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Balanced search trees
Balanced search tree: A search-tree data  
structure for which a height of O(lg n) is  
guaranteed when implementing a dynamic  
set of n items.

• AVL trees
• 2-3 trees

Examples: • 2-3-4 trees
• B-trees
• Red-black trees
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Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a  

descendant leaf have the same number  
of black nodes = black-height(x).
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Example of a red-black
tree

h = 4

1111 2266

1100 2222

77

33 1188

NIL NIL

88

NIL NIL NIL NIL

NIL

NIL NIL
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Example of a red-black
tree

2266

1100 2222

77

33 1188

NIL NIL

88 1111

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.
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Example of a red-black
tree

2266

1100 2222

77

33 1188

NIL NIL

NIL
88 1111

NIL NIL NIL NIL NIL NIL

2. The root and leaves (NIL’s) are black.
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Example of a red-black
tree

1100 2222

77

33 1188

NIL NIL

NIL
88 1111 2266

NIL NIL NIL NIL NIL NIL

3. If a node is red, then its parent is black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7



Example of a red-black
tree

1100

1188

2222

33

77

NIL NIL

NIL

bh = 2

bh = 1

bh = 2

bh = 1

bh = 0 NIL

88 1111 2266

NIL NIL NIL NIL NIL

4. All simple paths from any node x to a  
descendant leaf have the same number of  
black nodes = black-height(x).
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h £ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes  

into their black  
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h £ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes  

into their black  
parents.

h¢

• This process produces a tree in which each node  
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h¢ of leaves.
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Proof
(continued)

• We have
h¢ ³ h/2, since  
at most half
the leaves on any path  
are red.

• The number of leaves  
in each tree is n + 1
Þ n + 1 ³ 2h'

Þ lg(n + 1) ³ h' ³ h/2
Þ h £ 2 lg(n + 1).

h¢

h
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Query operations
Corollary. The queries SEARCH, MIN,  
MAX, SUCCESSOR, and PREDECESSOR
all run in O(lg n) time on a red-black  
tree with n nodes.
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Modifying operations
The operations INSERT and DELETE cause  
modifications to the red-black tree:
• the operation itself,
• color changes,
• restructuring the links of the tree via
“rotations”.
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Rotation
s

AA

BB

a b
g

RIGHT-ROTATE(B)

BB

AA

gb
a

LEFT-ROTATE(A)

Rotations maintain the inorder ordering of keys:
• a Î a, b Î b, c Î g Þ a £ A £ b £ B £ c.
A rotation can be performed in O(1) time.
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Insertion into a red-black tree

88

1100

1188

2266

2222

•IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move
the violation up the tree by recoloring until
it can be fixed with rotations and
recoloring.

• 77
• Example: 33

1111
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Example:
• Insert x =15.

88

1100

1188

2266

2222

•IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move
the violation up the tree by recoloring until
it can be fixed with rotations and
recoloring.

• 77

1111

1155

33

• Recolor, moving the  
violation up the tree.
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Insertion into a red-black tree



Example:
• Insert x =15.

88

1100

1188

2266

2222

•IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move
the violation up the tree by recoloring until
it can be fixed with rotations and
recoloring.

• 77

1111

1155

33

• Recolor, moving the  
violation up the tree.

• RIGHT-ROTATE(18).
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Insertion into a red-black tree



Example:
• Insert x =15.

88

1100

1188

•IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move
the violation up the tree by recoloring until
it can be fixed with rotations and
recoloring.

• 77

1111 2222

1155 2266

33

• Recolor, moving the  
violation up the tree.

• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.
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Insertion into a red-black tree



IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
• Insert x =15.
• Recolor, moving the  

violation up the tree.
• RIGHT-ROTATE(18).

