CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Why study algorithms and performance?

- Algorithms help us to understand *scalability*.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a *language* for talking about program behavior.
- Performance is the *currency* of computing.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

The problem of sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers. *Output:* permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

Example: *Input:* 8 2 4 9 3 6 *Output:* 2 3 4 6 8 9

Insertion sort

"pseudocode"

INSERTION-SORT (A, n) $\checkmark A[1 ... n]$ for $j \leftarrow 2$ to ndo $key \leftarrow A[j]$ $i \leftarrow j-1$ while i > 0 and A[i] > keydo $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ A[i+1] = key

Insertion sort

"pseudocode" $\begin{cases}
INSERTION-SORT (A, n) \quad \triangleleft 4[1 \dots n] \\
for j \leftarrow 2 to n \\
do key \leftarrow A[j] \\
i \leftarrow j-1 \\
while i > 0 and A[i] > key \\
do A[i+1] \leftarrow A[i] \\
i \leftarrow i-1 \\
A[i+1] = key
\end{cases}$

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson Introduction to Algorithms

L1.7

Example of insertion sort 8 2 4 9 3 6

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson Introduction to Algorithms

L1.8

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson Introduction to Algorithms

L1.11

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson Introduction to Algorithms

L1.17

Running time

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm on any input of size n.

Average-case: (sometimes)

- *T*(*n*) = expected time of algorithm over all inputs of size *n*.
- Need assumption of statistical distribution of inputs.

Best-case: (bogus)

• Cheat with a slow algorithm that works fast on *some* input.

Machine-independent time

What is insertion sort's worst-case time?

- It depends on the speed of our computer:
 - relative speed (on the same machine),
 - absolute speed (on different machines).

BIG IDEA:

- Ignore machine-dependent constants.
- Look at *growth* of T(n) as $n \to \infty$.

"Asymptotic Analysis"

Θ -notation

Math: $\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and} \\ n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \\ \text{ for all } n \ge n_0 \}$

Engineering:

- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$

Asymptotic performance

When *n* gets large enough, a $\Theta(n^2)$ algorithm *always* beats a $\Theta(n^3)$ algorithm.

- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.

Insertion sort analysis

Worst case: Input reverse sorted. $T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2) \quad \text{[arithmetic series]}$ Average case: All permutations equally likely. $T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$

Is insertion sort a fast sorting algorithm?

- Moderately so, for small *n*.
- Not at all, for large *n*.

Analysis

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	<i>C</i> ₂	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j - 1]$.	0	n-1
4	i = j - 1	<i>C</i> ₄	n-1
5	while $i > 0$ and $A[i] > key$	<i>C</i> ₅	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	<i>C</i> ₇	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1