
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.27

Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + Q(n)

= Q(n lg n) (same as merge sort)

10 10What if the split is always 1 : 9 ?

10 10
1 9T (n) = T(n)+T(n)+Q(n)

What is the solution to this recurrence?

Analysis of “almost-best” case

10log n

cn

10
1 cn

10
9 cn

1 cn 9 cn
100 100 100

9 cn
100
81 cn

… …
log10/9n

cn

cn

cn

Q(1)
cn log10n £ T(n) £ cn log10/9n + O(n)

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.32

O(n) leavesQ(1)

Q(n lg n)
Lucky!
September 21, 2005

…

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.33

More intuition
Suppose we alternate lucky, unlucky,
lucky, unlucky, lucky, ….

L(n) = 2U(n/2) + Q(n)
U(n) = L(n – 1) +Q(n)

lucky
unlucky

Solving:
L(n) = 2(L(n/2 – 1) + Q(n/2)) + Q(n)

= 2L(n/2 – 1) + Q(n)
= Q(n lg n)

How can we make sure we are usually lucky?
Lucky!

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.34

Randomized quicksort
IDEA: Partition around a random element.
• Running time is independent of the input

order.
• No assumptions need to be made about

the input distribution.
• No specific input elicits the worst-case

behavior.
• The worst case is determined only by the

output of a random-number generator.

Randomized quicksort
analysis

Let T(n) = the random variable for the running
time of randomized quicksort on an input of size
n, assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator
random variable

kX = 1 if PARTITION generates a k : n–k–1split,
0 otherwise.

E[Xk] = Pr{Xk = 1} = 1/n, since all splits are
equally likely, assuming elements are distinct.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.35

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.36

Analysis (continued)

T(0) + T(n–1) + Q(n) if 0 : n–1split,
T(1) + T(n–2) + Q(n) if 1 : n–2split,

M
T(n–1) + T(0) + Q(n) if n–1 : 0split,

T(n) =

n-1
=å Xk (T(k) +T (n - k -1) +Q(n))

k=0

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.37

Calculating expectation

�

��n-1
E[T(n)] = E�å Xk (T(k) +T (n - k -1)+Q(n))�

�k=0

Take expectations of both sides.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.38

Calculating expectation

�
�

�å
�

n-1

n-1

�k=0 �
kX (T(k) +T (n - k -1)+Q(n))E[T (n)]= E

= åE[Xk (T(k) +T (n - k -1)+Q(n))]
k=0

Linearity of expectation.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.39

Calculating expectation

�
�

�å
�

n-1

n-1

�k=0 �
k

= åE[Xk]×E[T(k) +T (n - k -1)+Q(n)]
k=0

= åE[Xk (T(k) +T (n - k -1)+Q(n))]
k=0
n-1

X (T(k) +T (n - k -1)+Q(n))E[T (n)]= E

Independence of Xk from other random
choices.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.40

Calculating expectation

�
�

�å
�

n-1
= 1

k=0 k=0 k=0

n-1

n-1

�k=0 �
k

nåQ(n)
n-1 n-1

[]+ 1 E[T(n - k -1)]+ 1
nånåE T (k)

= åE[Xk]×E[T(k) +T (n - k -1)+Q(n)]
k=0

= åE[Xk (T(k) +T (n - k -1)+Q(n))]
k=0
n-1

X (T(k) +T (n - k -1)+Q(n))E[T (n)]= E

Linearity of expectation; E[Xk] = 1/n .

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.41

Calculating expectation

[

k �
��

X (T(k) +T (n - k -1)+Q(n))E[T (n)]= E

nå

nåQ(n)
nånåE T (k)

�å

n-1

= 2 E[T(k)]+Q(n)
k=1

k=0

n-1 n-1

]+ 1 E[T(n - k -1)]+ 1
n-1

= 1
k=0 k=0

= åE[Xk]×E[T(k) +T (n - k -1)+Q(n)]
k=0

n-1
= åE[Xk (T(k) +T (n - k -1)+Q(n))]

k=0
n-1

n-1

�k=0 �

Summations have
identical terms.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.42

E[T (n)] = 2åE[T(k)]+Q(n)

Hairy recurrence
n-1

nk =2

(The k = 0, 1 terms can be absorbed in the Q(n).)

