CS60020: Foundations of
Algorithm Design and Machine
Learning



\
\\\‘ S

Consider a digraph G = (V, E) with edge-weight
function w : £ — R. The weight of path p = v,
— v, —> L — v, 1s defined to be

k—1
w(p) =D w(vi,vi1).
=1

‘-“"\"\"’ Paths in graphs

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.2



Paths in graphs

w \‘

Consider a digraph G = (V, E) with edge-weight
function w : £ — R. The weight of path p = v,
— v, — L — v,1s defined to be

k—1
w(p) =D w(vi,vis1).
=1

Example:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.3



Shortest paths

\
\‘ P

A shortest path from u to v 1s a path of
minimum weight from u to v. The shortest-
path weight from u to v 1s defined as

o(u, v) = min{w(p) : p 1s a path from u to v}.

Note: o(u, v) = o 1f no path from u to v exists.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.4



ALGORITHMS

=1 Optimal substructure

‘\‘\

Theorem. A subpath of a shortest path is a
shortest path.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.5



\
\\\‘ S

=1 Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

00000

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.6



\
\\\‘ S

=1 Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

~
~—y -
~~__—_——

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.7



ALGORITHMS

:'::"‘H? Triangle inequality

Theorem. Forall u, v, x € VV, we have
o(u, v) < o(u, x) + o(x, v).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.8



. Triangle inequality

Theorem. Forall u, v, x € VV, we have
o(u, v) < o(u, x) + o(x, v).

Proof.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.9



| '\"”"' Well-definedness of shortest
—— paths

If a graph G contains a negative-weight cycle,
then some shortest paths may not exist.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.10



ALGORITHMS

=71 Well-definedness of shortest
WY e paths

If a graph G contains a negative-weight cycle,
then some shortest paths may not exist.

Example:

W0

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.11



= .« Single-source shortest paths

‘\‘\ i

Problem. From a given source vertex s € V, find
the shortest-path weights o(s, v) forall v € V.

If all edge weights w(u, v) are nonnegative, all
shortest-path weights must exist.

IDEA: Greedy.

1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v € '— 5§

whose distance estimate from s 1s minimal.

3. Update the distance estimates of vertices
adjacent to .

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.12




ALGORITHMS

=, Dijkstra’s algorithm

d[s] < 0
for cachv € I'— {s}
do d[v] < ©
S« O
Q«V =0 is a priority queue maintaining /' — S

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.13



=+ Dijkstra’s algorithm

d[s] < 0
for ecachv € /- {s}
do d[v] < ©
S« O
Q«V =0 is a priority queue maintaining /' — S
while O =©
do 1 < EXTRACT-MIN(O)
S SU {u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, v)
then d[v] < d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.14



=+ Dijkstra’s algorithm

d[s] < 0
for cachv € I'— {s}
do d[v] < ©
S« O
Q«V =0 is a priority queue maintaining /' — S
while O =©
do © < EXTRACT-MIN(Q)
S SU{uj
for each v € Adj[u]
do if d[v] > d[u] + w(u, v) relaxation
then d[v] < d[u] + w(u, v) step

\

Implicit DECREASE-KEY

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.15



S
0 .

Y Example of Dijkstra’s algorithm

Graph with 2 )
nonnegative

edge weights:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.16



= *Example of Dijkstra’s algorithm

Initialize:

54

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.17



=" Example of Dijkstra’s algorithm

“A” <— EXTRACT-MIN(Q): 7
S D k

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.18



=" Example of Dijkstra’s algorithm
10 00

2
&

0 (4] 79

x 3 00

Relax all edges leaving A4:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.19



=" Example of Dijkstra’s algorithm

“C” <— EXTRACT-MIN(Q): 7
S D k

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.20



=" Example of Dijkstra’s algorithm

Relax all edges leaving C: / 7 1

10 3 o o
7 11 5

S: {4 C}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.21



=" Example of Dijkstra’s algorithm
7 11

2
&

“E” < EXTRACT-MIN(Q):

10 3 o o
7 11 5

S: {4 CE)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.22



=" Example of Dijkstra’s algorithm

Relax all edges leaving E: L

7
1 4
<
3

0 (4] 79
O: ' B (D {E
O o0 o0 o0 o0 5
10 3 o o
7 5
7 S: {4, C E}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.23



