CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya



Graphs (review)

Definition. A directed graph (digraph)

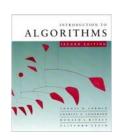
G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

In an *undirected graph* G = (V, E), the edge set E consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(V^2)$. Moreover, if G is connected, then $|E| \ge |V| - 1$, which implies that $\lg |E| = \Theta(\lg V)$.

(Review CLRS, Appendix B.)



Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

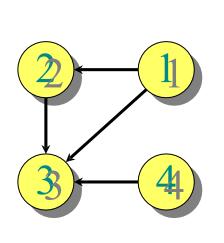
 $A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$



Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

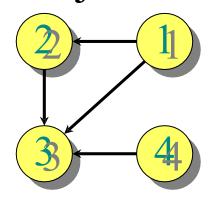


	1				
1	0 0 0	1	1	0	$\Theta(V^2)$ storage
2	0	0	1	0	\Rightarrow dense
3	0	0	0	0	representation.
4	0	0	1	0	



Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

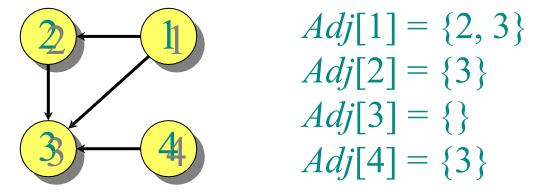


$$Adj[1] = \{2, 3\}$$

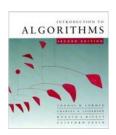
 $Adj[2] = \{3\}$
 $Adj[3] = \{\}$
 $Adj[4] = \{3\}$

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

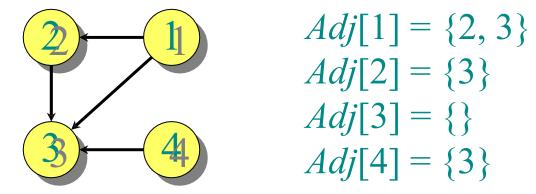


For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).



Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.



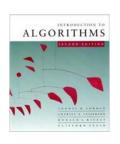
For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

Handshaking Lemma: $\sum_{v \in V} = 2 |E|$ for undirected graphs \Rightarrow adjacency lists use $\Theta(V + E)$ storage — a *sparse* representation (for either type of graph).

Minimum spanning trees

Input: A connected, undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

• For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)



Minimum spanning trees

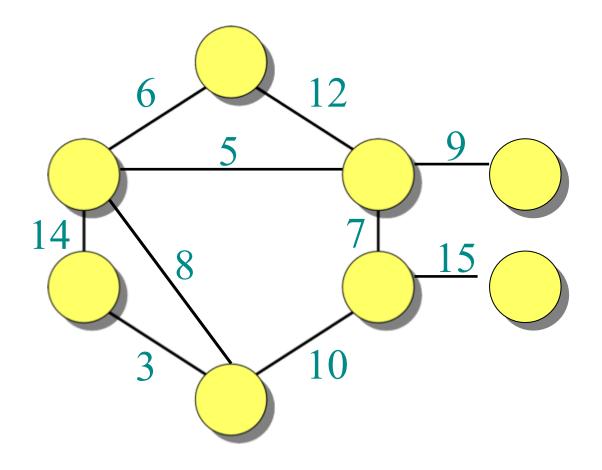
Input: A connected, undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

• For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A *spanning tree* T — a tree that connects all vertices — of minimum weight:

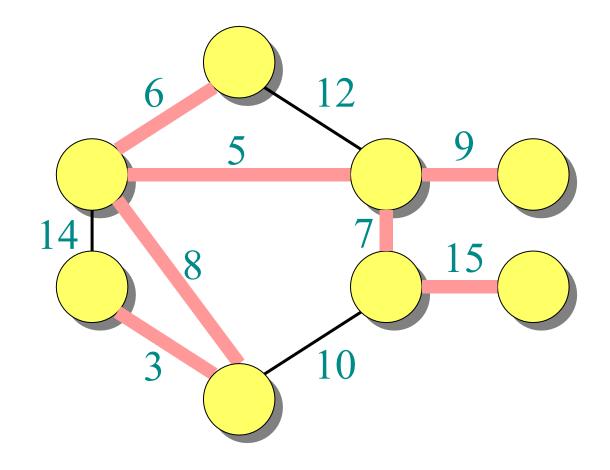
$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