88

1100

118877

1111 2222

1155 2266

33

• LEFT-ROTATE(7) and recolor.
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Pseudocode
RB-INSERT(T, x)  

TREE-INSERT(T, x)
color[x] ¬ RED ⊳ only RB property 3 can be violated
while x ¹ root[T] and color[p[x]] = RED

⊳ y = aunt/uncle of x
do if p[x] = left[p[p[x]]

then y ¬ right[p[p[x]]
if color[y] = RED
then áCase 1ñ
else if x = right[p[x]]

then áCase 2ñ ⊳ Case 2 falls into Case 3
áCase 3ñ

else á“then” clause with “left” and “right” swappedñ
color[root[T]] ¬ BLACK

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24



Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.
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Case 1

BB

CC

DDAA

x

y

BB

CC

AA

new x

DD

Recolor

(Or, children of
A are swapped.)

Push C’s black onto  
A and D, and recurse,  
since C’s parent may  
be red.
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Case 2

BB

CC

AA

x

LEFT-ROTATE(A) CC
y y

BB

x AA

Transform to Case 3.
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Case 3

Done! No more  
violations of RB  
property 3 are  
possible.

AA

CC

BB

x

RIGHT-ROTATE(C)
y

AA

BB

CC
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Analysis

• Go up the tree performing Case 1, which only  
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2 
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.
RB-DELETE — same asymptotic running time  
and number of rotations as RB-INSERT (see  
textbook).
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Binary Search Tree - Best Time

• All BST operations are O(d), where d is tree 
depth

• minimum d is                   for a binary tree with 
N nodes
› What is the best case tree?
› What is the worst case tree?

• So, best case running time of BST operations 
is O(log N)

ë ûNlogd 2=
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Binary Search Tree - Worst Time

• Worst case running time is O(N) 
› What happens when you Insert elements in 

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”: 
• compare depths of left and right subtree

› Unbalanced degenerate tree
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Balanced and unbalanced BST

4

2 5

1 3

1

5

2

4

3

7

6

4

2 6

5 71 3

Is this “balanced”?
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Approaches to balancing trees
• Don't balance
› May end up with some nodes very deep

• Strict balance
› The tree must always be balanced perfectly

• Pretty good balance
› Only allow a little out of balance

• Adjust on access
› Self-adjusting
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Balancing Binary Search Trees

• Many algorithms exist for keeping binary 
search trees balanced
› Adelson-Velskii and Landis (AVL) trees (height-

balanced trees) 
› Splay trees and other self-adjusting trees
› B-trees and other multiway search trees
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Perfect Balance

• Want a complete tree after every operation
› tree is full except possibly in the lower right

• This is expensive
› For example, insert 2 in the tree on the left and 

then rebuild as a complete tree

Insert 2 &
complete tree

6

4 9

81 5

5

2 8

6 91 4
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AVL - Good but not Perfect 
Balance

• AVL trees are height-balanced binary search 
trees

• Balance factor of a node
› height(left subtree) - height(right subtree)

• An AVL tree has balance factor calculated at 
every node
› For every node, heights of left and right subtree 

can differ by no more than 1
› Store current heights in each node
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Height of an AVL Tree

• N(h) = minimum number of nodes in an AVL 
tree of height h.

• Basis
› N(0) = 1, N(1) = 2

• Induction
› N(h) = N(h-1) + N(h-2) + 1

• Solution (recall Fibonacci analysis)

› N(h) > fh (f » 1.62) h-1 h-2

h
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Height of an AVL Tree

• N(h) > fh (f » 1.62)
• Suppose we have n nodes in an AVL tree of 

height h.
› n > N(h) (because N(h) was the minimum)

› n > fh hence logf n > h (relatively well 
balanced tree!!)

› h < 1.44 log2n (i.e., Find takes O(logn))
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Node Heights

1

00

2

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright
empty height = -1

0

0

height=2   BF=1-0=1

0

6

4 9

1 5

1

Tree A (AVL) Tree B (AVL)
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Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright
empty height = -1

1

0

2

0

6

4 9

1 5

1

0
7

0
7

balance factor 
1-(-1) = 2

-1

Tree A (AVL) Tree B (not AVL)
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Insert and Rotation in AVL Trees

• Insert operation may cause balance factor to 
become 2 or –2 for some node 
› only nodes on the path from insertion point to 

root node have possibly changed in height
› So after the Insert, go back up to the root node by 

node, updating heights
› If a new balance factor (the difference hleft-hright) is 

2 or –2, adjust tree by rotation around the node
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Single Rotation in an AVL Tree

2

10

2

0

6

4 9

81 5

1

0
7

0

1

0

2

0

6

4

9

8

1 5

1

0
7
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Let the node that needs rebalancing be a.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of a.
2. Insertion into right subtree of right child of a.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of a.
4. Insertion into left subtree of right child of a.