Prove: E[T(n)] £ an lg n for constant a > 0 .
• Choose a large enough so that an lg n

dominates E[T(n)] for sufficiently small n ³ 2.

Use fact: 2 21 1
2 8å

n-1

k=2
n lg n - nk lg k£ (exercise).

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.47

Quicksort in practice

• Quicksort is a great general-purpose
sorting algorithm.

• Quicksort is typically over twice as fast
as merge sort.

• Quicksort can benefit substantially from
code tuning.

• Quicksort behaves well even with
caching and virtual memory.

HEAP AND HEAPSORT

16

Special Types of Trees
• Def: Full binary tree = a

binary tree in which each
node is either a leaf or has
degree exactly 2.

• Def: Complete binary tree
= a binary tree in which all
leaves are on the same level
and all internal nodes have
degree 2.

Full binary tree

2

14 8

1

16

7

4

3

9 10

12

Complete binary tree

2

1

16

4

3

9 10

17

Definitions
• Height of a node = the number of edges on the longest simple

path from the node down to a leaf
• Level of a node = the length of a path from the root to the

node
• Height of tree = height of root node

2

14 8

1

16

4

3

9 10

Height of root = 3

Height of (2)= 1 Level of (10)= 2

18

Useful Properties

2

14 8

1

16

4

3

9 10

Height of root = 3

Height of (2)= 1 Level of (10)= 2

height

height

1
1

0

2 12 2 1
2 1

dd
l d

l
n

+
+

=

-
£ = = -

-å

19

The Heap Data Structure

• Def: A heap is a nearly complete binary tree
with the following two properties:
– Structural property: all levels are full, except

possibly the last one, which is filled from left to
right

– Order (heap) property: for any node x
Parent(x) ≥ x

Heap

5

7

8

4

2

From the heap property, it
follows that:
“The root is the maximum
element of the heap!”

A heap is a binary tree that is filled in order

20

Array Representation of Heaps
• A heap can be stored as an array

A.
– Root of tree is A[1]
– Left child of A[i] = A[2i]
– Right child of A[i] = A[2i + 1]
– Parent of A[i] = A[ëi/2û]
– Heapsize[A] ≤ length[A]

• The elements in the subarray
A[(ën/2û+1) .. n] are leaves

21

Heap Types

• Max-heaps (largest element at root), have the
max-heap property:
– for all nodes i, excluding the root:

A[PARENT(i)] ≥ A[i]

• Min-heaps (smallest element at root), have
the min-heap property:
– for all nodes i, excluding the root:

A[PARENT(i)] ≤ A[i]

22

Adding/Deleting Nodes
• New nodes are always inserted at the bottom

level (left to right)

• Nodes are removed from the bottom level
(right to left)

23

Operations on Heaps
• Maintain/Restore the max-heap property
– MAX-HEAPIFY

• Create a max-heap from an unordered array
– BUILD-MAX-HEAP

• Sort an array in place
– HEAPSORT

• Priority queues

24

Maintaining the Heap Property
• Suppose a node is smaller than a child

– Left and Right subtrees of i are max-heaps
• To eliminate the violation:

– Exchange with larger child
– Move down the tree
– Continue until node is not smaller than

children

25

Example
MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[2] « A[4]

A[4] violates the heap property

A[4] « A[9]

Heap property restored

26

Maintaining the Heap Property
• Assumptions:

