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Why	study	algorithms and		
performance?

• Algorithms help us to understand scalability.
• Performance often draws the line between what  

is feasible and what is impossible.
• Algorithmic mathematics provides a language

for talking about program behavior.
• Performance is the currency of computing.
• The lessons of program performance generalize  

to other computing resources.
• Speed is fun!
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Introduction to Algorithms

The	problem	of sorting

Input: sequence áa1, a2, …, anñ of numbers.

Output: permutation áa'1, a'2, …, a'nñ such  
that a'1 £ a'2 £ … £ a'n .

Example:
Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9
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Introduction to Algorithms

Insertion sort
⊳ A[1 . . n]INSERTION-SORT (A, n)

for j ← 2 to n
do key ← A[ j]  

i ← j – 1
while i > 0 and A[i] > key

do A[i+1] ← A[i]  
i ← i – 1

A[i+1] = key

“pseudocode”
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Introduction to Algorithms

Insertion sort
⊳ A[1 . . n]INSERTION-SORT (A, n)

for j ← 2 to n
do key ← A[ j]  

i ← j – 1“pseudocode”

sorted

i j

key
A:

1

while i > 0 and A[i] > key
do A[i+1] ← A[i]  

i ← i – 1
A[i+1] = key

n
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Introduction to Algorithms

Example	of	insertion sort
8 2 4 9 3 6
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Introduction to Algorithms

Example	of	insertion sort
8 2 4 9 3 6
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Introduction to Algorithms

Example	of	insertion sort
8 2 4 9 3 6

2 8 4 9 3 6



L1.11
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Introduction to Algorithms

Example	of	insertion sort
8 2 4 9 3 6

2 8 4 9 3 6
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Example	of	insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6
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Introduction to Algorithms

Example	of	insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6
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Example	of	insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6
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Example	of	insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6
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Introduction to Algorithms

Example	of	insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6
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Introduction to Algorithms

Example	of	insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6
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Introduction to Algorithms

Example	of	insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done
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Running time

• The running time depends on the input: an  
already sorted sequence is easier to sort.

• Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

• Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.
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Kinds	of analyses
Worst-case: (usually)

• T(n) = maximum time of algorithm  
on any input of size n.

Average-case: (sometimes)
• T(n) = expected time of algorithm  

over all inputs of size n.
• Need assumption of statistical  

distribution of inputs.
Best-case: (bogus)

• Cheat with a slow algorithm that  
works fast on some input.
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Machine-independent time

What is insertion sort’s worst-case time?
• It depends on the speed of our computer:

• relative speed (on the same machine),
• absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”
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Q-notation

Math:
Q(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0 £ c1 g(n) £ f (n) £ c2 g(n)  
for all n ³ n0}

Engineering:
• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 =Q(n3)
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Asymptotic performance

n

T(n)

n0

• Real-world design  
situations often call for a  
careful balancing of  
engineering objectives.

• Asymptotic analysis is a  
useful tool to help to  
structure our thinking.

When n gets large enough, a Q(n2) algorithm
always beats a Q(n3) algorithm.

• We shouldn’t ignore  
asymptotically slower  
algorithms, however.
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Insertion	sort analysis
Worst case: Input reverse sorted.

n
T (n) =åQ( j) =Q(n2)

n

[arithmetic series]
j=2

Average case: All permutations equally likely.

T (n) =åQ( j / 2) =Q(n2)
j=2

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.
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Analysis


