTITION splits the array evenly: $T(n) = 2T(n/2) + \Theta(n)$ $= \Theta(n \lg n) \quad (\text{same as merge sort})$

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$? $T(n) = T(\frac{1}{10}n) + T(\frac{9}{10}n) + \Theta(n)$ What is the solution to this recurrence?

L4.27



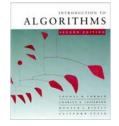
Analysis of "almost-best" case



Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L

L4.32

September 21, 2005



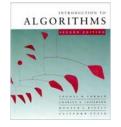
More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky, $L(n) = 2U(n/2) + \Theta(n) \quad lucky$ $U(n) = L(n-1) + \Theta(n) \quad unlucky$

Solving:

 $L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$ = $2L(n/2 - 1) + \Theta(n)$ = $\Theta(n \lg n)$ Lucky!

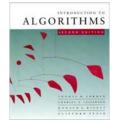
How can we make sure we are usually lucky?



Randomized quicksort

IDEA: Partition around a *random* element.

- Running time is independent of the input order.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the output of a random-number generator.



Randomized quicksort analysis

Let T(n) = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For k = 0, 1, ..., n-1, define the *indicator random variable*

 $X_{k} = \begin{cases} 1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$

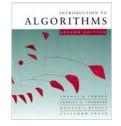
$E[X_k] = \Pr{\{X_k = 1\}} = 1/n$, since all splits are equally likely, assuming elements are distinct.



Analysis (continued)

 $T(n) = \begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split}, \\ T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split}, \\ M \\ T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split}, \end{cases}$

$$=\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))$$



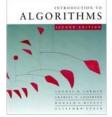
$E[T(n)] = E \sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))$

Take expectations of both sides.

$$E[T(n)] = E \sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))$$

=
$$\sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

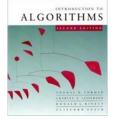
Linearity of expectation.



$$E[T(n)] = E \sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))$$

= $\sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$
= $\sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$

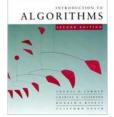
Independence of X_k from other random choices.



$$E[T(n)] = E \sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))$$

= $\sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$
= $\sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$
= $\frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)$

Linearity of expectation; $E[X_k] = 1/n$.



$$E[T(n)] = E \sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))$$

$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

$$= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{n-1} E[T(k)] + \Theta(n)$$

Summations have identical terms.

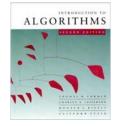
Hairy recurrence $E[T(n)] = \frac{2}{n} \sum_{k=2}^{n-1} E[T(k)] + \Theta(n)$

(The k = 0, 1 terms can be absorbed in the $\Theta(n)$.)

Prove: $E[T(n)] \le an \lg n$ for constant a > 0.

• Choose *a* large enough so that $an \lg n$ dominates E[T(n)] for sufficiently small $n \ge 2$.

Use fact:
$$\sum_{k=2}^{n-1} k \lg k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$
 (exercise).



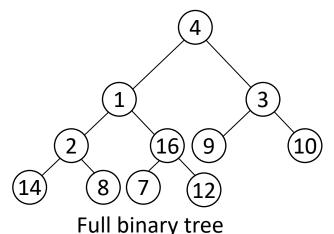
Quicksort in practice

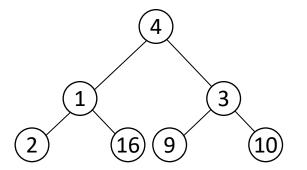
- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from *code tuning*.
- Quicksort behaves well even with caching and virtual memory.

HEAP AND HEAPSORT

Special Types of Trees

• *Def:* Full binary tree = a binary tree in which each node is either a leaf or has degree exactly 2.





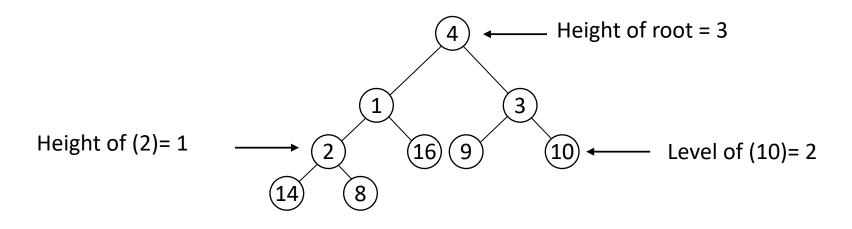
Complete binary tree

Def: Complete binary tree

 a binary tree in which all
 leaves are on the same level
 and all internal nodes have
 degree 2.

