CS60020: Foundations of
Algorithm Desigh and Machine
Learning



- 77 Shortest paths

Slngle-source shortest paths
* Nonnegative edge weights
¢ Dykstra’s algorithm: O(E + Vg V)
* General
¢ Bellman-Ford algorithm: O(VE)
* DAG
¢ One pass of Bellman-Ford: O() + E)
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- 77 Shortest paths

Slngle-source shortest paths
* Nonnegative edge weights

¢ Dykstra’s algorithm: O(E + Vg V)
* General

¢ Bellman-Ford: O(VE)
* DAG

¢ One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths

* Nonnegative edge weights

¢ Dijkstra’s algorithm | V| times: O(VE + V' 21g )
* General

¢ Three algorithms today.
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’:’«"‘ All-pairs shortest paths

ny

Input: Digraph G = (V, E), where ' = {1, 2,
., n}, with edge-weight function w : £ — R

Output: n x n matrix of shortest-path lengths
o(i,j) foralli,j € V.
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- All-palrs shortest paths

Input Digraph G = (V, E), where ' = {1, 2,
., n}, with edge-weight function w : £ — R.
Output: n x n matrix of shortest-path lengths
o(i,j) foralli,j € V.
IDEA:
* Run Bellman-Ford once from each vertex.
* Time = O(V2E).
* Dense graph (72 edges) = O(n 4) time 1n the
worst case.

Good first try!
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~’~\' - Dynamlc programming

W i

C0n51der the 7 x n adjacency matrix 4 = (a;;)
of the digraph, and define

d," = weight of a shortest path from
[ to j that uses at most m edges.

Claim: We have
d,0= {O ii=/,

o 1f i #J;
andform—(l) 2, . — 1,
m) —
dl] mmk d (m 1)+ak]}
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ALGORITHMS

SN D

Proof of claim

Lij(m) — min*{d "D

<m— 1 edges
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ALGORITHMS

<« Proof of claim

" (m—1)

dij (m)= mink{d ik

Relaxation!
for k< 1ton
do if dlj> dik_l_ Clkj
then d;; < d; + ay <m — | edges
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ALGORITHMS

< Proof of claim

: (m—1)

i (m)= min*{d ¥

Relaxation!
for k< 1ton
do if dlj> dik_l_ Clkj
then d;; < d; + ay <m — | edges

Note: No negative-weight cycles implies
8(i,)) = d;y "D =qd,; W= g (=]
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IH(

m

\\

“\‘

Compute C=A"B,where C, A,and B are n x n

matrices:
Cij — i aikbkj .

k=1
Time = ®(#?) using the standard algorithm.

Matrix multiplication
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IH(

m

\\

“\‘

Compute C=A"-B,where C, 4,and B are n x n

matrices:
Cij — i aikbkj .

k=1
Time = ®(#?) using the standard algorithm.

Matrix multiplication

What if we map “+” — “min” and “-” —
66_|_99?
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"'" Matrix multiplication

“\‘ —

Compute C=A4-B,where C, A,and B are n x n

matrices:
Cij — i aikbkj .

k=1
Time = ®(#?) using the standard algorithm.

What 1f we map “+” — “min” and “-” —

66_|_99?
Cij — mink {Clik"‘ bk]} .
Thus, D)= Din-De” 4
Identity matrix = [ = O%(%%O?ég— =(d (0))

0000 0 01

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.12



M Matrix multiplication
«2" (continued)
The (min, +) multiplication 1s associative, and

with the real numbers, 1t forms an algebraic
structure called a closed semiring.

Consequently, we can compute
D= po)y. 4 = 41
D@= pl). 4 = 42
M M
pDn-1) = pn-2). 4= gn-1 ,

yielding DD = (3(i, j)).
Time = O(n-n’) = O(n*). No better than »n x B-F.
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m Improved matrix
«~> " multiplication algorithm

Repeated squaring: 42k = Ak x Ak,
Compute 42, A%, ..., 42 €D
\—

_/

O(lg n)\s/quarings
Note: A" 1= gn= grtl=L.
Time = O(n° 1g n).

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional
time.
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M Floyd-Warshall algorithm

“\‘ o

Also dynamic programming, but faster!

Define ;)= weight of a shortest path from i
to ; with intermediate vertices
belonging to the set {1, 2, ..., k}.

D DD

Thus, 6(i, /) =c ™. Also,c D=qa
ij ij ij

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.15



Floy d-Warshall recurrence

\‘ \‘
() = min {c D ¢ D+ ¢ (k—l)}
Cij ki ik kj

intermediate vertices 1in {1, 2, ..., &}
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w== Pseudocode for Floyd-

~

«" Warshall

for k< 1 ton
do fori <« | ton
do for; < | ton
doif c;;> ¢, + ¢y

then Cij = Cikt i } relaxation

Notes:

» Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in O(#n°) time.

 Simple to code.

» Efficient 1n practice.
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== Transitive closure of a

-y —

w2 directed graph

1 1f there exists a path from 7 to j,

Compute / L= 0 otherwise.

IDEA: Use Floyd-Warshall, but with (v, A) instead
of (min, +):
K)=1¢ D (2 DAL D),
iy ik ki

Time = O(n°).
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