– Left and Right
subtrees of i
are max-heaps

– A[i] may be
smaller than
its children

Alg: MAX-HEAPIFY(A, i, n)
1. l ← LEFT(i)
2. r ← RIGHT(i)
3. if l ≤ n and A[l] > A[i]
4. then largest ←l
5. else largest ←i
6. if r ≤ n and A[r] > A[largest]
7. then largest ←r
8. if largest ¹ i
9. then exchange A[i] ↔ A[largest]
10. MAX-HEAPIFY(A, largest, n)

27

MAX-HEAPIFY Running Time
• Intuitively:

• Running time of MAX-HEAPIFY is O(lgn)

• Can be written in terms of the height of the

heap, as being O(h)

– Since the height of the heap is ëlgnû

h

2h
O(h)

-
-
-
-

28

Building a Heap

Alg: BUILD-MAX-HEAP(A)
1. n = length[A]

2. for i ← ën/2û downto 1
3. do MAX-HEAPIFY(A, i, n)

• Convert an array A[1 … n] into a max-heap (n = length[A])

• The elements in the subarray A[(ën/2û+1) .. n] are leaves

• Apply MAX-HEAPIFY on elements between 1 and ën/2û

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

4 1 3 2 16 9 10 14 8 7A:

29

Example: A 4 1 3 2 16 9 10 14 8 7

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

1

16

7

4

10

9 3

1

2 3

4 5 6 7

8 9 10

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10
14

2 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

16

7

1

4

10

9 3

1

2 3

4 5 6 7

8 9 10
8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

i = 5 i = 4 i = 3

i = 2 i = 1

30

Running Time of BUILD MAX HEAP

Þ Running time: O(nlgn)

• This is not an asymptotically tight upper
bound

Alg: BUILD-MAX-HEAP(A)
1. n = length[A]
2. for i ← ën/2û downto 1
3. do MAX-HEAPIFY(A, i, n) O(lgn)

O(n)

31

Running Time of BUILD MAX HEAP
• HEAPIFY takes O(h)Þ the cost of HEAPIFY on a node i is

proportional to the height of the node i in the tree

Height Level

h0 = 3 (ëlgnû)

h1 = 2

h2 = 1

h3 = 0

i = 0

i = 1

i = 2

i = 3 (ëlgnû)

No. of nodes

20

21

22

23

hi = h – i height of the heap rooted at level i
ni = 2i number of nodes at level i

i

h

i
ihnnT å

=

=Þ
0

)(()ih
h

i

i -=å
=0
2)(nO=

32

Running Time of BUILD MAX HEAP

i

h

i
ihnnT å

=

=
0

)(Cost of HEAPIFY at level i * number of nodes at that level

()ih
h

i

i -=å
=0
2 Replace the values of ni and hi computed before

h
h

i
ih
ih 2

20
å
=

-

-
= Multiply by 2h both at the nominator and denominator and

write 2i as
i-2
1

å
=

=
h

k
k

h k
0 2

2 Change variables: k = h - i

å
¥

=

£
0 2k

k
kn The sum above is smaller than the sum of all elements to ¥

and h = lgn

)(nO= The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

33

Heapsort
• Goal:

– Sort an array using heap representations

• Idea:

– Build a max-heap from the array

– Swap the root (the maximum element) with the last

element in the array

– “Discard” this last node by decreasing the heap size

– Call MAX-HEAPIFY on the new root

– Repeat this process until only one node remains

34

Example: A=[7, 4, 3, 1, 2]

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

MAX-HEAPIFY(A, 1, 1)

35

Alg: HEAPSORT(A)

1. BUILD-MAX-HEAP(A)

2. for i ← length[A] downto 2

3. do exchange A[1] ↔ A[i]

4. MAX-HEAPIFY(A, 1, i - 1)

• Running time: O(nlgn) --- Can
be shown to be Θ(nlgn)

O(n)

O(lgn)

n-1 times

36

Priority Queues

12 4

37

Operations
on Priority Queues

• Max-priority queues support the following

operations:

– INSERT(S, x): inserts element x into set S

– EXTRACT-MAX(S): removes and returns element

of S with largest key

– MAXIMUM(S): returns element of S with largest

key

– INCREASE-KEY(S, x, k): increases value of

38

HEAP-MAXIMUM
Goal:
– Return the largest element of the

heap

Alg: HEAP-MAXIMUM(A)
1. return A[1]

Running time: O(1)

Heap A:

Heap-Maximum(A) returns 7

39

HEAP-EXTRACT-MAX
Goal:

– Extract the largest element of the heap (i.e., return the max value
and also remove that element from the heap

Idea:
– Exchange the root element with the last
– Decrease the size of the heap by 1 element
– Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: Root is the largest element

40

Example: HEAP-EXTRACT-MAX

8

2 4

14

7

1

16

10

9 3
max = 16

8

2 4

14

7

1

10

9 3

Heap size decreased with 1

4

2 1

8

7

14

10

9 3

Call MAX-HEAPIFY(A, 1, n-1)

41

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

1. if n < 1

2. then error “heap underflow”

3. max ← A[1]

4. A[1] ← A[n]

5. MAX-HEAPIFY(A, 1, n-1) remakes heap

6. return max
Running time: O(lgn)

42

HEAP-INCREASE-KEY
• Goal:
– Increases the key of an element i in the heap

• Idea:
– Increment the key of A[i] to its new value
– If the max-heap property does not hold anymore:

traverse a path toward the root to find the proper
place for the newly increased key

8

2 4

14

7

1

16

10

9 3i
Key [i] ← 15

43

Example: HEAP-INCREASE-KEY

14

2 8

15

7

1

16

10

9 3

i

8

2 4

14

7

1

16

10

9 3i

Key [i] ← 15

8

2 15

14

7

1

16

10

9 3i

15

2 8

14

7

1

16

10

9 3
i

44

HEAP-INCREASE-KEY
Alg: HEAP-INCREASE-KEY(A, i, key)

1. if key < A[i]
2. then error “new key is smaller than current key”
3. A[i] ← key
4. while i > 1 and A[PARENT(i)] < A[i]
5. do exchange A[i] ↔ A[PARENT(i)]
6. i ← PARENT(i)

• Running time: O(lgn)

8

2 4

14

7

1

16

10

9 3i

Key [i] ← 15

45

-¥

MAX-HEAP-INSERT
• Goal:

– Inserts a new element into a

max-heap

• Idea:

– Expand the max-heap with a

new element whose key is -¥

– Calls HEAP-INCREASE-KEY to set

the key of the new node to its

correct value and maintain the

max-heap property

8

2 4

14

7

1

16

10

9 3

15

8

2 4

14

7

1

16

10

9 3

46

Example: MAX-HEAP-INSERT

-¥

8

2 4

14

7

1

16

10

9 3

Insert value 15:
- Start by inserting -¥

15

8

2 4

14

7

1

16

10

9 3

Increase the key to 15
Call HEAP-INCREASE-KEY on A[11] = 15

7

8

2 4

14

15

1

16

10

9 3
7

8

2 4

15

14

1

16

10

9 3

The restored heap containing
the newly added element

47

MAX-HEAP-INSERT

Alg:MAX-HEAP-INSERT(A, key, n)

1. heap-size[A] ← n + 1

2. A[n + 1] ← -¥

3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

-¥

8

2 4

14

7

1

16

10

9 3

48

Summary

• We can perform the following operations on heaps:
– MAX-HEAPIFY O(lgn)

– BUILD-MAX-HEAP O(n)

– HEAP-SORT O(nlgn)

– MAX-HEAP-INSERT O(lgn)

– HEAP-EXTRACT-MAX O(lgn)

– HEAP-INCREASE-KEY O(lgn)

– HEAP-MAXIMUM O(1)

Average
O(lgn)

49

Priority Queue Using Linked List

Average: O(n)

Increase key: O(n)

Extract max key: O(1)

12 4

