
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Dynamic programming

x: A B C B D A B

y: B D C A B A

Design technique, like divide-and-conquer.
Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005

Dynamic programming

x: A B C B D A B

y: B D C A B A

Design technique, like divide-and-conquer.
Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s|.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s|.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y)|.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ¬ LCS(x, y, i–1, j–1) + 1
else c[i, j] ¬ max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ¬ LCS(x, y, i–1, j–1) + 1
else c[i, j] ¬ max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ¹ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 33,4,4

22,4,4

11,4,4

33,3,3

33,2,222,3,3

11,3,3 22,2,2

22,3,3

11,3,3 22,2,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 33,4,4

22,4,4

11,4,4

33,3,3

33,2,222,3,3

11,3,3 22,2,2

m+n22,3,3

11,3,3 22,2,2

Height = m + n Þ work potentially exponential.

Recursion tree

same
subproblem

m = 3, n = 4: 33,4,4

22,4,4

11,4,4

33,3,3

33,2,222,3,3

11,3,3 22,2,2

Height = m + n Þ work potentially exponential.,
but we’re solving subproblems already solved!

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

22,3,3

11,3,3 22,2,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

Memoization algorithm

then c[i, j] ¬ LCS(x, y, i–1, j–1) + 1
else c[i, j] ¬ max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.
LCS(x, y, i, j)

if c[i, j] = NIL
then if x[i] = y[j]

same
as
before

Memoization algorithm

Time = Q(mn) = constant work per table entry.
Space = Q(mn).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.27

then c[i, j] ¬ LCS(x, y, i–1, j–1) + 1
else c[i, j] ¬ max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.
LCS(x, y, i, j)

if c[i, j] = NIL
then if x[i] = y[j]

same
as
before

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.28

Dynamic-programming algorithm

0 0 0 0 0
0 0 1 1 1

0 0 0
1 1 1

0 0 1 1 1 2 2 2
0 0 1 2 2 2 2 2
0 1 1 2 2 2 3 3
0 1 2 2 3 3 3 4
0 1 2 2 3 3 4 4

IDEA: A B C B D A B
Compute the 0 0 0 0 0 0 0 0
table bottom-up. B 0 0 1 1 1 1 1 1

D 0 0 1 1 1 2 2 2
C 0 0 1 2 2 2 2 2
A 0 1 1 2 2 2 3 3
B 0 1 2 2 3 3 3 4
A 0 1 2 2 3 3 4 4

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.29

Dynamic-programming algorithm

0 0 0 0 0
0 0 1 1 1

0 0 0
1 1 1

0 0 1 1 1 2 2 2
0 0 1 2 2 2 2 2
0 1 1 2 2 2 3 3
0 1 2 2 3 3 3 4
0 1 2 2 3 3 4

IDEA:
Compute the
table bottom-up.
Time = Q(mn).

4

A B C B D A B
0 0 0 0 0 0 0 0

B 0 0 1 1 1 1 1 1
D 0 0 1 1 1 2 2 2
C 0 0 1 2 2 2 2 2
A 0 1 1 2 2 2 3 3
B 0 1 2 2 3 3 3 4
A 0 1 2 2 3 3 4 4

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.30

00 00 0 0 0 0 0 0
0 0 11 1 1 1 1 1
0 0 11 1 1 2 2 2
0 0 1 22 2 2 2 2
0 1 1 22 2 2 3 3
0 1 2 2 33 33 3 4
0 1 2 2 3 3

Dynamic-programming algorithm

44 44

IDEA:
Compute the
table bottom-up.
Time = Q(mn).
Reconstruct
LCS by tracing
backwards.

A B C B D A B
0 0 0 0 0 0 0 0

B 0 0 1 1 1 1 1 1
D 0 0 1 1 1 2 2 2
C 0 0 1 2 2 2 2 2
A 0 1 1 2 2 2 3 3
B 0 1 2 2 3 3 3 4
A 0 1 2 2 3 3 4 4

L15.31

00 00 0 0 0 0 0 0
0 0 11 1 1 1 1 1
0 0 11 1 1 2 2 2
0 0 1 22 2 2 2 2
0 1 1 22 2 2 3 3
0 1 2 2 33 33 3 4
0 1 2 2 3 3

Dynamic-programming algorithm

44 44

A B C B D A B
0 0 0 0 0 0 0 0

B 0 0 1 1 1 1 1 1
D 0 0 1 1 1 2 2 2
C 0 0 1 2 2 2 2 2
A 0 1 1 2 2 2 3 3
B 0 1 2 2 3 3 3 4
A 0 1 2 2 3 3 4 4

IDEA:
Compute the
table bottom-up.
Time = Q(mn).
Reconstruct
LCS by tracing
backwards.
Space = Q(mn).
Exercise:
O(min{m, n}).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