=" Example of Dijkstra’s algorithm

“B” <— EXTRACT-MIN(Q): / o) H

Q: D

10 3 o o
5

7 11
7 1 S: {4, CE B}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.24



=" Example of Dijkstra’s algorithm

Relax all edges leaving B: 0

0: D

O o oo o o 3 5
10 3 o oo
7 11 5
7 11 S{A, C,E,B}
9

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.25



=" Example of Dijkstra’s algorithm

“D” < EXTRACT-MIN(Q): 0

Q:

100 3 o o

7 11 5

7 1 S:{A4, CE B, D}
9

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.26



;";"' Correctness — Part |

WY

Lemma. Initializing d|s| <— 0 and d|v] <— o for all
v € V— {s} establishes d[v] > o(s, v) forall v € V,
and this invariant 1s maintained over any sequence
of relaxation steps.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.27



‘LL"‘ Correctness — Part |

\‘ zeste sanans

Lémma. Initializing d[s] < 0 and d[v] < o for all
v € V— {s} establishes d|v] > o(s, v) forall v € V,

and this invariant 1s maintained over any sequence
of relaxation steps.

Proof. Suppose not. Let v be the first vertex for
which d[v] < o(s, v), and let u be the vertex that
caused d|v] to change: d[v] = d[u] + w(u, v). Then,
d[v] <o(s,v) supposition

< o(s, u) +o(u, v) triangle inequality

< o(s,u) +w(u,v) sh. path < specific path

<d[u] +w(u,v)  vis first violation
Contradiction.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.28




;";"' Correctness — Part l|

WY

Lemma. Let u be v’s predecessor on a shortest
path from s to v. Then, if d[u] = o(s, 1) and edge
(u, v) 1s relaxed, we have d[v]| = o(s, v) after the
relaxation.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.29



=4 Correctness — Part Il

Lemma. Let u be v’s predecessor on a shortest
path from s to v. Then, if d[u] = o(s, ) and edge
(u, v) 1s relaxed, we have d|[v]| = o(s, v) after the
relaxation.

Proof. Observe that o(s, v) = o(s, u) + w(u, v).
Suppose that d[v| > o(s, v) before the relaxation.
(Otherwise, we’re done.) Then, the test d[v] >
dlul + w(u, v) succeeds, because d|v| > o(s, v) =
o(s, u) + w(u, v) =d[ul| + w(u, v), and the
algorithm sets d|v] = d[u]| + w(u, v) = o(s, v).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.30



ALGORITHMS

;“‘;;"" Correctness — Part Il

Theorem. Dijkstra’s algorithm terminates with
dlvl=o(s,v)forallv e V.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.31



”7"" Correctness — Part |l

\ L
«
\\\‘ S

Theorem. Diykstra’s algorithm terminates with
dlvl=o0(s,v)forallv e V.

Proof. It suffices to show that d[v]| = o(s, v) for every
v € V'when v i1s added to S. Suppose u is the first
vertex added to S for which d[u] > o(s, u). Let y be the
first vertex 1n /' — S along a shortest path from s to u,
and let x be 1ts predecessor:

S, just before
adding u.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.32



—— Correctness — Part Il
| (continued)

QW)
© @’@

Since u 1s the first vertex violating the claimed
invariant, we have d|x]| = o(s, x). When x was
added to §, the edge (x, ) was relaxed, which

implies that d|y]| = o(s, y) < o(s, u) < d[u]. But,
d|u] < d[y] by our choice of u. Contradiction.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.33



November 14, 2005

Analysis of Dijkstra

while O =
do u < EXTRACT-MIN(Q)
S« S {u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, v)
then d[v]| < d[u] + w(u, v)

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.34



'-""';? Analysis of Dijkstra

. while O =
do u < EXTRACT-MIN(Q)
times< for each v € Adj[u]
do if d[v]| > d[u] + w(u, v)
then d[v]| < d[u]| + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.35



\
ny b e e

'-"'!;‘ Analysis of Dijkstra

* while O #J
14 * do u < ExtrACT-MIN(Q)

times ® Sd? rgeW) %Ad]d[ > d[u] + w(u, v)

’ fortﬁﬁ@b v then dv] < dlu] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.36



