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Fibonacci numbers

Recursive definition:

Fn =
1 if n = 0;
2 if n = 1;
Fn–1 + Fn–2 if n ³ 2.

0 1 1 2 3 5 8 13 21 34 L
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Fibonacci numbers

Recursive definition:

Fn =
0
1
Fn–1 + Fn–2

if n = 0;  
if n = 1;
if n ³ 2.

0 1 1 2 3 5 8 13 21 34 L

5)/2
Naive recursive algorithm: W(f n)  
(exponential time), where f = (1+ 
is the golden ratio.
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Computing	Fibonacci		
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming  

each number by summing the two previous.
• Running time: Q(n).



Computing	Fibonacci		
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming  

each number by summing the two previous.
• Running time: Q(n).
Naive recursive squaring:

Fn = f n/ 5 rounded to the nearest integer.
• Recursive squaring: Q(lg n) time.
• This method is unreliable, since floating-point  

arithmetic is prone to round-off errors.
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Recursive squaring

Fn
⎥⎦
= ⎢⎣1

1⎤nFn ⎤ ⎡1

n-1

⎡Fn+1

⎣⎢ F
Theorem:

0⎥⎦
.
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Recursive squaring

F ⎥⎦
= ⎢⎣1

1⎤nFn ⎤ ⎡1

n n-1

⎡Fn+1

⎣⎢ F
Theorem:

0⎥⎦
.

Algorithm: Recursive squaring.
Time = Q(lg n) .
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Recursive squaring

F ⎥⎦
= ⎢⎣1

1⎤nFn ⎤ ⎡1

n n-1

⎡Fn+1

⎣⎢ F
Theorem:

0⎥⎦
.

Algorithm: Recursive squaring.
Time = Q(lg n) .

Proof of theorem. (Induction on n.)

.
1 0

1⎤1
⎢⎣F F ⎥⎦ ⎢⎣1 0⎥⎦

F1 ⎤= ⎡1Base (n = 1): ⎡F2



September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.26

Recursive squaring

Inductive step (n ³ 2):

n

⎦

⎡ F Fn
⎥= ⎢
⎤

⎢⎣ Fn

⎡F F

= ⎢
⎣1
⎡1

0⎥.× ⎢⎣1
1⎤

0⎥⎦
1⎤n 

0⎥⎦

= ⎢⎣1
1⎤n-1 ⎡1⎡1

1.
⎤ ⎡1 ⎤

Fn-2⎦ ⎣1⎣Fn-1

n-1
⎥× ⎢ 0⎥⎦Fn-1⎦

n+1
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Matrix multiplication
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Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj
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Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

Running time = Q(n3)
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Divide-and-conquer algorithm
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Divide-and-conquer algorithm
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Analysis	of	D&C	algorithm

# submatrices
submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +Q(n2)
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Analysis	of	D&C	algorithm

# submatrices
submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).
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Analysis	of	D&C	algorithm

# submatrices
submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

No better than the ordinary algorithm.
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

P1 = a × ( f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)  
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f )
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6  
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × ( f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)  
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f )
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6  
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × ( f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)  
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f )

7 mults, 18 adds/subs.
Note: No reliance on  
commutativity of mult!

7 mults, 18 adds/subs. 
Note: No reliance on  
commutativity of mult!
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Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

P1 = a × ( f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)  
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f )
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)´(n/2) submatrices. Form terms  
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)´(n/2) submatrices.
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)´(n/2) submatrices. Form terms  
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)´(n/2) submatrices.

T(n) = 7 T(n/2) +Q(n2)


