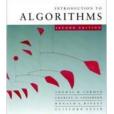
CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

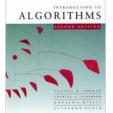


Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: O(VE)
- DAG

• One pass of Bellman-Ford: O(V + E)



Shortest paths

Single-source shortest paths

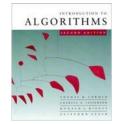
- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford: O(VE)
- DAG
 - One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(VE + V^2 \lg V)$
- General
 - Three algorithms today.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.



All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2 E)$.
- Dense graph $(n^2 \text{ edges}) \Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!

Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

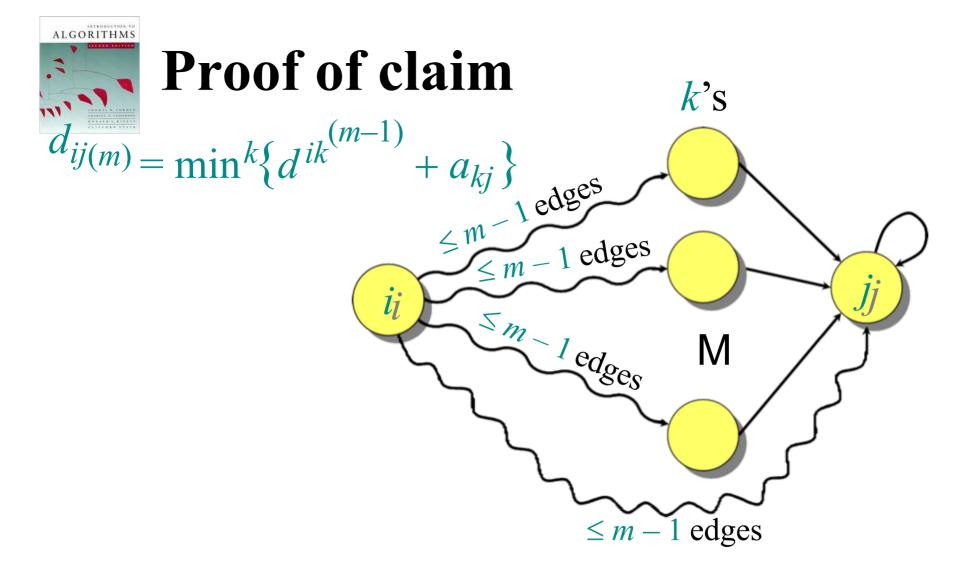
 $d_{ij}^{(m)}$ = weight of a shortest path from *i* to *j* that uses at most *m* edges.

