CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of *n* items.

- AVL trees
- 2-3 trees

Examples:

- 2-3-4 trees
- B-trees
- Red-black trees

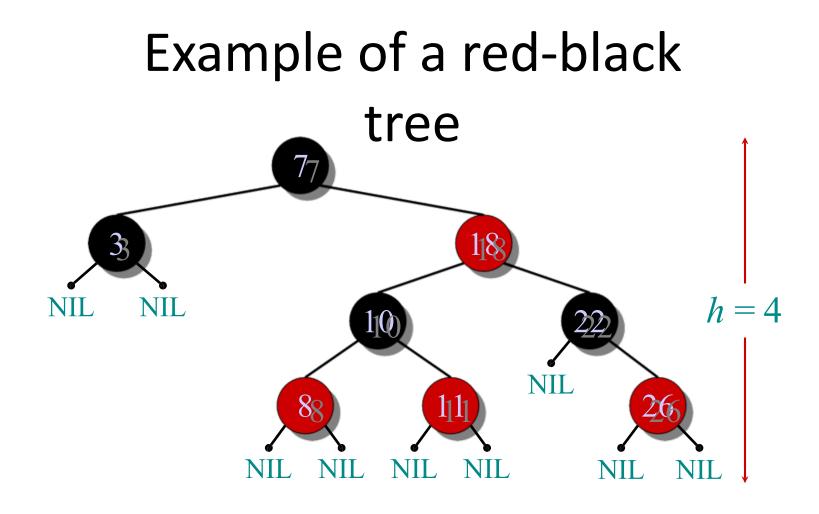
Red-black trees

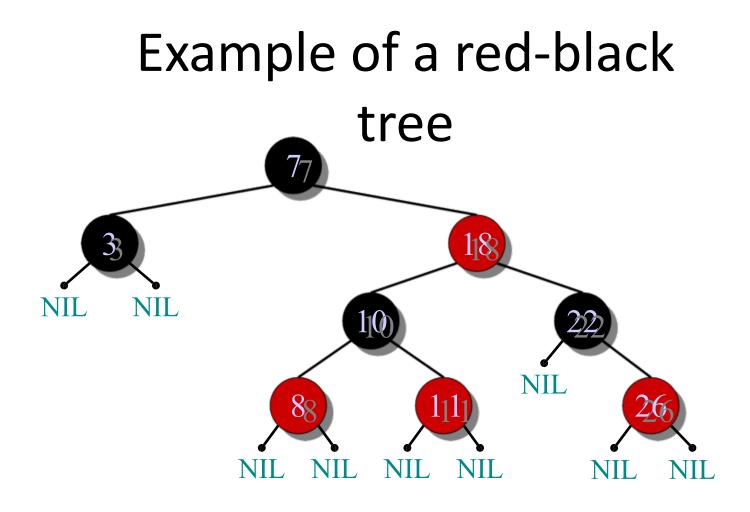
This data structure requires an extra onebit color field in each node.

Red-black properties:

- 1. Every node is either red or black.
- 2. The root and leaves (NIL's) are black.
- 3. If a node is red, then its parent is black.
- 4. All simple paths from any node x to a descendant leaf have the same number of black nodes = black-height(x).