Definitions

- **Height** of a node = the number of edges on the longest simple path from the node down to a leaf
- Level of a node = the length of a path from the root to the node
- **Height** of tree = height of root node



Useful Properties

- There are at most 2^l nodes at level (or depth) l of a binary tree
- A binary tree with height d has at most $2^{d+1} 1$ nodes
- A binary tree with *n* nodes has height at least $\lfloor lgn \rfloor$

$$n \leq \sum_{l=0}^{d} 2^{l} = \frac{2^{d+1} - 1}{2 - 1} = 2^{d+1} - 1$$
Height of (2)= 1
$$(1) = 2$$

$$(1) = 2$$

$$(1) = 2$$

$$(1) = 2$$

$$(1) = 2$$

$$(1) = 2$$

$$(1) = 2$$

The Heap Data Structure

- *Def*: A heap is a <u>nearly complete</u> binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Order (heap) property: for any node x $Parent(x) \ge x$ follows that:

"The root is the maximum element of the heap!"

Heap

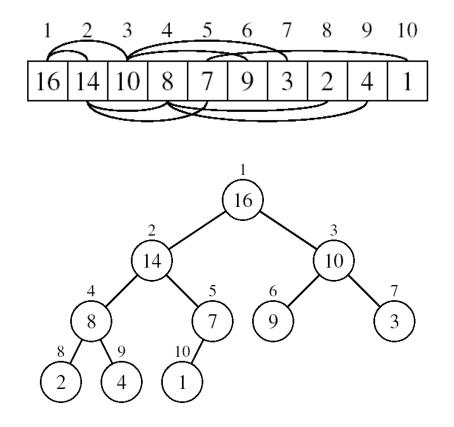
2

5

A heap is a binary tree that⁹ is filled in order

Array Representation of Heaps

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of $A[i] = A[\lfloor i/2 \rfloor]$
 - Heapsize[A] \leq length[A]
- The elements in the subarray
 A[(_n/2_+1) .. n] are leaves



Heap Types

• Max-heaps (largest element at root), have the max-heap property:

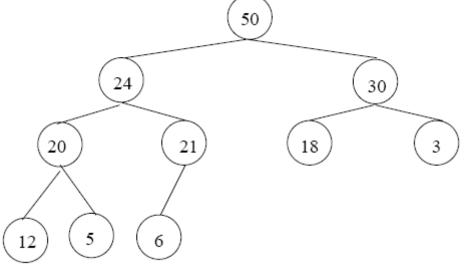
- for all nodes i, excluding the root: $A[PARENT(i)] \ge A[i]$

• Min-heaps (smallest element at root), have the *min-heap property:*

- for all nodes *i*, excluding the root:

Adding/Deleting Nodes

- New nodes are always inserted at the bottom level (left to right)
- Nodes are removed from the bottom level (right

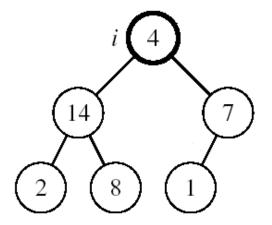


Operations on Heaps

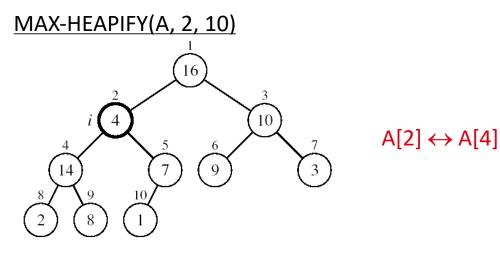
- Maintain/Restore the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 BUILD-MAX-HEAP
- Sort an array in place
 HEAPSORT
- Priority queues

Maintaining the Heap Property

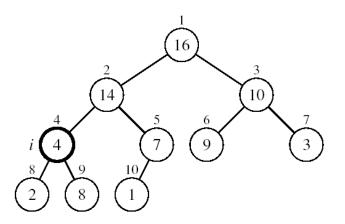
- Suppose a node is smaller than a child
 - Left and Right subtrees of i are max-heaps
- To eliminate the violation:
 - Exchange with larger child
 - Move down the tree
 - Continue until node is not smaller than children



