CS60020: Foundations of
Algorithm Design and Machine
Learning

=71 Best-case analysis

\\\‘ \‘ sz

(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

1(n) =21(n/2) + O(n)
= O(n lg n) (same as merge sort)

1.9
What if the split is always ~ 1(}7

T(n)= T(ll() n)+ T(?O n)+ O(n)
What 1s the solution to this recurrence?

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.27

= cn
Len 2CH -

9 cn
log, 7 7 N\ logioon
—10/ % 9cn/ 81\71-109 cn
100 100 100 100
/ 7\
@(/1) O(n) leaves l .. \
O(nlgn) o)

Lucky! cnlog,on < 1(n) < cnloggon + AAn)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.32

71 More intuition

(s
\\\‘ \‘ o

Suppose we alternate lucky, unlucky,
lucky, unlucky, lucky,

L(n) =2U(n/2) + O®(n) lucky
Un)=Ln—1)+0On) wunlucky
Solving:
L(n) =2(L(n/2-1) + O(n/2)) + O(n)
=2L(n/2 — 1) + O(n)
=0O(nlgn) Lucky!

How can we make sure we are usually lucky?

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.33

ALGORITHMS
T————
- :

=~ 4+ Randomized quicksort

IDEA: Partition around a random eclement.

* Running time 1s independent of the mput
order.

* No assumptions need to be made about
the mput distribution.

* No specific imnput elicits the worst-case
behavior.

* The worst case 1s determined only by the
output of a random-number generator.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.34

m Randomized quicksort

o S

S e analysis

Let 7(n) = the random variable for the running
time of randomized quicksort on an input of size
n, assuming random numbers are independent.

For k=0, 1, ..., n—1, define the indicator
random variable

X = | 1f PARTITION generates a k& : n—k—1 split,
0 otherwise.

= Pr{X,= 1} = 1/n, since all splits are
equally likely, assuming elements are distinct.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.35

Analysis (continued)

CT(0) + T(n—1) + O(n) if 0 : n—1 split,

(1) + T(n-2)+O(n) if 1 : n—2split,
M

T (n—1)+ 7(0) + O(n) 1f n—1 : Osplit,

T(n) =<

:nZ_iXk(T(k)+T(n—k—l)+®(n))

k=0

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.36

:‘"‘\ ." Calculating expectation

E[T(n)]= E%“IX,c (T(k) +T(n—k—-1)+ (H)(n))j -
_J=0]

Take expectations of both sides.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.37

S, Calculating expectation

E[T(n)]=E %_1)(,c (T(k)+T(n—k—1)+ @(n))g
k=0 []

= HZ_ZIE[X,C (T(k)+T(n—k-1)+0(n))]
k=0

Linearity of expectation.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.38

'-""!;3 Calculating expectation

-1
E[T (n)]= E% Xk(T(k) +T(n—k-1)+ @(n))%
k=0 []

IE[Xk(T(k)JrT(n k—1)+0O(n))]

S

I
b
—_ OM

M7

E|X. | E|T(k)+T(n—k-1)+0{m)]
0

T

Independence of X, from other random
choices.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.39

Calculating expectation

E[T (n)]= E&_le(T(k) +T(n—k—-1)+ @(n))%
k=0 []

nZ_lE[Xk (T(k)+T(n—k—-1)+0(n))]
=0
1

e

S

E|X. | E|[T(k)+T(n—k-1)+0O(n)]
0

n—1 n—1 n—1
Y ETK)]+ 1> E[T(n-k-1)]+1 > 0(n)
k=0 =0 -0

e
I

S |—

Linearity of expectation; £[.X, | = 1/n.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.40

Calculating expectation

E[T(n)]=E %_IX,C (T(k) +T(n—k—-1)+ @(n))g
k=0 []

IE[Xk(T(k)+T(n k—1)+0(n))]

3

iy
)

T
[

E|X. | E|[T(k)+T(n—k—-1)+0O(n)]

k=0
n—l n—l n—l
_ % SEfG)]+ % N E[T(n—k-D]+ }1 > O(n)
k=0 k=0 k=0
n—1
— % E|T()]+6(n) Summations have
k=1

1dentical terms.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.41

ALGORITHM

Halry recurrence

\
n \‘S.‘

E[T(n)] =2 ZE[T<k>]+ O(n)

=2
(The £ =0, 1 terms can be absorbed 1n the ©(n).)

Prove: E|1(n)] < anlgn for constant a > 0.
* Choose a large enough so that an Ign
dominates £[7(n)] for sufficiently small n > 2.

Use fact: Zk lg k< Sn2lgn - lnz (exercise).
k=2

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.42

ALGORITHMS
fm

= 4+ Quicksortin practice

\\\‘ S

* Quicksort 1s a great general-purpose
sorting algorithm.

* Quicksort 1s typically over twice as fast
as merge sort.

* Quicksort can benefit substantially from
code tuning.