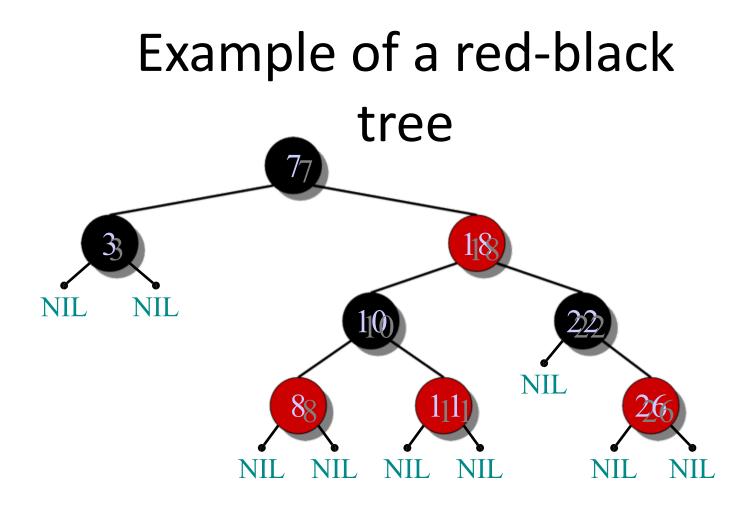
L7.3



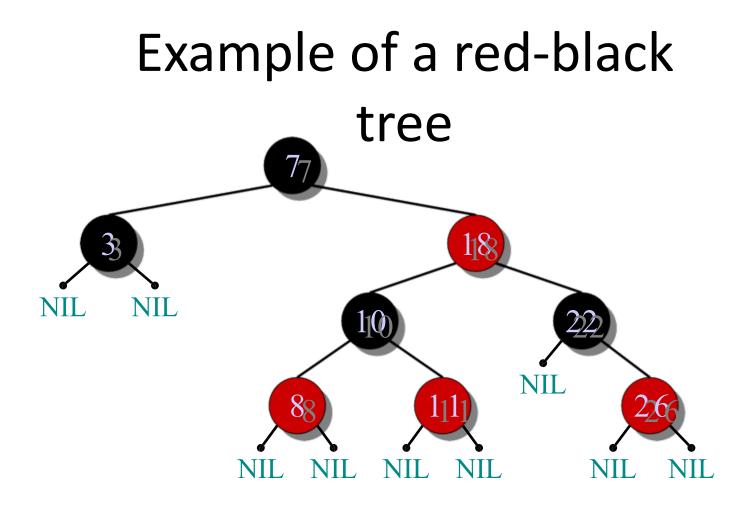


1. Every node is either red or black.

L7.5

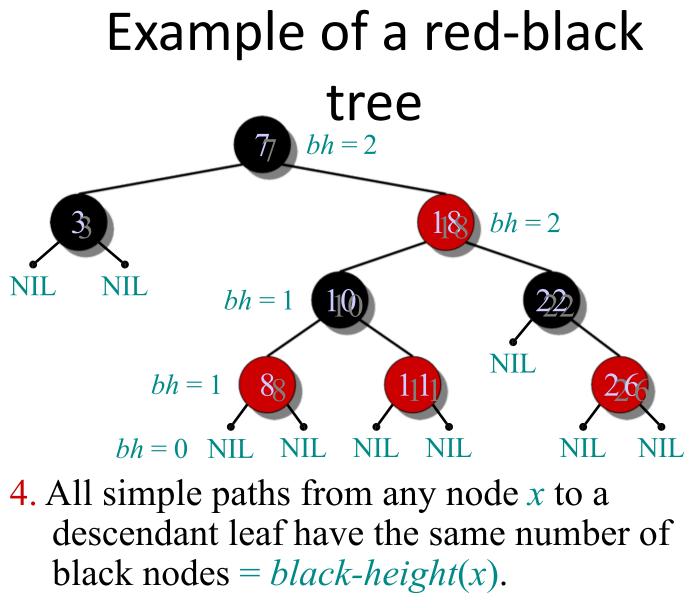


2. The root and leaves (NIL's) are black.

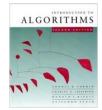


3. If a node is red, then its parent is black.

L7.7



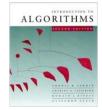
L7.8



Theorem. A red-black tree with *n* keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

INTUITION: Merge red nodes into their black parents.



Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition: Merge red nodes into their black parents.

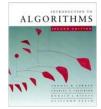


Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

INTUITION:Merge red nodes into their black

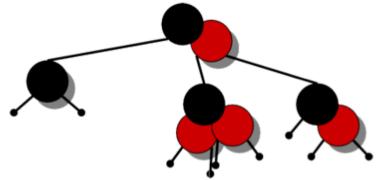
parents.

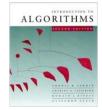


Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

• Merge red nodes into their black parents.

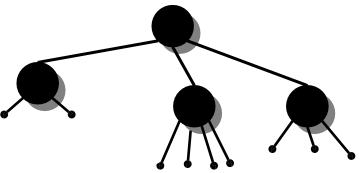


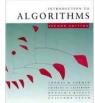


Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

• Merge red nodes into their black parents.



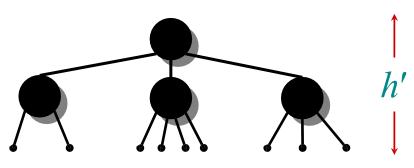


Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

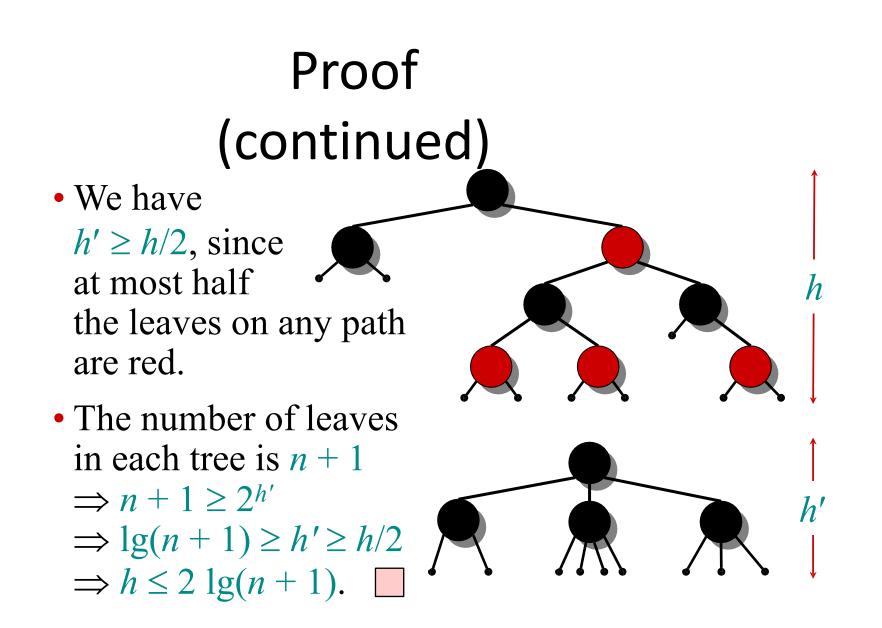
Proof. (The book uses induction. Read carefully.)

INTUITION:

• Merge red nodes into their black parents.



- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth h' of leaves.



Query operations

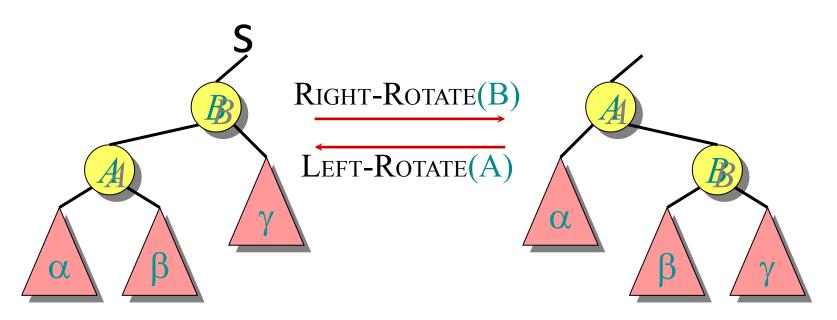
Corollary. The queries SEARCH, MIN, MAX, SUCCESSOR, and PREDECESSOR all run in $O(\lg n)$ time on a red-black tree with *n* nodes.

Modifying operations

The operations INSERT and DELETE cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via *"rotations"*.

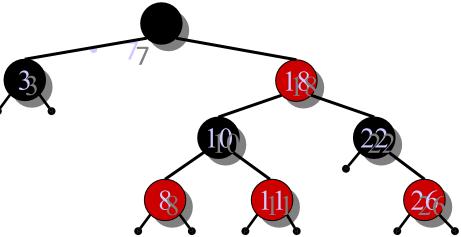
Rotation



Rotations maintain the inorder ordering of keys: • $a \in \alpha, b \in \beta, c \in \gamma \implies a \le A \le b \le B \le c$. A rotation can be performed in O(1) time.

• **IDEA:** Insert *x* in tree. Color *x* red. Only redblack property **3** might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

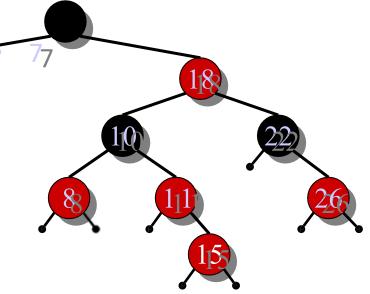
• Example:



• **IDEA:** Insert *x* in tree. Color *x* red. Only redblack property **3** might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.



