CS60020: Foundations of
Algorithm Design and Machine
Learning

ALGORITHMS

;";"' Dynamic programming

WY

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m]and y[] . . n], find
a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

ALGORITHMS

;";"' Dynamic programming

WY

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m]and y[] . . n], find

a longest subsequence common to them both.
\ 66a99 nOZ_ “the,,

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

m Dynamic programming

\\‘ \’

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m]and y[] . . n], find
a longest subsequence common to them both.

\ “3” not “the”
x A B C B D A B

w2wB D C A B A

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L154

m Dynamic programming

\\‘ \’

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m]and y[] . . n], find
a longest subsequence common to them both.

\ (14 99 nOZ_ “the,,

A B C B D A B
| BCBA-
[N

» B D C A B A JLCS(xy)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

= .« Brute-force LCS algorithm

‘\‘\ i

Check every subsequence of x[1 . . m] to see
if 1t 1s also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

= .« Brute-force LCS algorithm

WY

Check every subsequence of x[1 . . m] to see
if 1t 1s also a subsequence of y[1 . . n].

Analysis
* Checking = O(n) time per subsequence.

» 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2™)
= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

ALGORITH)

\,‘ Towards a better algorithm

‘\‘\ i

Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

ALGORITH)

;“;,: Towards a better algorithm

\\\‘ St s

Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by | 5.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

571 Towards a better algorithm

Y

Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s|.

Strategy: Consider prefixes of x and y.

* Define c[7, j] = | LCS(x[1 .. 2], y[1../])|.

e Then, c¢[m, n] =| LCS(x, y)].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Recursive formulation

w \‘

Theorem.

R e Wl Y it x[i] = yl/l,
LTI max {efi1,], efi, 1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation

Theorem.
R e i Wyl N if x[i] = y[j],
W= max{cfi-1,], efi, j-11} otherwise.

Proof. Case x[i] = y|/]:

1 2

X .L _I
13 I I N

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation

(I
-
W

Théorem.

R e i Wyl N if x[7] = y|j],
C[laj] o max{c[i—j_’j], C[l,]—l]} otherwise.

Proof. Case x[i| = y[/]:

1 2

L 1

1 2 =\’ n

e N I I

Letz[l .. k]=LCS([1..7],y[]l../]),where c|i, J]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 .. k—1]1sCSof x[1 ..7i—1]and y[] .. /j—1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

.1 Proof (continued)
Claim: z[1 .. i1]=LCS(x[1 .. 1], y[l J-1)).
Suppose w 1s a longer CS of x[1 .. i—1] and
v[l..j-1], thatis, |w|> k1. Then cut and
paste: w || z| k] (w concatenated with z[k]) 1s a
common subsequence of x[1 .. 7] and y[1 . . /]
with | w || z[k]| > k. Contradiction, proving the

claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

¥ Proof (continued)

U=
\\\‘ \‘ e

Claim: z[1 .. i=1]=LCS(x[1 .. 1], y[1../-1]).
Suppose w 1s a longer CS of x[1 .. i—1] and
y[1..j-1], thatis, |w|> k—1. Then, cut and
paste: w || z| k] (w concatenated with z[k]) 1s a
common subsequence of x[1 .. 7] and y[1 .. /]

with |w || z[k]| > k. Contradiction, proving the
claim.
Thus, c[i—1, j—1| = k—1, which implies that ¢[i, /|
=cli—1,j-1]+ 1.

Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

ALGORITHMS
’m

:nyhamic-programming hallmark

&
(D Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems. y

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

ALGORITHMS

:f[?yhamic-programming hallmark

&
(D Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems. y

If z=LCS(x, y), then any prefix of z 1s
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

.+ Recursive algorithm for LCS
LCS(x, y, 1,)
if x| =y[/]
then c[7, /] <« LCS(x, y, i—1,/-1) + 1
else c[i, j| < max{LCS(x, v, i—1,j),
LCS(x, y, i,j—l)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

=+ Recursive algorithm for LCS
LCS(x, v, 1,))

i x[i] = y[/]
then c|i, j| < LCS(x, y, i—1,j-1)+ 1
else ¢, /]| <« maX{LCS(x, v, i—1,7),

LCS(x, y, i,j-1)}

Worst-case: x[i] # y[j|, in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

ALGORITHMS

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

ALGORITHMS

o S
cYlS clE KL
cCHCHNC RS

Height = m + n = work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

\
«
\\\‘ S

m = 3, n=4: @
@ same @
subproblem

cYIS G 3y
S)y o

“ .« Recursion tree

Height = m + n = work potentially exponential.,
but we’re solving subproblems already solved!

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

ALGORITHMS

v

5 z
\

Dyhamic-programming hallmark

3
L]

\
N

&
(D Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

ALGORITHMS

‘Byhamic-programming hallmark
&)

(D Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

/

The number of distinct LCS subproblems for
two strings of lengths 7 and 7 1s only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

= .« Memoization algorithm

‘\‘\ i

Memoization: After computing a solution to a
subproblem, store 1t 1n a table. Subsequent calls
check the table to avoid redoing work.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

=Y Memoization algorithm

\
ny N S

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, y, 1, /)
if c|7, j| = NIL
then if x|/| = y|/] A
then c[7, j| < LCS(x, y, i1, j-1)+ 1 | same
else |7, j| < max{LCS(x, y, i—1,), > as

LCS(x, . i, j-1)} | Peore
_/

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

=Y Memoization algorithm

\
ny N S

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, vy, 1,)
if c|7, j| = NIL
then if x|/| = y|/] A
then c[7, j| < LCS(x, y, i1, j-1)+ 1 | same
else c[/, j] < max{LCS(x, y, i~1,), - as
. before
LCS(x, v, z,]—l)}J
Time = ®(mn) = constant work per table entry.
Space = O(mn).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.27

ALGORITHMS
o‘]
\ ; B
wY B

IDEA:

Compute the
table bottom-up.

November 7, 2005

3
D
C
A
B

A

namic-programming algorithm
A B CBDAB

0/,0/0(]0{0]010]0
o(oy1 |11 1(1]1
00 1 2122
00 2121222
0 1 (21212313
0 212131334
0 2121313144

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

~DBynamic-programming algorithm

IDEA: A B C B D A B

Compute the 0(0/0[{0[0]0
table bottom-up. B 4

Time = O(mn).

> O U

>

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.29

ALGORITHMS

~DYynamic-programming algorithm
IDEA: B C B A
Compute the 0(0|0{0[0|0]O0
table bottom-up. Blolo AFEERE
Time = O(mn). 0lo0 11112
Reconstruct
. 212122
LCS by tracing CLo]9 4
backwards. 0 1121223
B |0 21213133
\
A0 212131314

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.30

ALGORITHMS
AN q

~DYynamic-programming algorithm
IDEA: B C B A
Compute the 0(0|0{0[0|0]O0
table bottom-up. Blolo AFEERE
Time = O(mn). 0lo0 11112
Reconstruct

. 21212
LCS by tracing CLo]9 4 -
backwards. 0 11212123
Space = @(mn). B |0 2123 3\3
Exercise: AlO 202131314
O(min{m, n}).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.31