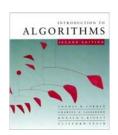
Example of MST





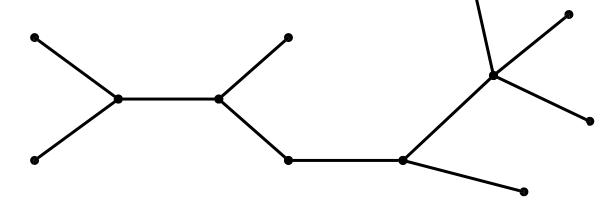
Example of MST





MST T:

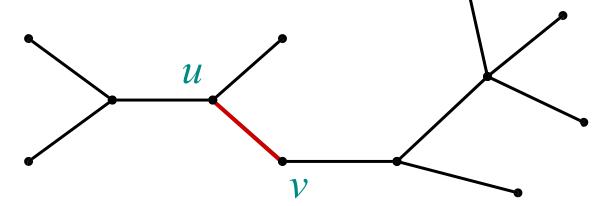
(Other edges of *G* are not shown.)



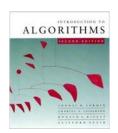


MST *T*:

(Other edges of *G* are not shown.)

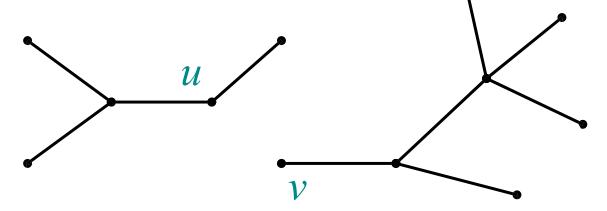


Remove any edge $(u, v) \in T$.

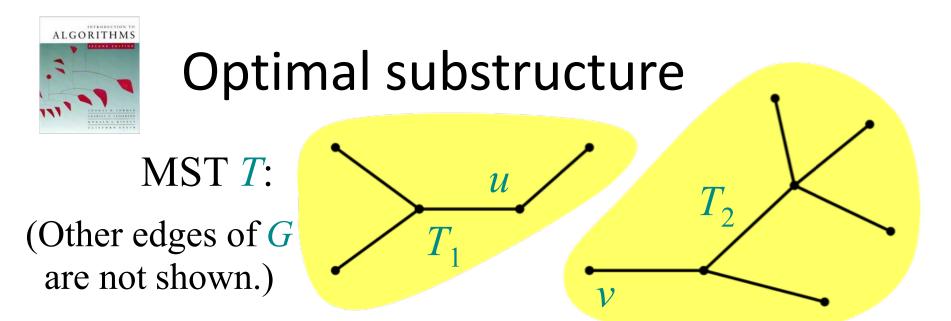


MST *T*:

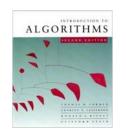
(Other edges of *G* are not shown.)



Remove any edge $(u, v) \in T$.

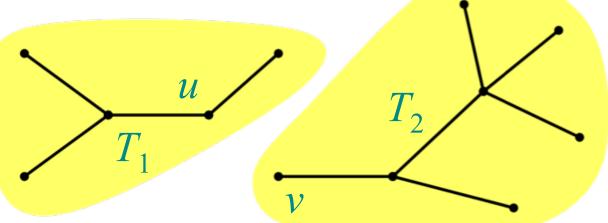


Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2 .



MST *T*:

(Other edges of *G* are not shown.)



Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2 .

Theorem. The subtree T_1 is an MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by the vertices of T_1 :

$$V_1$$
 = vertices of T_1 ,
 E_1 = { $(x, y) \in E : x, y \in V_1$ }.

Similarly for T_2 .

Proof of optimal substructure

Proof. Cut and paste:

$$w(T) = w(u, v) + w(T_1) + w(T_2).$$

If T_1 were a lower-weight spanning tree than T_1 for G_1 , then $T' = \{(u, v)\} \cup T_1 \cup T_2$ would be a lower-weight spanning tree than T for G.