• **IDEA:** Insert *x* in tree. Color *x* red. Only redblack property **3** might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).

•**IDEA:** Insert *x* in tree. Color *x* red. Only redblack property **3** might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

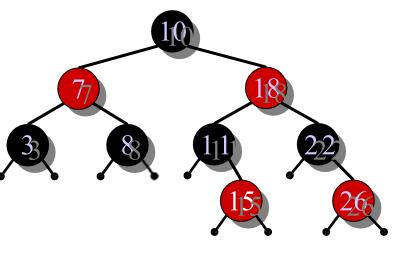
Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- LEFT-ROTATE(7) and recolor.

IDEA: Insert x in tree. Color x red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- LEFT-ROTATE(7) and recolor.

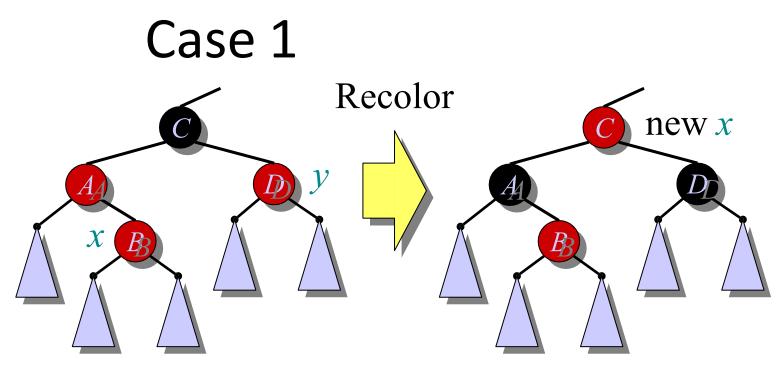


Pseudocode

```
RB-INSERT(T, x)
    TREE-INSERT(T, x)
    color[x] \leftarrow RED <br/> red only RB property 3 can be violated
    while x \neq root[T] and color[p[x]] = RED
         do if p[x] = left[p[p[x]]]
             then y \leftarrow right[p[p[x]]] \qquad \triangleleft y = aunt/uncle of x
                    if color[y] = RED
                     then \langle Case 1 \rangle
                     else if x = right[p[x]]
                             then \langle Case 2 \rangle < Case 2 falls into Case 3
                           \langle Case 3 \rangle
             else ("then" clause with "left" and "right" swapped)
    color[root[T]] \leftarrow BLACK
```

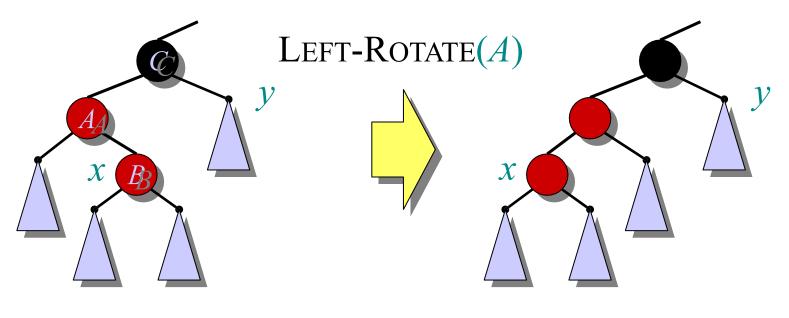
Graphical notation

Let \bigwedge denote a subtree with a black root. All \bigwedge 's have the same black-height.

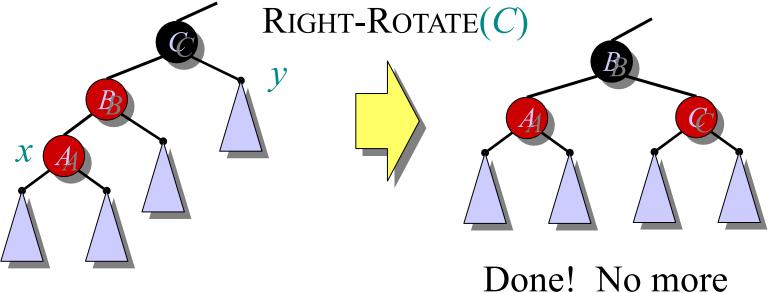


(Or, children of *A* are swapped.)

Push *C*'s black onto *A* and *D*, and recurse, since *C*'s parent may be red.



Transform to Case 3.



Done! No more violations of RB property 3 are possible.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.28

Analysis

- Go up the tree performing Case 1, which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\lg n)$ with O(1) rotations. RB-DELETE — same asymptotic running time and number of rotations as RB-INSERT (see textbook).

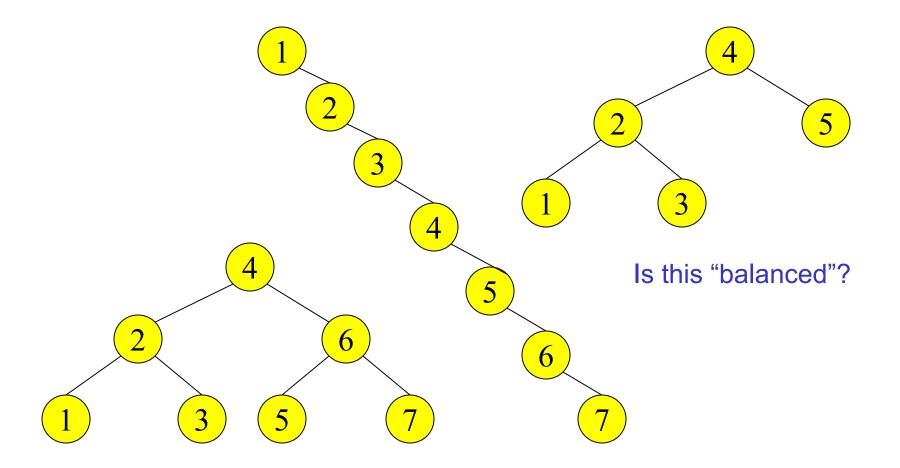
Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is $d = \lfloor \log_2 N \rfloor$ for a binary tree with N nodes
 - > What is the best case tree?
 - > What is the worst case tree?
- So, best case running time of BST operations is O(log N)

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - > What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - > Problem: Lack of "balance":
 - compare depths of left and right subtree
 - > Unbalanced degenerate tree

