CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences *x*[1 . . *m*] and *y*[1 . . *n*], find a longest subsequence common to them both.

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

Given two sequences x[1..m] and y[1..n], find a longest subsequence common to them both.
"a" not "the"

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences x[1..m] and y[1..n], find a longest subsequence common to them both.
 "a" not "the"
- x: A B C B D A B
- y: B D C A B A

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences $x[1 \dots m]$ and $y[1 \dots n]$, find a longest subsequence common to them both.

- "a" *not* "the"

Brute-force LCS algorithm

Check every subsequence of $x[1 \dots m]$ to see if it is also a subsequence of $y[1 \dots n]$.

Brute-force LCS algorithm

Check every subsequence of $x[1 \dots m]$ to see if it is also a subsequence of $y[1 \dots n]$.

Analysis

- Checking = O(n) time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

Worst-case running time = $O(n2^m)$ = exponential time.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself. **Notation:** Denote the length of a sequence s by |s|.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

- **Strategy:** Consider *prefixes* of *x* and *y*.
- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Recursive formulation

Theorem.

$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$

Recursive formulation

Theorem. $c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j] \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$ if x[i] = y[j],*Proof.* Case x[i] = y[j]: 2 m X: 2 n \mathcal{V} :

Recursive formulation

Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Proof. Case
$$x[i] = y[j]$$
:

Let z[1 ldots k] = LCS(x[1 ldots i], y[1 ldots j]), where c[i, j] = k. Then, z[k] = x[i], or else z could be extended. Thus, z[1 ldots k-1] is CS of x[1 ldots i-1] and y[1 ldots j-1].

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]). Suppose *w* is a longer CS of x[1 ... i-1] and y[1 ... j-1], that is, |w| > k-1. Then, *cut and paste*: w || z[k] (*w* concatenated with z[k]) is a common subsequence of x[1 ... i] and y[1 ... j]with |w|| z[k]| > k. Contradiction, proving the claim.

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]). Suppose *w* is a longer CS of x[1 ... i-1] and y[1 ... j-1], that is, |w| > k-1. Then, *cut and paste*: w || z[k] (*w* concatenated with z[k]) is a common subsequence of x[1 ... i] and y[1 ... j]with |w|| z[k]| > k. Contradiction, proving the claim.

Thus, c[i-1, j-1] = k-1, which implies that c[i, j] = c[i-1, j-1] + 1.

Other cases are similar.

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

LCS(x, y, i, j)if x[i] = y[j]then $c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1$ else $c[i, j] \leftarrow max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}$

Recursive algorithm for LCS

LCS(x, y, i, j)if x[i] = y[j]then $c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1$ else $c[i, j] \leftarrow max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}$

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Height = $m + n \Rightarrow$ work potentially exponential.

Height = $m + n \Rightarrow$ work potentially exponential., but we're solving subproblems already solved!

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

$$LCS(x, y, i, j)$$

if $c[i, j] = NIL$
then if $x[i] = y[j]$
then $c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1$
else $c[i, j] \leftarrow max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}$
same
as
before

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

$$LCS(x, y, i, j)$$

if $c[i, j] = NIL$
then if $x[i] = y[j]$
then $c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1$
else $c[i, j] \leftarrow max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}$
Time = $\Theta(mn)$ = constant work per table entry.
Space = $\Theta(mn)$.

IDEA:

Compute the table bottom-up.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.28

IDEA:

Compute the table bottom-up. Time = $\Theta(mn)$.

November 7, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.29

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

Space = $\Theta(mn)$. **Exercise:** $O(\min\{m, n\}).$

		A	B	С	B	D	A	B
	0	0	0	0	0	0	0	0
B	0	0	1	1	1	1	1	1
D	0	0	1	1	1	2	2	2
C	0	0	1	2	2	2	2	2
A	0	1	1	2	2	2	3	3
B	0	1	2	2	3	3	3	4
A	0	1	2	2	3	3	4	4