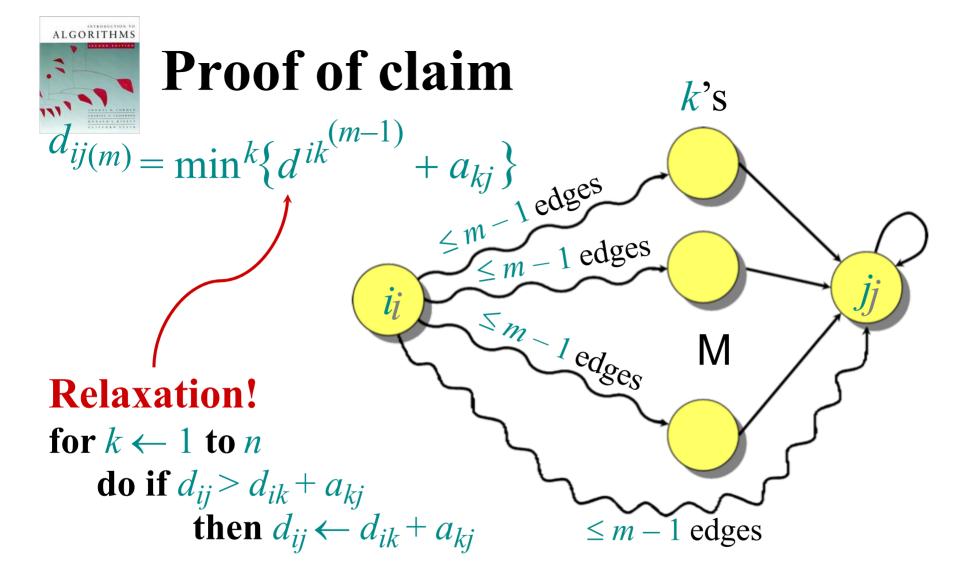
Claim: We have

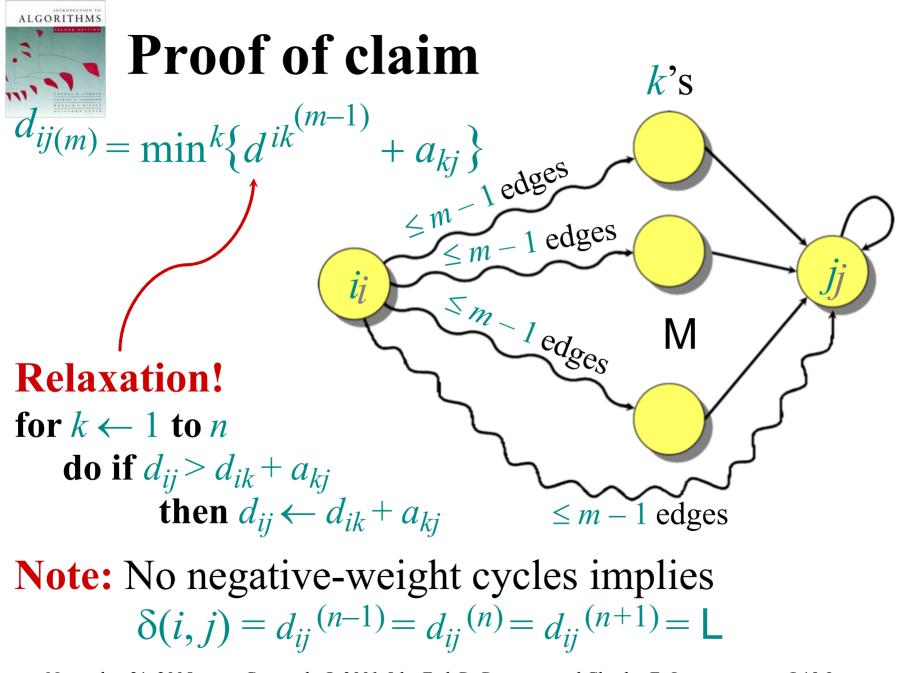
ALGORITHMS

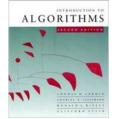
$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for $m = 1, 2, ..., n-1, \\ \binom{(m)}{m} = \min \{ d \\ d_{ij} \\ k \\ ik^{(m-1)} + a_{kj} \} \end{cases}$







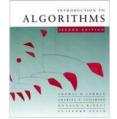


Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} \, .$$

Time = $\Theta(n^3)$ using the standard algorithm.

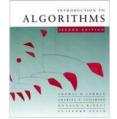


Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \,.$$

Time = $\Theta(n^3)$ using the standard algorithm. What if we map "+" \rightarrow "min" and "." \rightarrow "+"?



Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

 $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \,.$

Time = $\Theta(n^3)$ using the standard algorithm. What if we map "+" \rightarrow "min" and "." \rightarrow "+"?

$$c_{ij} = \min_k \left\{ a_{ik} + b_{kj} \right\}.$$

Thus, $D^{(m)} = D^{(m-1)}$ "×" *A*. Identity matrix = I = $\bigcup_{\infty \infty \infty} 0 \infty \infty = D^0 = (d_{ij}^{(0)}).$

Matrix multiplication (continued)

The (min, +) multiplication is *associative*, and with the real numbers, it forms an algebraic structure called a *closed semiring*.

Consequently, we can compute

$$D^{(1)} = D^{(0)} \cdot A = A^{1}$$

$$D^{(2)} = D^{(1)} \cdot A = A^{2}$$

$$M \qquad M$$

$$D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1},$$

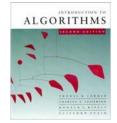
yielding $D^{(n-1)} = (\delta(i,j)).$

Time = $\Theta(n \cdot n^3) = \Theta(n^4)$. No better than $n \times B$ -F.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$. Compute $A^2, A^4, \dots, A^{2 lg(n-1)}$. O(lg n) squarings Note: $A^{n-1} = A^n = A^{n+1} = L$. Time = $\Theta(n^3 lg n)$.

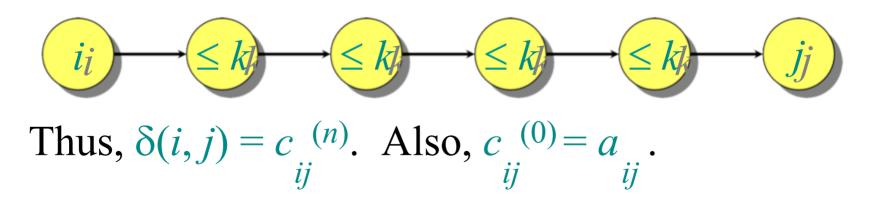
To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

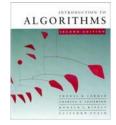


Floyd-Warshall algorithm

Also dynamic programming, but faster!

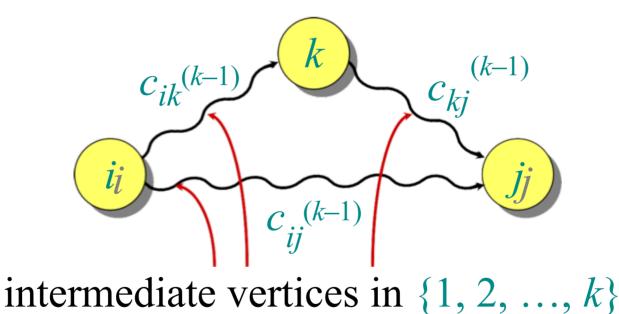
Define $c_{ij}^{(k)}$ = weight of a shortest path from *i* to *j* with intermediate vertices belonging to the set {1, 2, ..., k}.

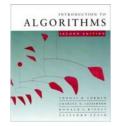




Floyd-Warshall recurrence

 $c_{ij}^{(k)} = \min_{k} \left\{ c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \right\}$



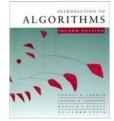


Pseudocode for Floyd-Warshall

for $k \leftarrow 1$ to ndo for $i \leftarrow 1$ to ndo for $j \leftarrow 1$ to ndo if $c_{ij} > c_{ik} + c_{kj}$ then $c_{ij} \leftarrow c_{ik} + c_{kj}$ relaxation

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.



Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

IDEA: Use Floyd-Warshall, but with (\lor, \land) instead of (min, +):

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}).$$

Time = $\Theta(n^3)$.