Proof of optimal substructure

Proof. Cut and paste:

$$w(T) = w(u, v) + w(T_1) + w(T_2).$$

If T_1 were a lower-weight spanning tree than T_1 for G_1 , then $T' = \{(u, v)\} \cup T_1 \cup T_2$ would be a lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?

• Yes.

Proof of optimal substructure

Proof. Cut and paste:

$$w(T) = w(u, v) + w(T_1) + w(T_2).$$

If T_1 were a lower-weight spanning tree than T_1 for G_1 , then $T' = \{(u, v)\} \cup T_1 \cup T_2$ would be a lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?

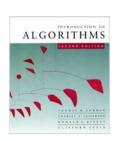
• Yes.

Great, then dynamic programming may work!

• Yes, but MST exhibits another powerful property which leads to an even more efficient algorithm.

Hallmark for "greedy" algorithms

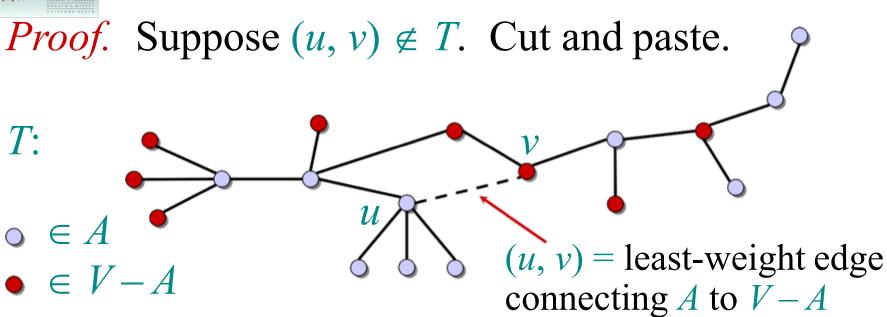
A locally optimal choice is globally optimal.

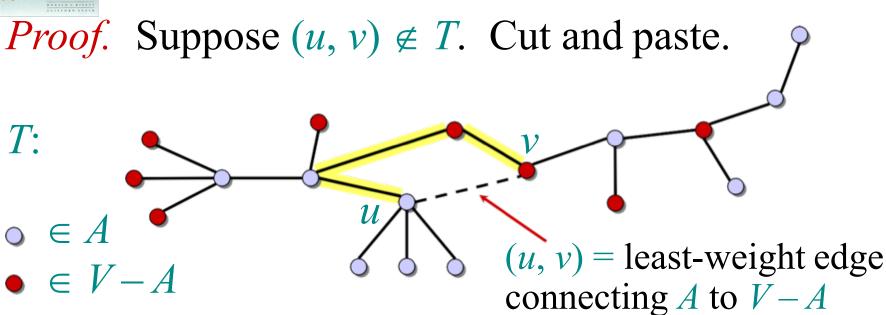


Hallmark for "greedy" algorithms

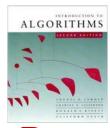
Greedy-choice property
A locally optimal choice
is globally optimal.

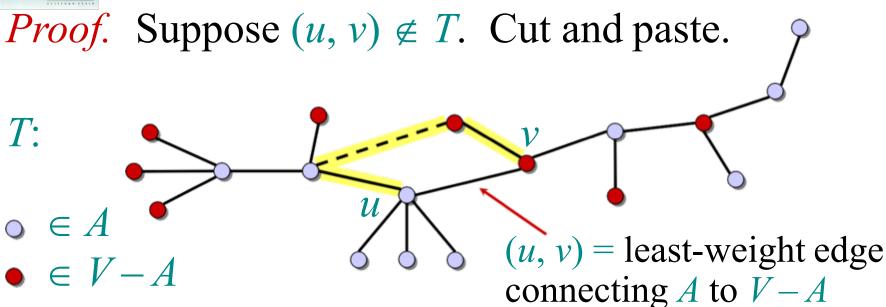
Theorem. Let T be the MST of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to V - A. Then, $(u, v) \in T$.





