
CS60020:	Foundations	of	
Algorithm	Design	and	Machine	

Learning
Sourangshu	Bhattacharya

September 14, 2005 L2.27

Matrix multiplication

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28

Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.29

Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

Running time = Q(n3)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

Divide-and-conquer algorithm

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

Divide-and-conquer algorithm

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32

Analysis	of	D&C	algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.33

Analysis	of	D&C	algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.34

Analysis	of	D&C	algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

No better than the ordinary algorithm.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.36

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)´(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)´(n/2) submatrices.

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.41

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)´(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)´(n/2) submatrices.

T(n) = 7 T(n/2) +Q(n2)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

Analysis	of Strassen

T(n) = 7 T(n/2) +Q(n2)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.43

Analysis	of Strassen

T(n) = 7 T(n/2) +Q(n2)

nlogba = nlog27 » n2.81 Þ CASE 1 Þ T(n) = Q(nlg 7).

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.44

Analysis	of Strassen

T(n) = 7 T(n/2) +Q(n2)

nlogba = nlog27 » n2.81 Þ CASE 1 Þ T(n) = Q(nlg 7).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ³ 32 or so.

Analysis	of Strassen

T(n) = 7 T(n/2) +Q(n2)

nlogba = nlog27 » n2.81 Þ CASE 1 Þ T(n) = Q(nlg 7).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ³ 32 or so.

Best to date (of theoretical interest only): Q(n2.376L).
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.45

Asymptotic	Notation

Asymptotic	Notation

• Reflexive
• Transitive
• Theta	is	symmetric.
• O	and	Omega	are	anti-symmetric.

L2.5

Master	theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – e), constant e > 0
Þ T(n) = Q(nlogba) .

CASE 2: f (n) = Q(nlogba)
Þ T(n) = Q(nlogba lg n) .

CASE 3: f (n) = W(nlogba + e), constant e >0,
and regularity condition
Þ T(n) = Q(f (n)) .

Proof	of	Master	theorem

Proof	of	Master	theorem

Proof	of	Master	theorem

• Case	1:

Proof	of	Master	theorem

• Case	2:

Proof	of	Master	theorem

• Case	3:

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.54

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

• The divide-and-conquer strategy often leads
to efficient algorithms.