* Quicksort behaves well even with
caching and virtual memory.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.47

HEAP AND HEAPSORT

Special Types of Trees

* Def: Full binary tree = a (4,
binary tree in which each (1) 3)
node is either a leaf or has OERGCIONR®
degree exactly 2. W ®O @

Full binary tree
(4)

* Def: Complete binary tree (D ©

= a binary tree in which all ORI

leaves are on the same level
and all internal nodes have
degree 2.

Complete binary tree

Definitions

* Height of a node = the number of edges on the longest simple
path from the node down to a leaf

* Level of a node = the length of a path from the root to the
node

* Height of tree = height of root node

° «— Height of root = 3

(1) (3)
Heightof (2)=1 — e @ 9 @ +«—— Level of (10)=2
14 (&

Useful Properties

- There are at most 2’ nodes at level (or depth) / of a binary tree
- A binary tree with height ¢ has at most 2/™' — 1 nodes

- A binary tree with » nodes has height at least| /g7 |

)=2

18

The Heap Data Structure

* Def: A heap is a nearly complete binary tree
with the following two properties:

— Structural property: all levels are full, except
possibly the last one, which is filled from left to
right

— Order (heaproperty:Ffr%%a{M ﬂgéjpep%perty, "
Parent(x) > x follows that:

“The root is the maximum
element of the heap!”

Heap

A heap is a binary tree that’is filled in order

Array Representation of Heaps

* A heap can be stored as an array

A.

— Root of tree is A[1]

— Left child of A[i] = A[2i]

— Right child of A[i] = A[2i + 1]
— Parentof A[i]= A[Li/2]]

— Heapsize[A] < length[A]

* The elements in the subarray

A[(Ln/2]+1) .. n] are leaves

Heap Types

 Max-heaps (largest element at root), have the
max-heap property:
— for all nodes 1, excluding the root:

A[PARENT()] 2 A[i]

* Min-heaps (smallest element at root), have
the min-heap property:

— for all nodes 1, excluding the root:
ATDADENIT(NT ., AT:1

Adding/Deleting Nodes

* New nodes are always inserted at the bottom
level (left to right)

* Nodes are removed from the bottom level
(right" —~

f_‘“\ ______?;'\l
|
Gy (20

Z\M |

Kl k_,-f‘ x/

Operations on Heaps

* Maintain/Restore the max-heap property
— MAX-HEAPIFY

* Create a max-heap from an unordered array
— BUILD-MAX-HEAP

* Sort an array in place
— HEAPSORT

* Priority queues

23

Maintaining the Heap Property

 Suppose a node is smaller than a child
— Left and Right subtrees of i are max-heaps

 To eliminate the violation:
— Exchange with larger child

— Move down the tree

— Continue until node is not smaller than
children

MAX-HEAPIFY(A, 2, 10)
1

Example

Heap property restored

25

Maintaining the Heap Property

+ Assumptions: A& MAX-HEAPIFY(A, i, n)
1. |« LEFT(i)
2. r < RIGHT())
if | < nand A[l]> A[i]
then largest «|
else largest i
. ifr<nand A[r] > A[largest]
then largest «r
if largest = i
then exchange A[i] & A[largest]
10. MAX-HEAPIFY(A, largest, n)

— Left and Right
subtrees of |
are max-heaps

— A[i] may be
smaller than

© 0 NSO A

26

MAX-HEAPIFY Running Time

* [ntuitively:

- It traces a path from the root to a leaf (longest path length: h)
- At each level, 1t makes exactly 2 comparisons

- Total number of comnarisons 1s 2h

- Running time 1s o(h) or O(/gn)

* Running time of MAX-HEAPIFY is O(Ign)
* Can be written in terms of the height of the

heap, as being O(h)
— Since the height of the heap is | Ign |

Building a Heap

 Convertan array A[1 ... n]into a max-heap (n = length[A])

* The elements in the subarray A[(Ln/2]+1) .. n] are leaves
« Apply MAX-HEAPIFY on elements between 1 and n/2]

Alg: BUILD-MAX-HEAP(A)

1. n=length[A]

2. fori <« |n/2]downto 1

3. do MAX-HEAPIFY(A, i, n)

10

14

29

Running Time of BUILD MAX HEAP
Alg: BUILD-MAX-HEAP(A)

1. n=length[A]
2. fori<—|n/2]downto 1

O(n)
3. do MAX-HEAPIFY(A,i,n) O(lgn)

— Running time: O(nlgn)

* This is not an asymptotically tight upper

bound

30

Running Time of BUILD MAX HEAP

« HEAPIFY takes O(h) = the cost of HEAPIFY on a node i is
proportional to the height of the node | in the tree

= T(n)= anhl Zz =O0(n)