Balanced and unbalanced BST



Approaches to balancing trees

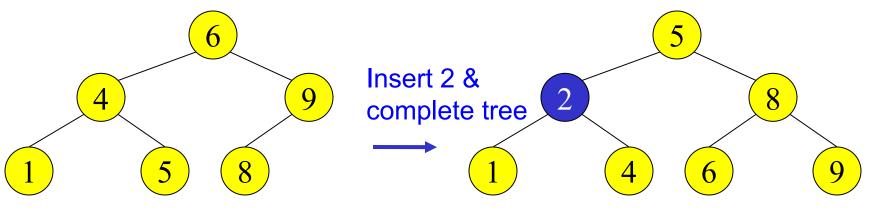
- Don't balance
 - > May end up with some nodes very deep
- Strict balance
 - > The tree must always be balanced perfectly
- Pretty good balance
 - > Only allow a little out of balance
- Adjust on access
 - > Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (heightbalanced trees)
 - > Splay trees and other self-adjusting trees
 - > B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
 > tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

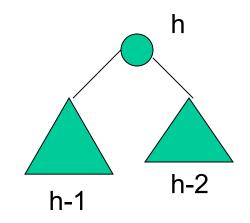


AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - > Store current heights in each node

Height of an AVL Tree

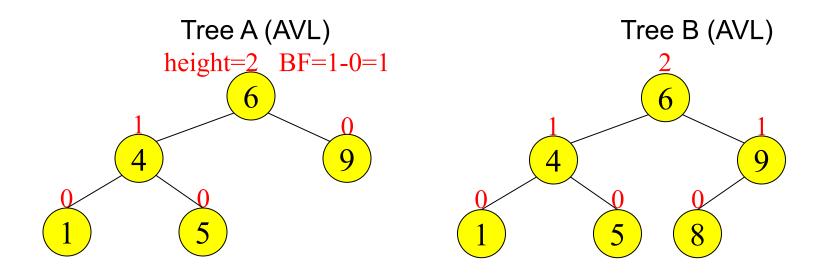
- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis
 - > N(0) = 1, N(1) = 2
- Induction
 - > N(h) = N(h-1) + N(h-2) + 1
- Solution (recall Fibonacci analysis) $\rightarrow N(h) > \phi^{h} (\phi \approx 1.62)$



Height of an AVL Tree

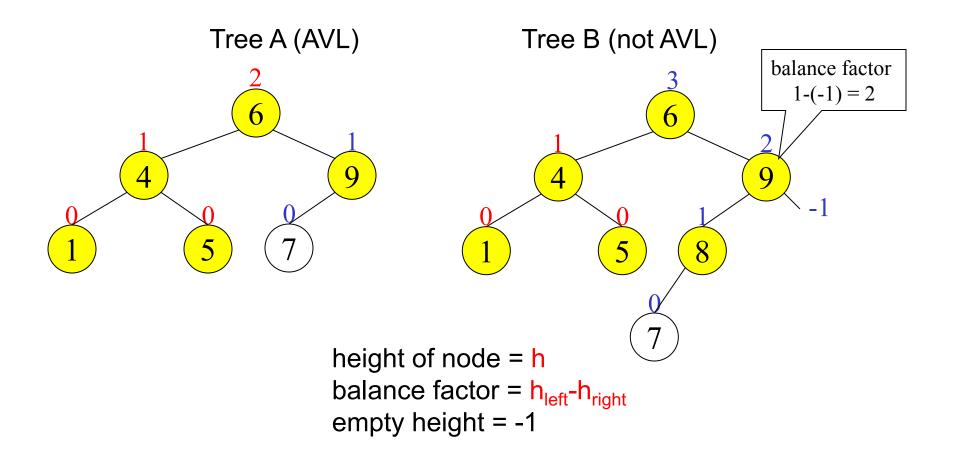
- N(h) $\geq \phi^{h}$ ($\phi \approx 1.62$)
- Suppose we have n nodes in an AVL tree of height h.
 - > $n \ge N(h)$ (because N(h) was the minimum)
 - > $n \ge \phi^h$ hence $\log_{\phi} n \ge h$ (relatively well balanced tree!!)
 - > $h \le 1.44 \log_2 n$ (i.e., Find takes O(logn))

Node Heights



height of node = h balance factor = $h_{left}-h_{right}$ empty height = -1

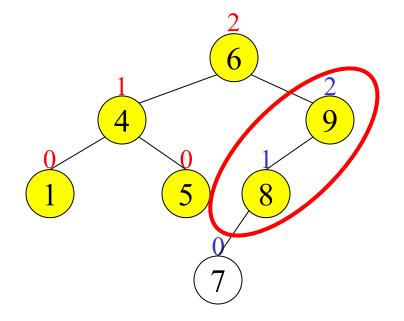
Node Heights after Insert 7

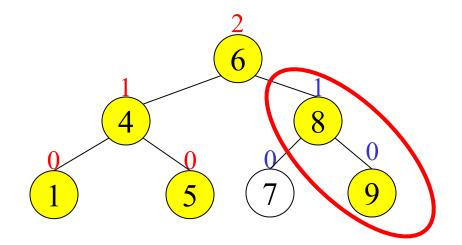


Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}-h_{right}) is
 2 or -2, adjust tree by *rotation* around the node

Single Rotation in an AVL Tree





Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

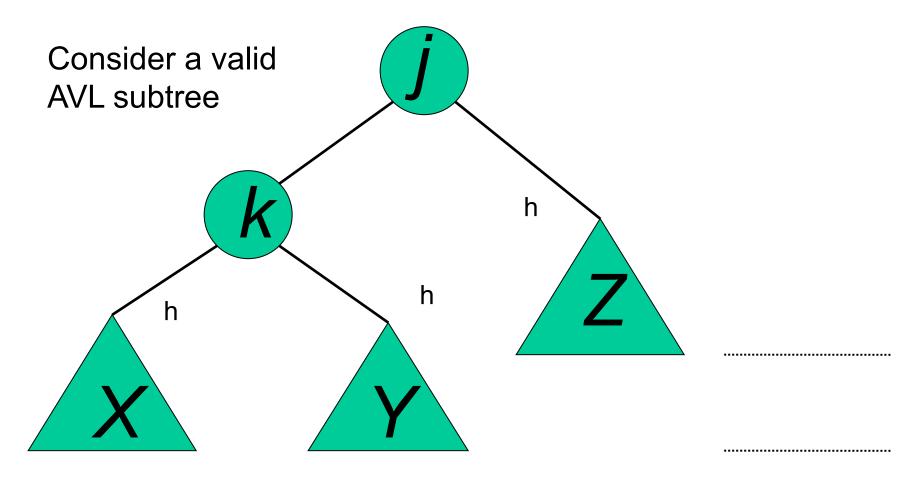
Outside Cases (require single rotation) :

