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Matrix multiplication
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Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj
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Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

Running time = Q(n3)
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Divide-and-conquer algorithm
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Divide-and-conquer algorithm
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Analysis	of	D&C	algorithm

# submatrices
submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +Q(n2)
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Analysis	of	D&C	algorithm

# submatrices
submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).
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Analysis	of	D&C	algorithm

# submatrices
submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

No better than the ordinary algorithm.
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.



Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.36

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

P1 = a × ( f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)  
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f )
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6  
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × ( f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)  
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f )
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6  
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × ( f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)  
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f )

7 mults, 18 adds/subs.
Note: No reliance on  
commutativity of mult!

7 mults, 18 adds/subs. 
Note: No reliance on  
commutativity of mult!
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

P1 = a × ( f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)  
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f )
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)´(n/2) submatrices. Form terms  
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)´(n/2) submatrices.
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)´(n/2) submatrices. Form terms  
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)´(n/2) submatrices.

T(n) = 7 T(n/2) +Q(n2)
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Analysis	of Strassen

T(n) = 7 T(n/2) +Q(n2)
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Analysis	of Strassen

T(n) = 7 T(n/2) +Q(n2)

nlogba = nlog27 » n2.81 Þ CASE 1 Þ T(n) = Q(nlg 7).
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Analysis	of Strassen

T(n) = 7 T(n/2) +Q(n2)

nlogba = nlog27 » n2.81 Þ CASE 1 Þ T(n) = Q(nlg 7).

The number 2.81 may not seem much smaller than  
3, but because the difference is in the exponent, the  
impact on running time is significant. In fact,  
Strassen’s algorithm beats the ordinary algorithm  
on today’s machines for n ³ 32 or so.



Analysis	of Strassen

T(n) = 7 T(n/2) +Q(n2)

nlogba = nlog27 » n2.81 Þ CASE 1 Þ T(n) = Q(nlg 7).

The number 2.81 may not seem much smaller than  
3, but because the difference is in the exponent, the  
impact on running time is significant. In fact,  
Strassen’s algorithm beats the ordinary algorithm  
on today’s machines for n ³ 32 or so.

Best to date (of theoretical interest only): Q(n2.376L).
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Asymptotic	Notation



Asymptotic	Notation

• Reflexive
• Transitive
• Theta	is	symmetric.
• O	and	Omega	are	anti-symmetric.
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Master	theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – e), constant e > 0
Þ T(n) = Q(nlogba) .

CASE 2: f (n) = Q(nlogba)
Þ T(n) = Q(nlogba lg n) .

CASE 3: f (n) = W(nlogba + e ), constant e >0,  
and regularity condition
Þ T(n) = Q( f (n)) .



Proof	of	Master	theorem



Proof	of	Master	theorem



Proof	of	Master	theorem

• Case	1:



Proof	of	Master	theorem

• Case	2:



Proof	of	Master	theorem

• Case	3:
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Conclusion

• Divide and conquer is just one of several  
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be  
analyzed using recurrences and the master  
method (so practice this math).

• The divide-and-conquer strategy often leads  
to efficient algorithms.