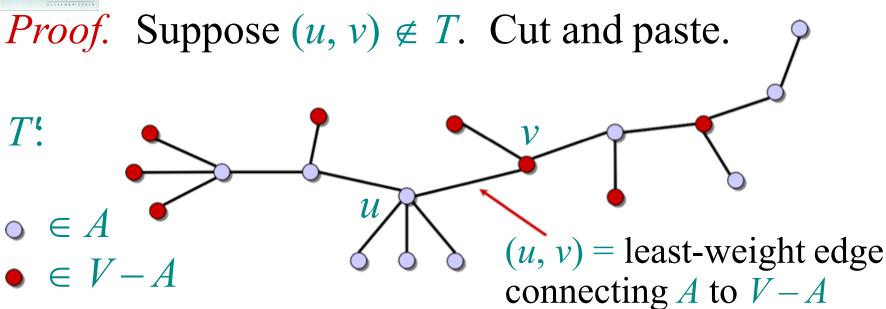
Consider the unique simple path from u to v in T.





Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V-A.



Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V-A.

A lighter-weight spanning tree than *T* results.

Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

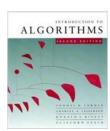
5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

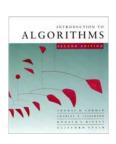


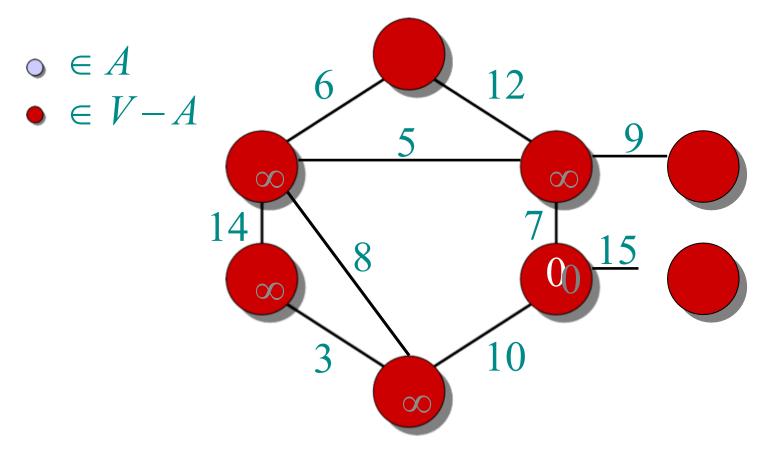
Prim's algorithm

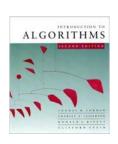
IDEA: Maintain V-A as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.

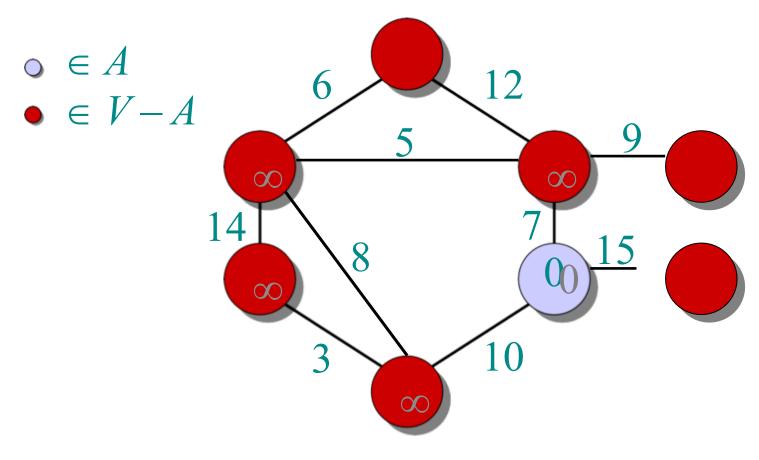
```
Q \leftarrow V
key[v] \leftarrow \infty for all v \in V
key[s] \leftarrow 0 for some arbitrary s \in V
while Q \neq \emptyset
do u \leftarrow \text{EXTRACT-MIN}(Q)
for each v \in Adj[u]
do if v \in Q and w(u, v) < key[v]
then key[v] \leftarrow w(u, v)
\Rightarrow \text{DECREASE-KEY}
\pi[v] \leftarrow u
```

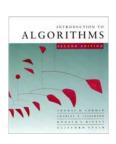
At the end, $\{(v, \pi[v])\}$ forms the MST.