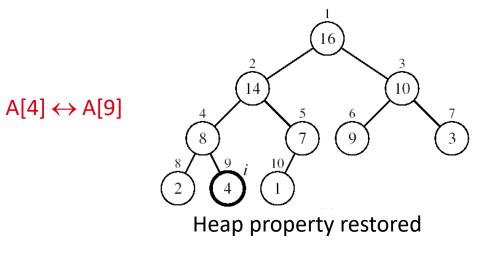
Example



A[2] violates the heap property

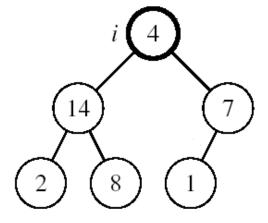


A[4] violates the heap property



Maintaining the Heap Property

- Assumptions:
 - Left and Right subtrees of i are max-heaps
 - A[i] may be smaller than



- Alg: MAX-HEAPIFY(A, i, n)
- 1. $I \leftarrow LEFT(i)$
- 2. $r \leftarrow RIGHT(i)$
- **3.** if l ≤ n and A[l] > A[i]
- 4. **then** largest \leftarrow l
- 5. else largest ←i
- 6. if $r \le n$ and A[r] > A[largest]
- 7. **then** largest \leftarrow r
- 8. if largest \neq i
- 9. then exchange A[i] A[largest]
 10. MAX-HEAPIFY(A, largest, n)

MAX-HEAPIFY Running Time

• Intuitively:

- It traces a path from the root to a leaf (longest path length: h)
 At each level, it makes exactly 2 comparisons
- Total number of comparisons is 2h
- Running time is O(h) or O(lgn)
- Running time of MAX-HEAPIFY is O(lqn)
- Can be written in terms of the height of the heap, as being O(h)

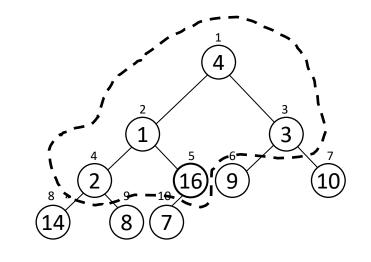
– Since the height of the heap is [lgn]

Building a Heap

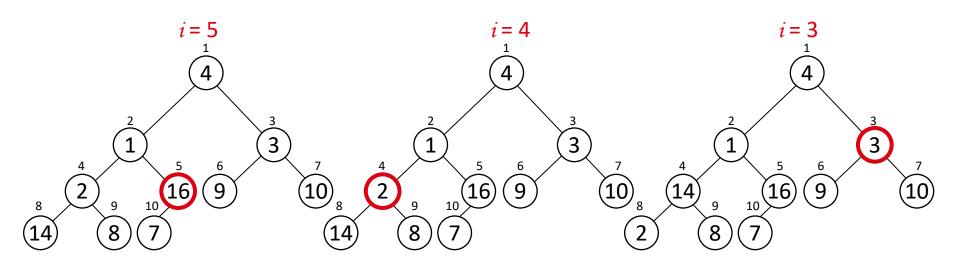
- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray $A[(\lfloor n/2 \rfloor + 1) \dots n]$ are leaves
- Apply MAX-HEAPIFY on elements between $1 \text{ and } \lfloor n/2 \rfloor$

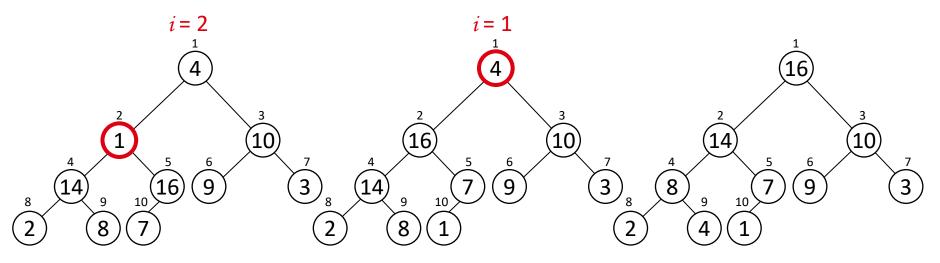
Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)



Example:





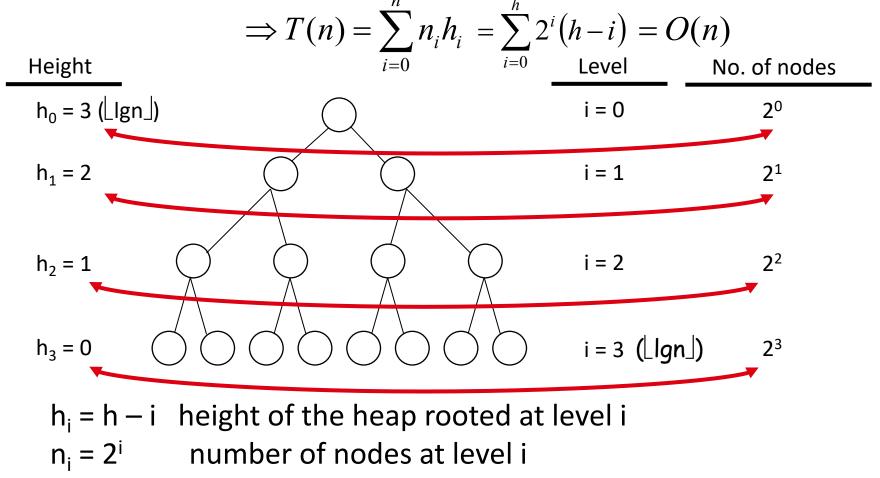
Running Time of BUILD MAX HEAP

- Alg: BUILD-MAX-HEAP(A)
- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- do MAX-HEAPIFY(A, i, n) O(lgn) O(n) 3.

- \Rightarrow Running time: O(nlqn)
- This is not an asymptotically tight upper bound

Running Time of BUILD MAX HEAP

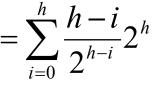
 HEAPIFY takes O(h) ⇒ the cost of HEAPIFY on a node i is proportional to the height of the node i in the tree

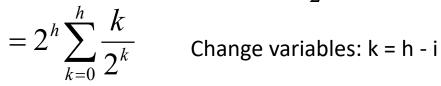


Running Time of BUILD MAX HEAP

 $T(n) = \sum_{i=1}^{n} n_i h_i$ Cost of HEAPIFY at level i * number of nodes at that level

 $=\sum_{i=1}^{h} 2^{i} (h-i)$ Replace the values of n_i and h_i computed before





 $= \sum_{i=0}^{h} \frac{h-i}{2^{h-i}} 2^{h}$ Multiply by 2^h both at the nominator and denominator and write 2ⁱ as $\frac{1}{2^{-i}}$

= O(n)

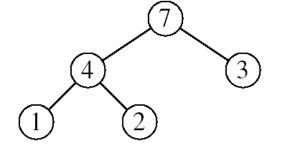
The sum above is smaller than the sum of all elements to ∞ and h = lgn

The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

Heapsort

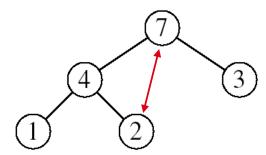
- Goal:
 - Sort an array using heap representations
- Idea:
 - Build a max-heap from the array

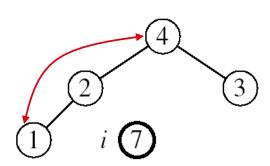


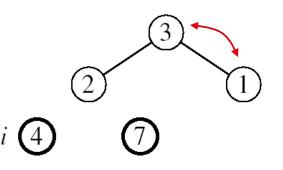
- Swap the root (the maximum element) with the last element in the array
- "Discard" this last node by decreasing the heap size
- Call MAX-HEAPIFY on the new root
- Repeat this process until only one node remains

Example:

A=[7, 4, 3, 1, 2]



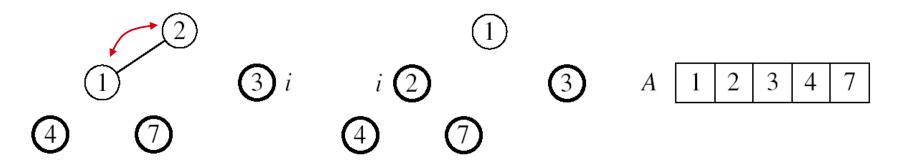




MAX-HEAPIFY(A, 1, 4)

MAX-HEAPIFY(A, 1, 3)

MAX-HEAPIFY(A, 1, 2)



MAX-HEAPIFY(A, 1, 1)

Alg: HEAPSORT(A)

- 1. BUILD-MAX-HEAP(A)
- 2. for $i \leftarrow \text{length}[A]$ downto 2
- n-1 times

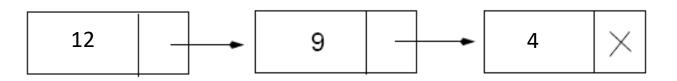
O(n)