The rebalancing is performed through four 
separate rotation algorithms.

Insertions in AVL Trees
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j

k

X Y
Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h h
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j

k

X
Y

Z

Inserting into X
destroys the AVL 
property at node j

AVL Insertion: Outside Case

h

h+1 h
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j

k

X
Y

Z

Do a “right rotation”

AVL Insertion: Outside Case

h

h+1 h
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j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h
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j
k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h
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j

k

X Y
Z

AVL Insertion: Inside Case
Consider a valid
AVL subtree

h

hh
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Inserting into Y 
destroys the
AVL property
at node j 

j

k

X
Y

Z

AVL Insertion: Inside Case
Does “right rotation”
restore balance?

h

h+1h
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j
k

X

Y
Z

“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case

hh+1

h
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Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h
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j

k

X
V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1
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j

k

X
V

Z

W

i

AVL Insertion: Inside Case
We will do a left-right 
“double rotation” . . .
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j

k

X V

Z
W

i

Double rotation : first rotation
left rotation complete
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j

k

X V

Z
W

i

Double rotation : second 
rotation

Now do a right rotation
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jk

X V ZW

i

Double rotation : second 
rotation

right rotation complete

Balance has been 
restored

hh h or h-1
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Implementation

balance (1,0,-1)
key

rightleft

No need to keep the height; just the difference in height,            
i.e. the balance factor; this has to be modified on the path of 
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t 
need to go back up the tree
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Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

X

Y Z

n

You also need to 
modify the heights 
or balance factors 
of  n and p

Insert
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Double Rotation

• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {
????
}

X

n

V W

Z
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Insertion in AVL Trees

• Insert at the leaf (as for all BST)
› only nodes on the path from insertion point to 

root node have possibly changed in height
› So after the Insert, go back up to the root node by 

node, updating heights
› If a new balance factor (the difference hleft-hright) is 

2 or –2, adjust tree by rotation around the node
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Insert in BST
Insert(T : reference tree pointer, x : element) : integer {
if T = null then

T := new tree; T.data := x; return 1;//the links to                             
//children are null

case
T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);

endcase
}
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Insert in AVL trees
Insert(T : reference tree pointer, x : element) : {
if T = null then

{T := new tree; T.data := x; height := 0; return;}
case

T.data = x : return ; //Duplicate do nothing
T.data > x : Insert(T.left, x);

if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x ) then //outside case

T = RotatefromLeft (T);
else                       //inside case

T = DoubleRotatefromLeft (T);}
T.data < x :  Insert(T.right, x);

code similar to the left case
Endcase

T.height := max(height(T.left),height(T.right)) +1;
return;

}
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Example of Insertions in an AVL 
Tree

1

0

2
20

10 30

25

0

35
0

Insert 5, 40
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Example of Insertions in an AVL 
Tree

1

0

2
20

10 30

25

1

35
0

5
0

20

10 30

25

1

355

40

0

0

0 1

2

3

Now Insert 45
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Single rotation (outside case)

2

0

3
20

10 30

25

1

35
2

5
0

20

10 30

25

1

405

40

0

0

0

1

2

3

45

Imbalance
35 45
0 0

1

Now Insert 34
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Double rotation (inside case)

3

0

3
20

10 30

25

1

40
2

5
0

20

10 35

30

1

405

45

0 1

2

3

Imbalance

45
0

1

Insertion of  34

35

34

0

0

1 25 340



12/26/03 AVL Trees - Lecture 8 68

AVL Tree Deletion

• Similar but more complex than insertion
› Rotations and double rotations needed to 

rebalance
› Imbalance may propagate upward so that 

many rotations may be needed.
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Arguments for AVL trees:
1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the 

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use 

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for 

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees
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Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}

X

n

V W

Z


