
CS60020: Foundations of 
Algorithm Design and Machine 

Learning
Sourangshu Bhattacharya



Shortest paths
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Single-source shortest paths
• Nonnegative edge weights
◆Dijkstra’s algorithm: O(E + V lg V)

• General
◆Bellman-Ford algorithm: O(VE)

• DAG
◆One pass of Bellman-Ford: O(V + E)
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Single-source shortest paths
• Nonnegative edge weights
◆Dijkstra’s algorithm: O(E + V lg V)

• General
◆Bellman-Ford: O(VE)

• DAG
◆One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths
• Nonnegative edge weights
◆Dijkstra’s algorithm |V| times: O(VE + V 2 lg V)

• General
◆Three algorithms today.



All-pairs shortest paths
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Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E ® R.
Output: n ´ n matrix of shortest-path lengths
d(i, j) for all i, j Î V.



All-pairs shortest paths
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Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E ® R.
Output: n ´ n matrix of shortest-path lengths
d(i, j) for all i, j Î V.
IDEA:
• Run Bellman-Ford once from each vertex.
• Time = O(V 2E).
• Dense graph (n2 edges) ÞQ(n 4) time in the  

worst case.
Good first try!



Dynamic programming
Consider the n ´ n adjacency matrix A = (aij)  
of the digraph, and define

ijd (m) = weight of a shortest path from
i to j that uses at most m edges.

Claim: We have

ijd (0) = 0 if i = j,
¥ if i ¹ j;

and for m = 1, 2, …, n – 1,
(m) = min {d + akj}.

dij k ik
(m–1)
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Proof of claim
dij k ik

(m–1)
(m) = min {d + akj}

jj
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Proof of claim
dij k ik

(m–1)
(m) = min {d + akj}

jjii
M

k’s

£ m – 1 edges
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Relaxation!
for k ¬ 1 to n

do if dij > dik + akj
then dij ¬ dik + akj
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Proof of claim
dij k ik

(m–1)
(m) = min {d + akj}

jjii
M

k’s

£ m – 1 edges

£ m – 1 edges

£ m – 1 edges

£ m – 1 edges

Relaxation!
for k ¬ 1 to n

do if dij > dik + akj
then dij ¬ dik + akj

Note: No negative-weight cycles implies
d(i, j) = dij

(n–1) = dij
(n) = dij

(n+1) = L
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Matrix multiplication
Compute C = A · B, where C, A, and B are n ´ n
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matrices: n
cij =åaikbkj .

k=1
Time = Q(n3) using the standard algorithm.
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matrices: n
cij =åaikbkj .

k=1
Time = Q(n3) using the standard algorithm.
What if we map “+” ® “min” and “·” ®
“+”?



Matrix multiplication
Compute C = A · B, where C, A, and B are n ´ n
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matrices: n
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cij =åaikbkj .
k=1

Time = Q(n3) using the standard algorithm.
What if we map “+” ® “min” and “·” ®
“+”?

cij = mink {aik + bkj}.

Thus, D(m) = D(m–1) “´” A.
�0 ¥ ¥ ¥� ijIdentity matrix = I = �¥ 0 ¥ ¥�= D0 = (d (0)).



Matrix multiplication  
(continued)
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The (min, +) multiplication is associative, and  
with the real numbers, it forms an algebraic  
structure called a closed semiring.
Consequently, we can compute

D(1) =
D(2) =

D(0) · A = A1  

D(1) · A = A2

M
(n–1) (n–2) n–1

M
D = D · A = A ,

yielding D(n–1) = (d(i, j)).
Time = Q(n·n3) = Q(n4). No better than n ´ B-F.



Improved matrix  
multiplication algorithm

Repeated squaring: A2k = Ak × Ak.  
Compute A2, A4, …, A2�lg(n–1)� .

O(lg n) squarings
Note: An–1 = An = An+1 = L .
Time = Q(n3 lg n).

To detect negative-weight cycles, check the  
diagonal for negative values in O(n) additional  
time.
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Floyd-Warshall algorithm

Also dynamic programming, but faster!

ijDefine c (k) = weight of a shortest path from i
to j with intermediate vertices  
belonging to the set {1, 2, …, k}.

jj
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ii £ kk £ kk £ kk £ kk

Thus, d(i, j) = c (n). Also, c (0) = a .
ij ij ij



Floyd-Warshall recurrence
(k) = min {c (k–1), c (k–1) + c (k–1)}cij k ij ik kj

k
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ii
c (k–1)

cik
(k–1) (k–1)ckj

jj
ij

intermediate vertices in {1, 2, …, k}



Pseudocode for Floyd-
Warshall

for k ¬ 1 to n
do for i ¬ 1 to n

do for j ¬ 1 to n
do if cij > cik + ckj

then cij ¬ cik + ckj
relaxation
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Notes:
• Okay to omit superscripts, since extra relaxations  

can’t hurt.
• Runs in Q(n3) time.
• Simple to code.
• Efficient in practice.



Transitive closure of a  
directed graph

Compute tij = 1 if there exists a path from i to j,
0 otherwise.

IDEA: Use Floyd-Warshall, but with (Ú, Ù) instead  
of (min, +):

(k) = t (k–1)Ú (t (k–1)Ù t (k–1)).tij ij ik kj

Time = Q(n3).
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