
CS60020:	Foundations	of	
Algorithm	Design	and	Machine	

Learning
Sourangshu	Bhattacharya

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

Fibonacci numbers

Recursive definition:

Fn =
1 if n = 0;
2 if n = 1;
Fn–1 + Fn–2 if n ³ 2.

0 1 1 2 3 5 8 13 21 34 L

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

Fibonacci numbers

Recursive definition:

Fn =
0
1
Fn–1 + Fn–2

if n = 0;
if n = 1;
if n ³ 2.

0 1 1 2 3 5 8 13 21 34 L

5)/2
Naive recursive algorithm: W(f n)
(exponential time), where f = (1+
is the golden ratio.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

Computing	Fibonacci		
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Q(n).

Computing	Fibonacci		
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Q(n).
Naive recursive squaring:

Fn = f n/ 5 rounded to the nearest integer.
• Recursive squaring: Q(lg n) time.
• This method is unreliable, since floating-point

arithmetic is prone to round-off errors.
September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.23

Recursive squaring

Fn
⎥⎦
= ⎢⎣1

1⎤nFn ⎤ ⎡1

n-1

⎡Fn+1

⎣⎢ F
Theorem:

0⎥⎦
.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

Recursive squaring

F ⎥⎦
= ⎢⎣1

1⎤nFn ⎤ ⎡1

n n-1

⎡Fn+1

⎣⎢ F
Theorem:

0⎥⎦
.

Algorithm: Recursive squaring.
Time = Q(lg n) .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.25

Recursive squaring

F ⎥⎦
= ⎢⎣1

1⎤nFn ⎤ ⎡1

n n-1

⎡Fn+1

⎣⎢ F
Theorem:

0⎥⎦
.

Algorithm: Recursive squaring.
Time = Q(lg n) .

Proof of theorem. (Induction on n.)

.
1 0

1⎤1
⎢⎣F F ⎥⎦ ⎢⎣1 0⎥⎦

F1 ⎤= ⎡1Base (n = 1): ⎡F2

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.26

Recursive squaring

Inductive step (n ³ 2):

n

⎦

⎡ F Fn
⎥= ⎢
⎤

⎢⎣ Fn

⎡F F

= ⎢
⎣1
⎡1

0⎥.× ⎢⎣1
1⎤

0⎥⎦
1⎤n

0⎥⎦

= ⎢⎣1
1⎤n-1 ⎡1⎡1

1.
⎤ ⎡1 ⎤

Fn-2⎦ ⎣1⎣Fn-1

n-1
⎥× ⎢ 0⎥⎦Fn-1⎦

n+1

September 14, 2005 L2.27

Matrix multiplication

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28

Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.29

Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

Running time = Q(n3)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

Divide-and-conquer algorithm

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

Divide-and-conquer algorithm

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32

Analysis	of	D&C	algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.33

Analysis	of	D&C	algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.34

Analysis	of	D&C	algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

No better than the ordinary algorithm.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.36

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)´(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)´(n/2) submatrices.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.41

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)´(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)´(n/2) submatrices.

T(n) = 7 T(n/2) +Q(n2)