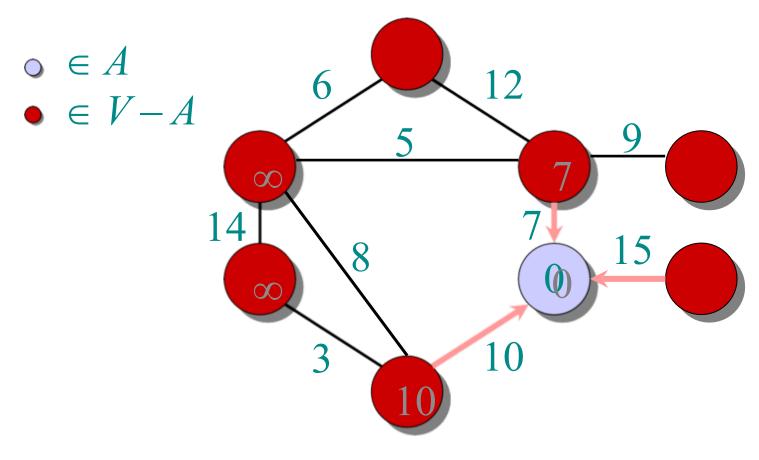


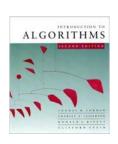


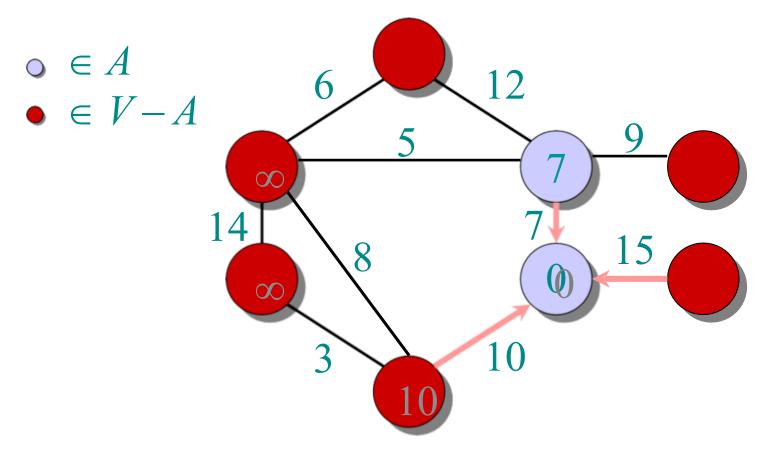


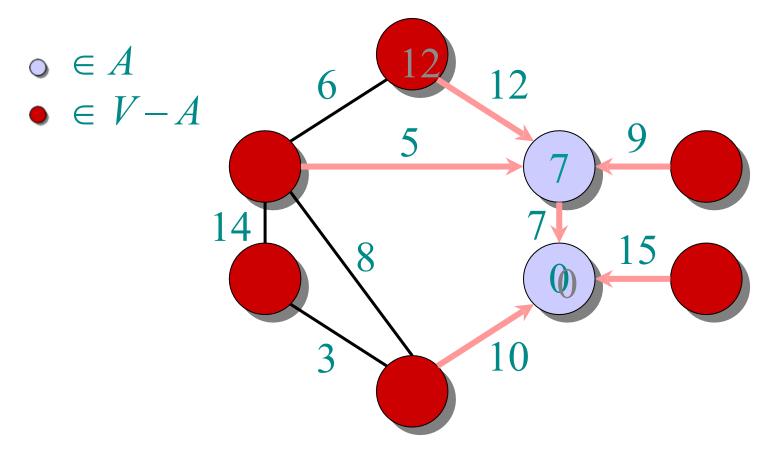


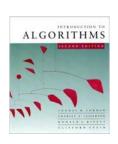


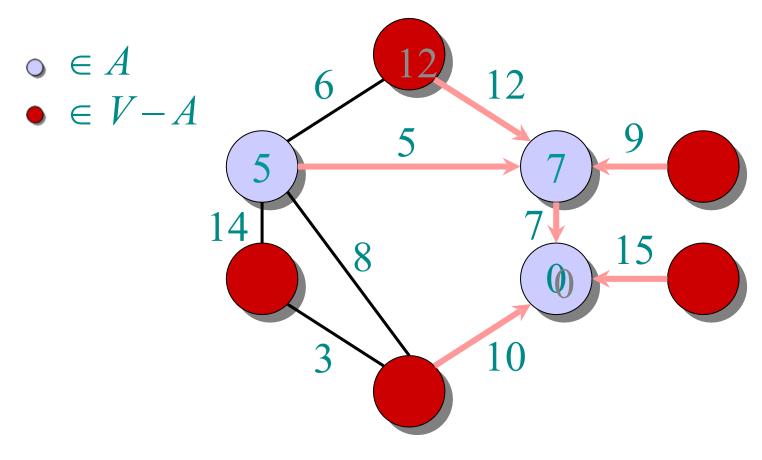


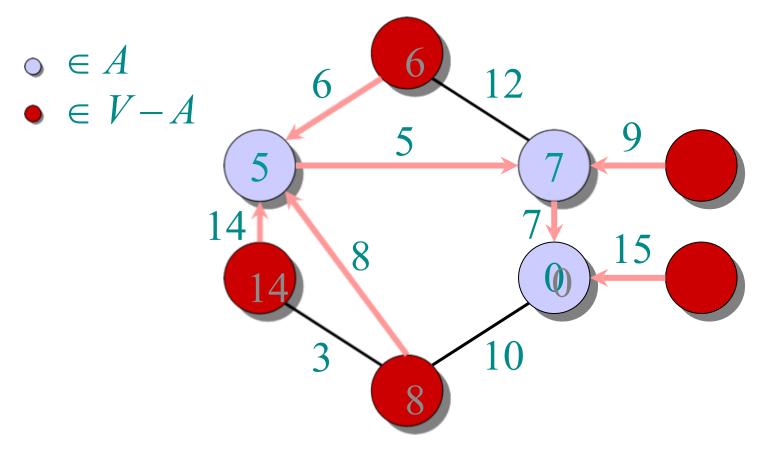


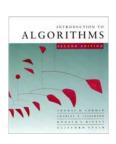


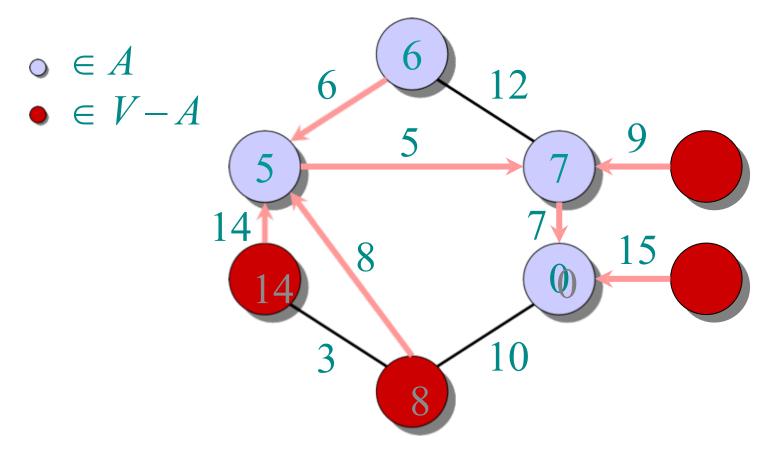


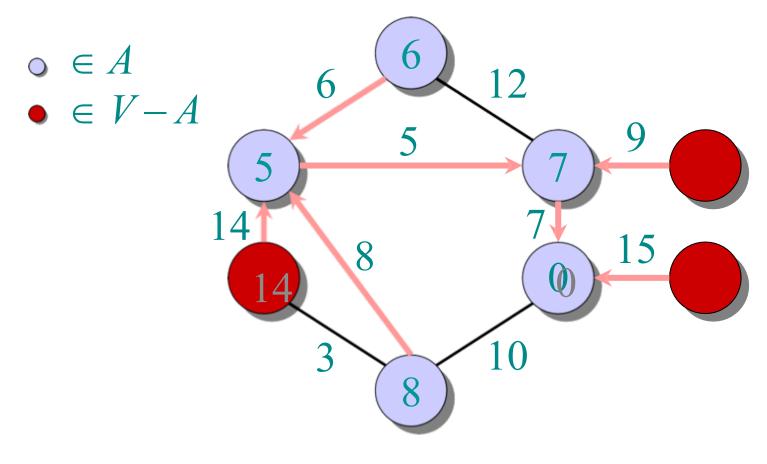


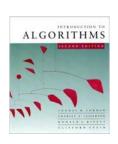


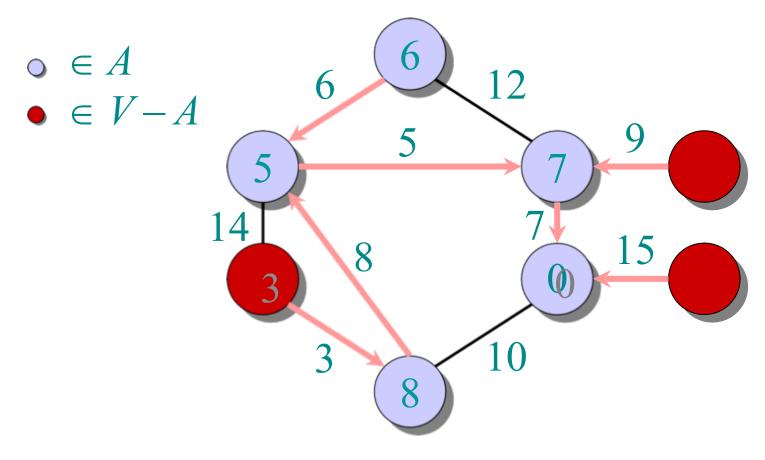


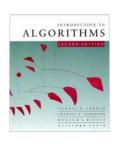


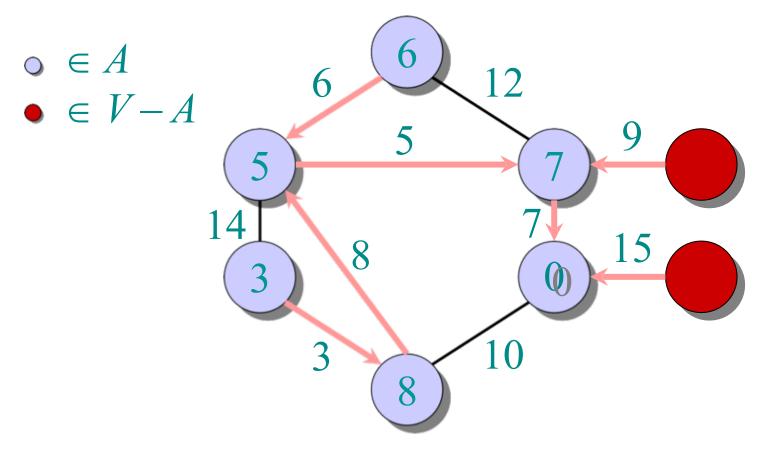


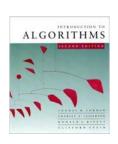


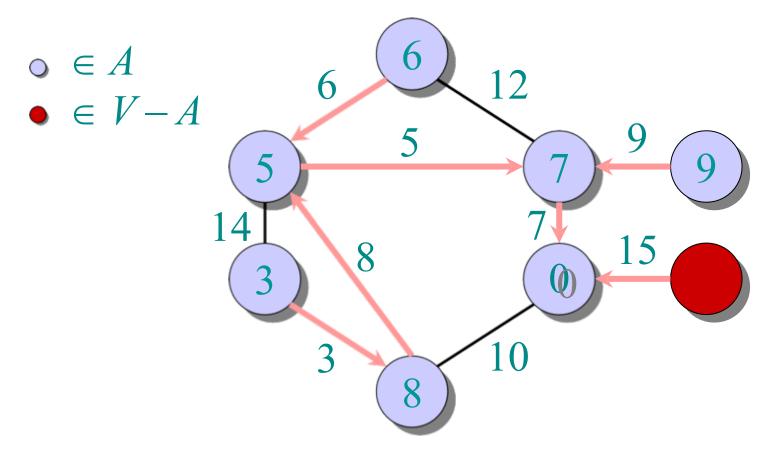


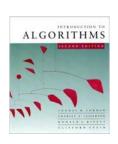




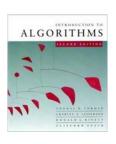




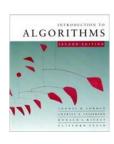








```
Q \leftarrow V
key[v] \leftarrow \infty for all v \in V
kev[s] \leftarrow 0 for some arbitrary s \in V
while Q \neq \emptyset
    do u \leftarrow \text{EXTRACT-MIN}(Q)
         for each v \in Adi[u]
             do if v \in Q and w(u, v) < key[v]
                     then key[v] \leftarrow w(u, v)