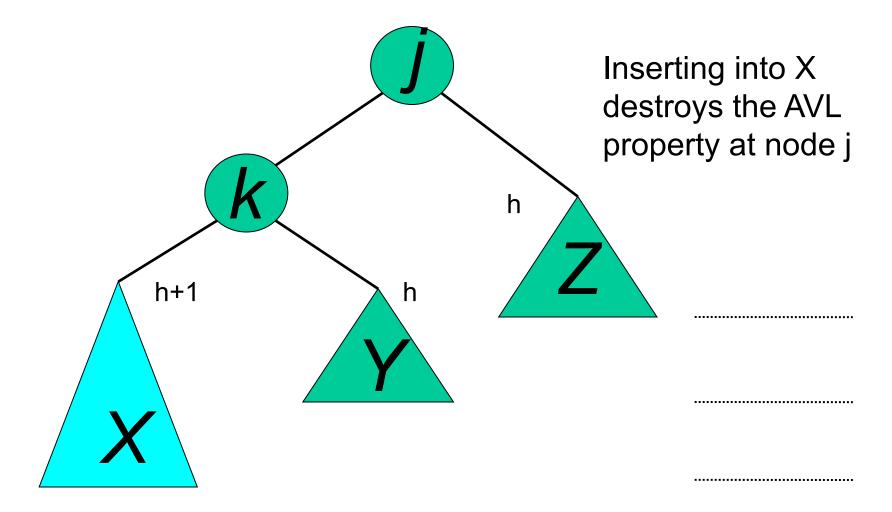
1. Insertion into left subtree of left child of α .

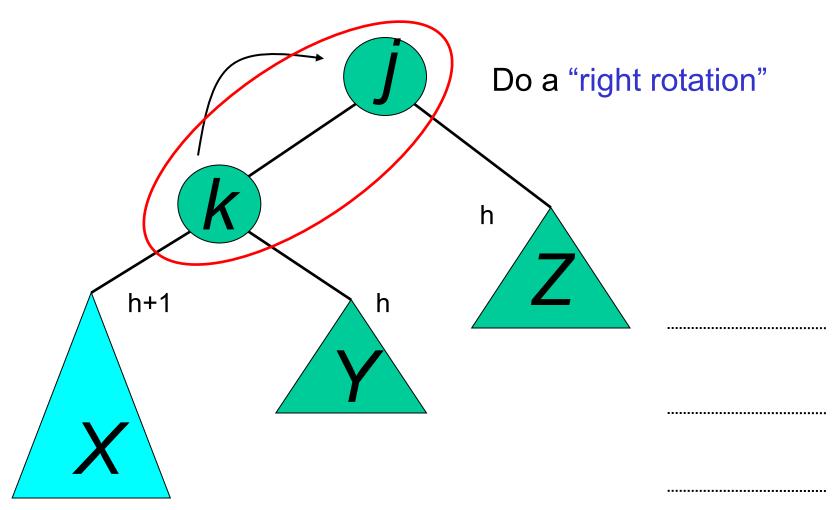
2. Insertion into right subtree of right child of α . Inside Cases (require double rotation) :

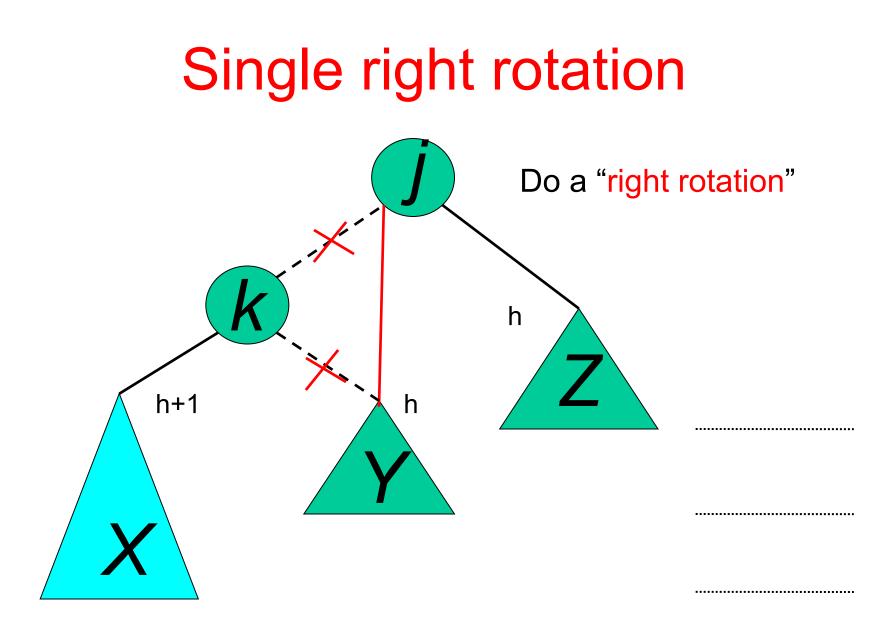
- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

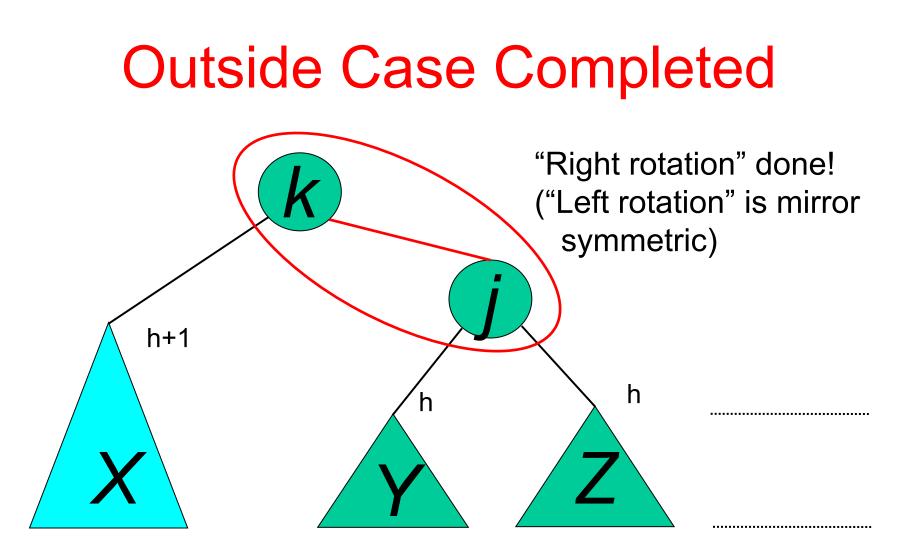
The rebalancing is performed through four separate rotation algorithms.