Height LeveI No. of nodes
ho=3 (Lign.) i=0 20
\ . —

hi =h—i height of the heap rooted at level i
n =2 number of nodes at level i

31

Running Time of BUILD MAX HEAP

T'(n)= Zh:nihi

i=0

I
x4
=
|
=

Cost of HEAPIFY at level i * number of nodes at that level

Replace the values of n, and h, computed before

Multiply by 2" both at the nominator and denominator and
write 2' as

2—i
Change variables: k=h -i
The sum above is smaller than the sum of all elements to o
and h =Ign

The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

Heapsort

e Goal:

— Sort an array using heap representations (7)

* |dea: (4) O
O @

— Swap the root (the maximum element) with the last

— Build a max-heap from the array

element in the array
— “Discard” this last node by decreasing the heap size

— Call MAX-HEAPIFY on the new root

— Repeat this process until only one node remains

Example: A=[7,4,6 3,1, 2]

L o ® 0%

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

@/@@ 0 © [
® O O,

MAX-HEAPIFY(A, 1, 1)

34

N

Alg: HEAPSORT(A)

BUILD-MAX-HEAP(A)
for i «— length[A] downto 2
do exchange A[1] Wd A[i]
MAX-HEAPIFY(A, 1, i - 1)

Running time: O(nlgn) --- Can
be shown to be O(nlgn)

O(n)

>n-1 times

O(Ign)

Priority Queues

Properties
- Each element 1s associated with a value (priority)

- The key with the highest (or lowest) priority 1s extracted first

12 1 . 9 | 14 pd

Operations
on Priority Queues
* Max-priority queues support the following

operations:

— INSERT(S, x): inserts element X into set S

— EXTRACT-MAX(S): removes and returns element

of S with largest key

— MAXIMUM(S): returns element of S with largest

key

— INCREASE-KEY(S, x, k)!increases value of

HEAP-MAXIMUM

Goal:

— Return the largest element of the

heap
Running time: O(1)

Alg: HEAP-MAXIMUM(A)
1. return AHeJap A

Heap-Maximum(A) returns 7

HEAP-EXTRACT-MAX

Goal:

— Extract the largest element of the heap (i.e., return the max value

and also remove that element from the heap

ldea:
— Exchange the root element with the last
— Decrease the size of the heap by 1 element

— Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: /@\ Root is the largest element

Example: Heap-ExTRACT-MAX

max = 16 (14) (10

Heap size decreased with 1

(19

(8) 10)

40

Call MAX-HEAPIFY(A, 1, n-1)

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

1. ifn<1

2. then error “heap underflow”

3. max «— A[l1]
4. A[l] — A[n]
5. MAX-HEAPIFY(A, 1, n-1) rem[%kes heap

6. return max
Running time: O(Ign)

HEAP-INCREASE-KEY

* Goal:
— Increases the key of an element i in the heap

* |dea:
— Increment the key of A[i] to its new value

— If the max-heap property does not hold anymore:
traverse a path toward the root to find the proper
place for the newly incr ed key

Example: HeaP-INCREASE-KEY

43

HEAP-INCREASE-KEY

Alg: HEAP-INCREASE-KEY(A, i, key)

if key < A[i]
then error “new key is smaller than current key”
Ali] — key
while i > 1 and A[PARENT(i)] < A[i]
do exchange A[i] &d A[PARENT(i)]
| — PARENT(i)

SR A T o

Running time: O(lgn)

Key [i] ¢« 15

MAX-HEAP-INSERT

* Goal:
(16
— Inserts a new element into a
max-heap 2 19
&) M G
* |dea: 2) WO
— Expand the max-heap with a 16
new element whose key is -0 13) 10
— Calls HEAP-INCREASE-KEY toset (& (D) (&
2 WO W

the key of the new node to its
correct value and maintain the
max-heap property

Example: max-HEAP-INSERT

Insert value 15: Increase the key to 15
- Start by inserting - Call HEAP-INCREASE-KEY on A[11] =15
The restored heap containing

(16
(14 10
(8) MG &
2 WO
the newly added element
(19 (16
(12) 10) (15 (19
OBRCIOSRO (8) We &
@D WO @ 2 WO @

16
(14 10)
ONNOIONNO
ONOON®

MAX-HEAP-INSERT

Alg: MAX-HEAP-INSERT(A, key, n)
14 10
1. heap-size[A] < n+1 &) MG G
@ @O @

2. A[n+ 1]« -
3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(Ign)

Summary

 We can perform the following operations on heaps:

— MAX-HEAPIFY O(Ign)

— BUILD-MAX-HEAP O(n)

— HEAP-SORT O(nlgn)

— MAX-HEAP-INSERT O(lIgn) .

— HEAP-EXTRACT-MAX O(lgn)

— HEAP-INCREASE-KEY O(Ign) » Average
— HEAP-MAXIMUM o(1) Olign)

Priority Queue Using Linked List

Remove a key: O(1))

Insert a kev: O(n)
' > Average: O(n)

Increase key: O(n)

Extract max key: O(1) /