\
\\\‘ S

'-“"'\‘:‘ Analysis of Dijkstra

* while O #J
14 * do u < ExtrACT-MIN(Q)

times ® Sd? ré'ew) %Ad]d[ > d[u] + w(u, v)

’ fortﬁﬁ@b v then dlv] < dlu] + w(u, v)

/

Handshaking Lemma = ©O(F) implicit DECREASE-KEY’s.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.37



";\","‘ Analysis of Dijkstra
* while O =&
V] * do u < ExtracT-MmN(O)
times® Sd?l’évew) %Ad]i: > d[ ] + W(M, V)

’ fortﬁﬁ@b v then dlv] < dlu] + w(u, v)

/

Handshaking Lemma = ©O(F) implicit DECREASE-KEY’s.

Time = O(V Texrract-MIN T £ TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s
minimum spanning tree algorithm.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.38



A
i

< Y Analysis of Dijkstra (continued)

b

w

Time = O(V) T ExTRACT-MIN T OE) T DECREASE-KEY

QO  Tpxrract-MiN IDecreaseKey — Total

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.39



= *Analysis of Dijkstra (continued)

Vs
b

Time = O(V) Texrract-Min T O(E) TDpcrEASE-KEY

0 TextRACT-MIN IDECrREASEKEY  Total

array o)) O(1) O(1?)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.40



= Analysis of Dijkstra (continued)

Vs
wee

Time = O(V) T ExTRACT-MIN T OE) T DECREASE-KEY

QO  Tpxrract-MiN IDecreaseKey — Total

array o(V) O(1) O(?)
bﬁgg}gy O(lg V) O(gV)  OEIlgV)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.41



.z\l(;()l?'\iTHMS | ) |
=~ *Analysis of Dijkstra (continued)

Time = O(V) T ExTRACT-MIN T OE) T DECREASE-KEY

0 TextRACT-MIN IDECREASEKEY — Total

array o) O(1) O(V?)
binary
heap  UgV) O(gh) O lgh)
Fibonacci O(lg V) O(1) O(E + Vigh)
heap  amortized amortized  worst case

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.42



ALC

= .+ Unweighted graphs

\
‘\‘\ i

Suppose that w(u, v) = 1 for all (u, v) € E.
Can Diyjkstra’s algorithm be improved?

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.43



;“—“‘"'V' Unweighted graphs
Suppose that w(u, v) = 1 for all (u, v) € E.
Can Dyjkstra’s algorithm be improved?
» Use a simple FIFO queue 1nstead of a priority

queue.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.44



' ";\"'\5 Unweighted graphs
Suppose that w(u, v) =1 for all (i, v) € E.
Can Drijkstra’s algorithm be improved?
* Use a simple FIFO queue 1nstead of a priority
queue.

Breadth-first search
while O =
do © < DEQUEUE(Q)
for each v € Adj[u]
do if d[v] =
then d|v| < du] + 1
ENQUEUE(Q, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.45



;‘*;;""' Unweighted graphs

‘\“

Suppose that w(u, v) = 1 for all (u, v) € E.
Can Dykstra’s algorithm be improved?
* Use a sitmple FIFO queue 1nstead of a priority
queue.
Breadth-first search
while O =
do © < DEQUEUE(Q)
for each v € Adj|u]
do if d[v] =
then d[v]| < d[u] + 1
ENQUEUE(O, V)

Analysis: Time = O(V + E).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.46



= “Example of breadth-first search




= “Example of breadth-first search

LLLLLL



= “Example of breadth-first search




= “Example of breadth-first search




= “Example of breadth-first search

2
2 2
Q: c e

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.51



= “Example of breadth-first search

LLLLLL



= “Example of breadth-first search




= “Example of breadth-first search




= “Example of breadth-first search




= “Example of breadth-first search




= “Example of breadth-first search

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.57



= “Example of breadth-first search

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.58



«
\\\‘ S

.+ Correctness of BFS

while O =
do © <~ DEQUEUE(Q)
for each v € Adj[u]
do if d[v] =
then d[v]| < d[u] + 1
ENQUEUE(O, V)

Key idea:
The FIFO O 1n breadth-first search mimics
the priority queue O 1n Dijkstra.

 Invariant: v comes after  in O implies that
dlv]=dlu] or d|v]=d|u] + 1.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.59