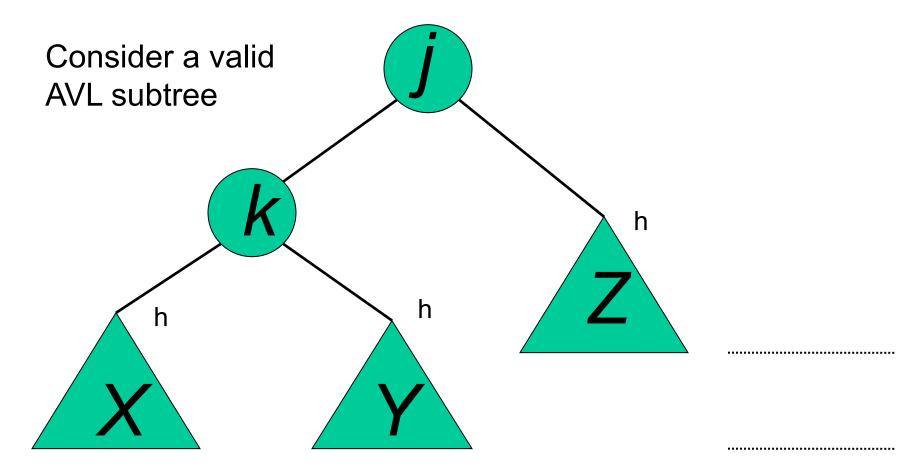


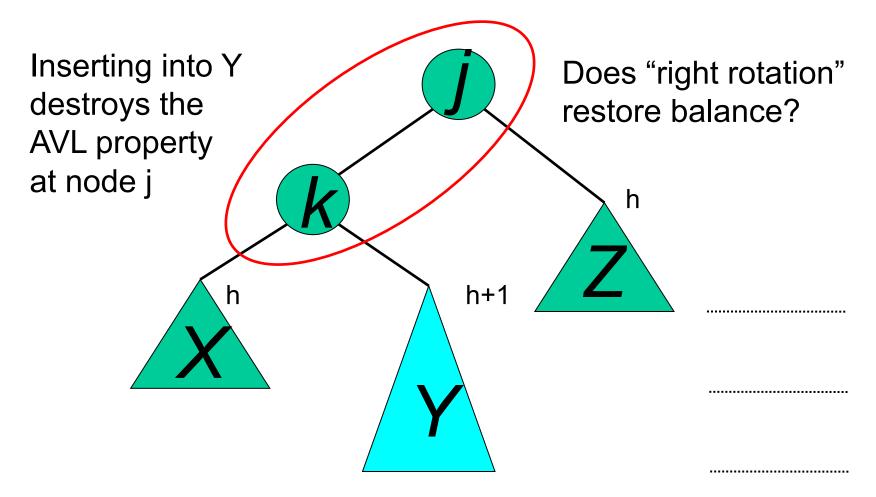


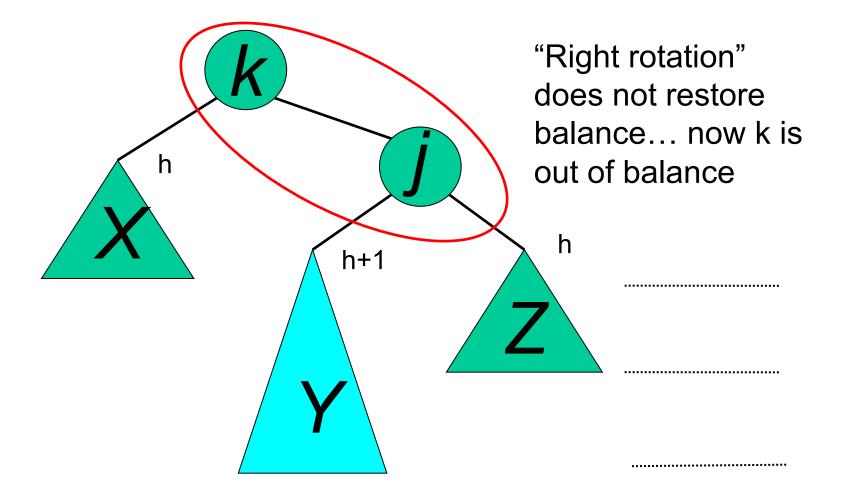


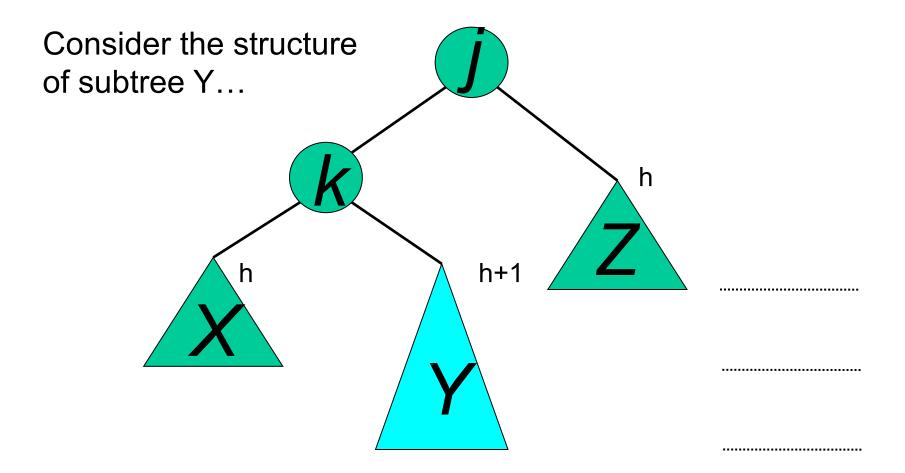


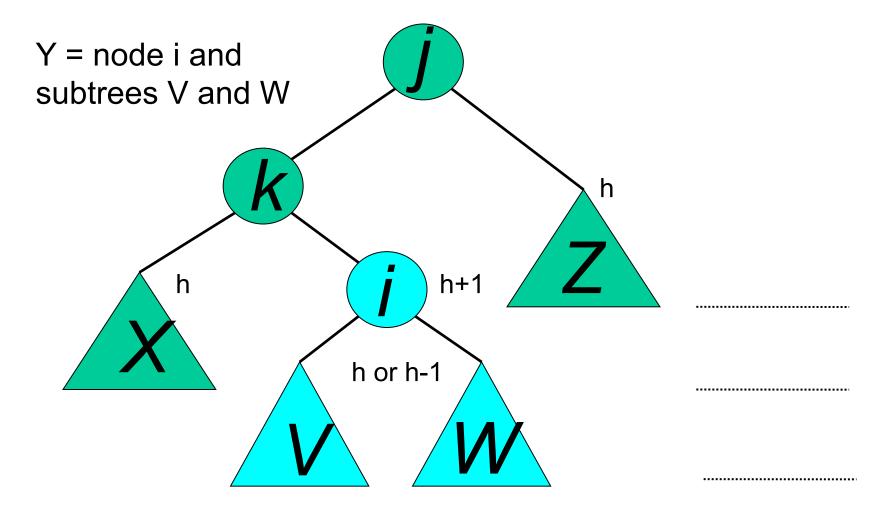
AVL property has been restored!