Running time: O(nlgn) --- Can
 be shown to be Θ(nlgn)

Priority Queues

Properties

- Each element is associated with a value (priority)
- The key with the highest (or lowest) priority is extracted first



Operations on Priority Queues

Max-priority queues support the following

operations:

- INSERT(S, x): inserts element x into set S
- EXTRACT-MAX(S): <u>removes and returns</u> element

of **S** with largest key

MAXIMUM(S): returns element of S with largest key

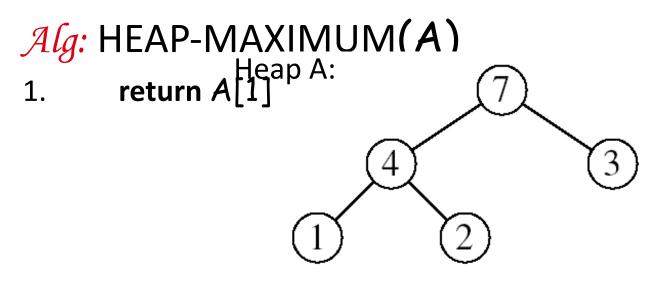
- INCREASE-KEY(S, x, k)? increases value of

HEAP-MAXIMUM

Goal:

 Return the largest element of the heap

Running time: O(1)



Heap-Maximum(A) returns 7

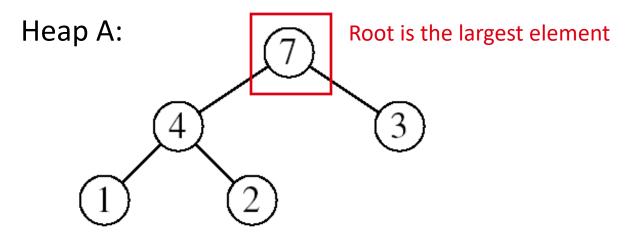
HEAP-EXTRACT-MAX

Goal:

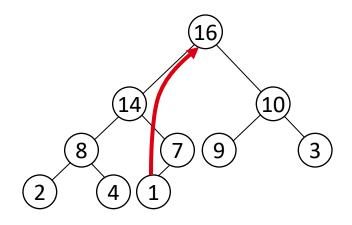
 Extract the largest element of the heap (i.e., return the max value and also remove that element from the heap

Idea:

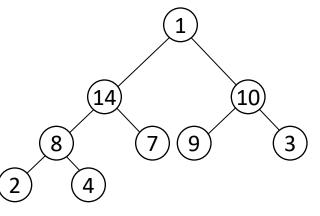
- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1



Example: HEAP-EXTRACT-MAX

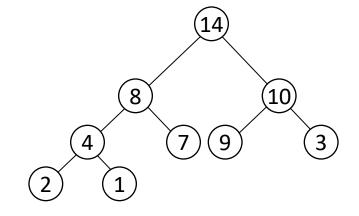


max = 16



Heap size decreased with 1

Call MAX-HEAPIFY(A, 1, n-1)



6

4

1. if n < 1

2. **then error** "heap underflow"

Alg: HEAP-EXTRACT-MAX(A, n)

- 3. max \leftarrow A[1]
- 4. $A[1] \leftarrow A[n]$
- 5. MAX-HEAPIFY(*A*, 1, n-1)

remakes heap

6. return max

Running time: O(lgn)

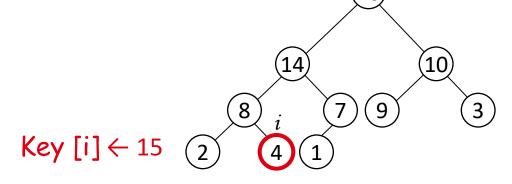
HEAP-EXTRACT-MAX

HEAP-INCREASE-KEY

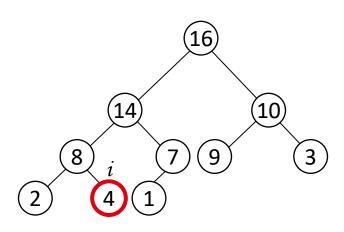
• Goal:

- Increases the key of an element i in the heap

- Idea:
 - Increment the key of A[i] to its new value
 - If the max-heap property does not hold anymore: traverse a path toward the root to find the proper place for the newly increased key