                            \pi[v] \leftarrow u
```



```
\Theta(V) \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
                  while Q \neq \emptyset
                         do u \leftarrow \text{EXTRACT-MIN}(Q)
                               for each v \in Adj[u]
                                     do if v \in Q and w(u, v) < key[v]
                                                then key[v] \leftarrow w(u, v)
                                                          \pi[v] \leftarrow u
```



```
key[v] \leftarrow \infty \text{ for all } v \in V
key[s] \leftarrow 0 \text{ for some arbitrary } s \in V
  while Q \neq \emptyset
        do u \leftarrow \text{EXTRACT-MIN}(Q)
             for each v \in Adj[u]
                   do if v \in Q and w(u, v) < kev[v]
                            then key[v] \leftarrow w(u, v)
                                     \pi[v] \leftarrow u
```



```
\Theta(V) \begin{cases} key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
                   while Q \neq \emptyset
                          do u \leftarrow \text{EXTRACT-MIN}(Q)
                               • for each v \in Adj[u]
• do if v \in Q and w(u, v) < key[v]
                                             • then key[v] \leftarrow w(u, v)
```



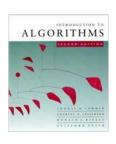
```
key[v] \leftarrow \infty \text{ for all } v \in V
key[s] \leftarrow 0 \text{ for some arbitrary } s \in V
   while Q \neq \emptyset
        do u \leftarrow \text{EXTRACT-MIN}(Q)
             • for each v \in Adj[u]
              • do if v \in Q and w(u, v) < key[v]
                        • then key[v] \leftarrow w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

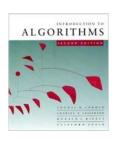

```
\Theta(V) \begin{cases} key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
                 while Q \neq \emptyset
                       do u \leftarrow \text{EXTRACT-MIN}(Q)
                            • for each v \in Adj[u]
                              • do if v \in Q and w(u, v) < key[v]
                                       • then key[v] \leftarrow w(u, v)
• \pi[v] \leftarrow u
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$



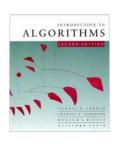
Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$



Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

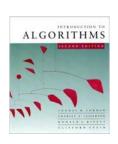
 $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$

Total



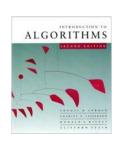
$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q $T_{\rm EXTRACT-MIN}$ $T_{\rm DECREASE-KEY}$ Total array O(V) O(1) $O(V^2)$



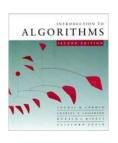
Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	$T_{\text{EXTRACT-MIN}}$	$T_{\text{DECREASE-KEY}}$	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$



$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacci heap	i $O(\lg V)$ amortized	O(1) amortized	$O(E + V \lg V)$ worst case



MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the disjoint-set data structure (Lecture 10).
- Running time = $O(E \lg V)$.

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the *disjoint-set data structure* (Lecture 10).
- Running time = $O(E \lg V)$.

Best to date:

- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- O(V+E) expected time.