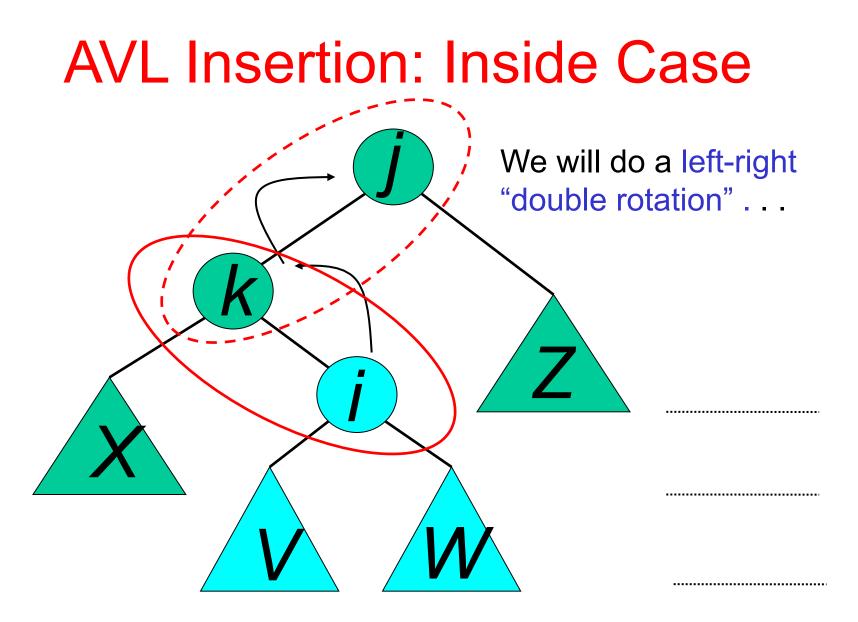




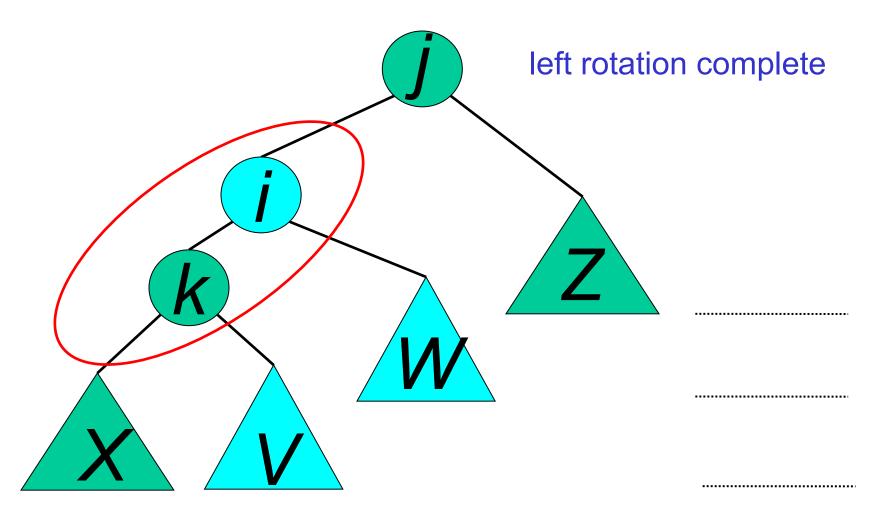


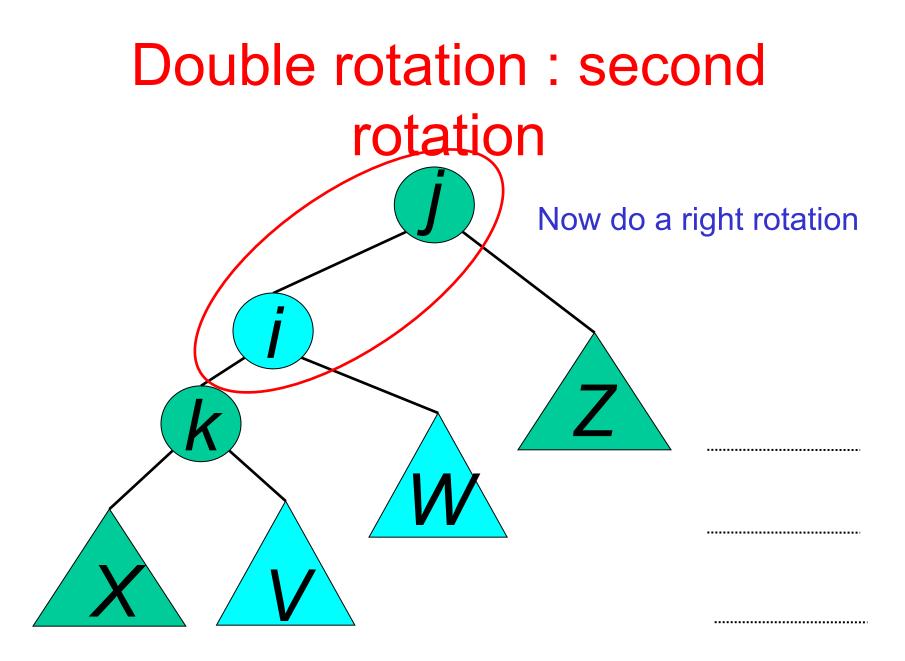




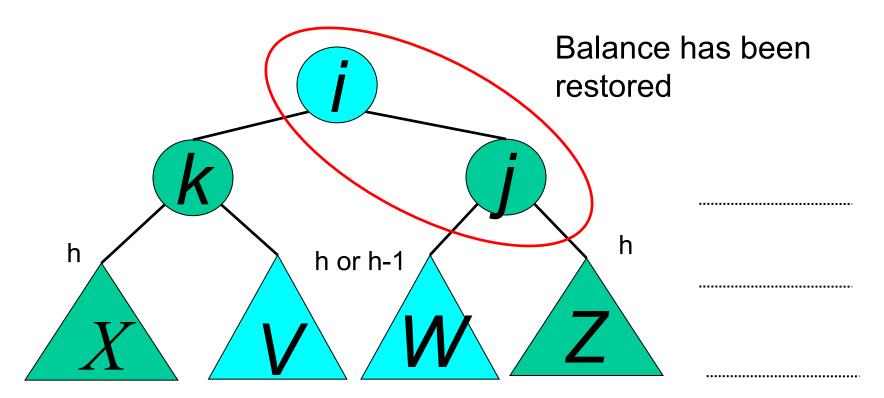


Double rotation : first rotation

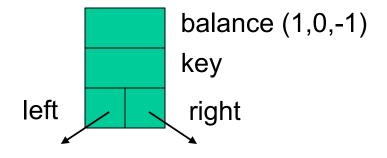




Double rotation : second rotation



Implementation



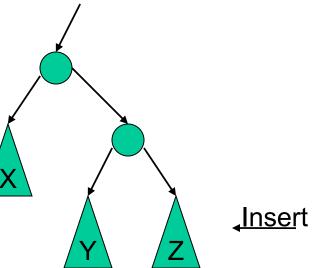
No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

Single Rotation

```
RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}
```

You also need to modify the heights or balance factors of n and p



Double Rotation

• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {
 ????
 n
}

Insertion in AVL Trees

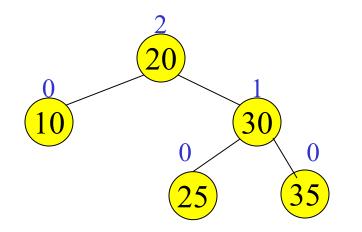
- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}-h_{right}) is
 2 or -2, adjust tree by *rotation* around the node

Insert in BST

Insert in AVL trees

```
Insert(T : reference tree pointer, x : element) : {
if T = null then
