Shortest Path Algorithms

Sourangshu Bhattacharya

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are *nonnegative*, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortestpath distances from *s* are known.
- 2. At each step add to *S* the vertex $v \in V S$ whose distance estimate from *s* is minimal.
- 3. Update the distance estimates of vertices adjacent to v.

Dijkstra's algorithm

 $d[s] \leftarrow 0$ for each $v \in V - \{s\}$ do $d[v] \leftarrow \infty$ $S \leftarrow \emptyset$ $Q \leftarrow V$ is a priority queue maintaining V - Swhile $Q \neq \emptyset$ **do** $u \leftarrow \text{Extract-Min}(Q)$ $S \leftarrow S \cup \{u\}$ for each $v \in Adi[u]$ **do if** d[v] > d[u] + w(u, v)then $d[v] \leftarrow d[u] + w(u, v)$

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)}$ = weight of a shortest path from *i* to *j* with intermediate vertices belonging to the set {1, 2, ..., k}.

Floyd-Warshall recurrence $c_{ij}^{(k)} = \min_{k} \{ c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \}$ $c_{kj}^{(k-1)}$ k $C_{ik}^{(k-1)}$ $C_{ij}^{(k-1)}$ intermediate vertices in $\{1, 2, \dots, k\}$

Pseudocode for Floyd-Warshall

```
for k \leftarrow 1 to n

do for i \leftarrow 1 to n

do for j \leftarrow 1 to n

do if c_{ij} > c_{ik} + c_{kj}

then c_{ij} \leftarrow c_{ik} + c_{kj} relaxation
```

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.