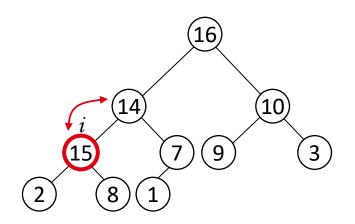


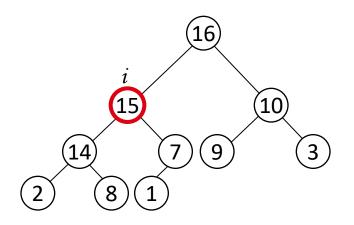
Example: HEAP-INCREASE-KEY



 $\begin{array}{c}
 16 \\
 14 \\
 10 \\
 8 \\
 i \\
 7 9 \\
 3 \\
 2 \\
 15 \\
 1 \\
 \end{array}$

 $\mathit{Key}\left[i\right] \leftarrow 15$

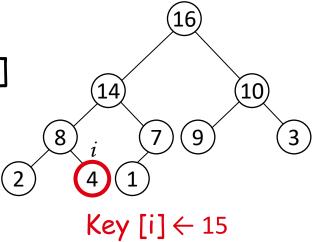




HEAP-INCREASE-KEY

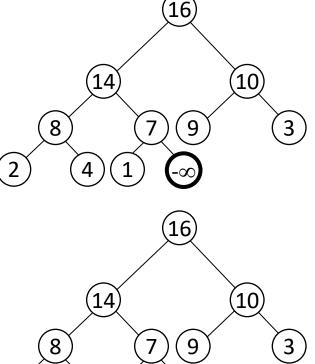
Alg: HEAP-INCREASE-KEY(A, i, key)

- 1. if key < A[i]
- 2. **then error** "new key is smaller than current key"
- 3. $A[i] \leftarrow key$
- 4. while i > 1 and A[PARENT(i)] < A[i]
- 5. **do** exchange A[i] A[PARENT(i)]
- 6. $i \leftarrow PARENT(i)$
- Running time: O(lgn)



MAX-HEAP-INSERT

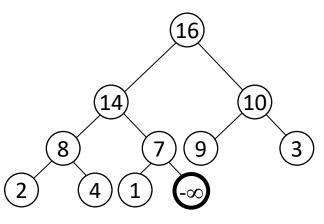
- Goal:
 - Inserts a new element into a max-heap
- Idea:
 - Expand the max-heap with a new element whose key is - ∞
 - Calls HEAP-INCREASE-KEY to set the key of the new node to its
 correct value and maintain the max-heap property



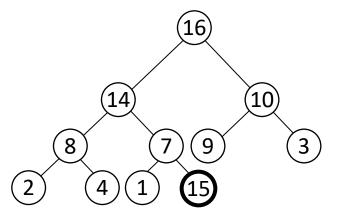
4

Example: MAX-HEAP-INSERT

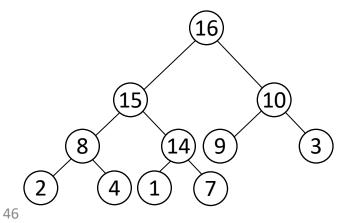
- Insert value 15:
- Start by inserting - ∞

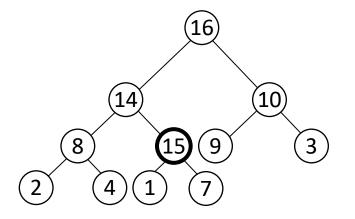


Increase the key to 15 Call HEAP-INCREASE-KEY on A[11] = 15



The restored heap containing the newly added element





MAX-HEAP-INSERT

 $\left(16\right)$

(9)

14

4

8

2

 $\left(10\right)$

3

- Alg: MAX-HEAP-INSERT(A, key, n)
- 1. heap-size[A] \leftarrow n + 1
- 2. $A[n + 1] \leftarrow -\infty$
- 3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

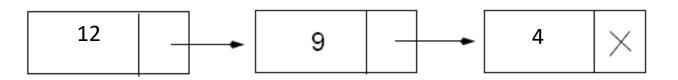
Summary

- We can perform the following operations on heaps:
 - MAX-HEAPIFY O(lgn)
 - BUILD-MAX-HEAP O(n)
 - HEAP-SORT O(nlgn)
 - MAX-HEAP-INSERT
 - HEAP-EXTRACT-MAX
 - HEAP-INCREASE-KEY
 - HEAP-MAXIMUM

O(lgn) O(lgn) O(lgn) O(1)

Average O(lgn)

Priority Queue Using Linked List



 Remove a key: O(1)

 Insert a key: O(n)

 Increase key: O(n)

 Extract max key: O(1)