  {T := new tree; T.data := x; height := 0; return; }
case
  T.data = x : return ; //Duplicate do nothing
  T.data > x : Insert(T.left, x);
               if ((height(T.left) - height(T.right)) = 2) {
                  if (T.left.data > x) then //outside case
                         T = RotatefromLeft (T);
                  else
                                              //inside case
                         T = DoubleRotatefromLeft (T); \}
  T.data < x : Insert(T.right, x);
                code similar to the left case
Endcase
  T.height := max(height(T.left), height(T.right)) +1;
  return;
}
```

Example of Insertions in an AVL Tree

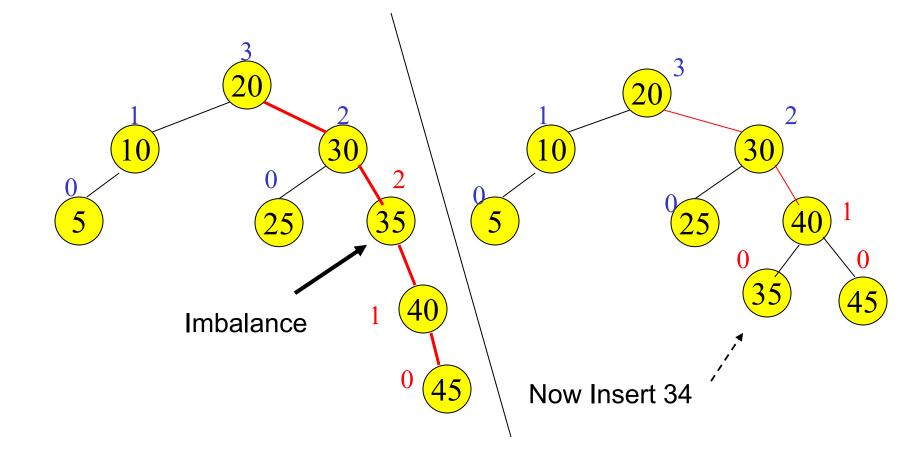


Insert 5, 40

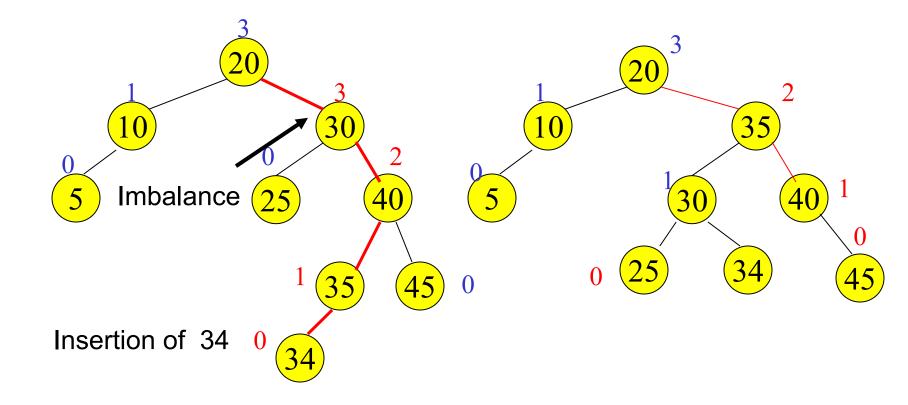
Example of Insertions in an AVL Tree



Single rotation (outside case)



Double rotation (inside case)



AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 4. May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}

