Shortest Path Algorithms

Sourangshu Bhattacharya

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.
If all edge weights $w(u, v)$ are nonnegative, all shortest-path weights must exist.
Idea: Greedy.

1. Maintain a set S of vertices whose shortestpath distances from s are known.
2. At each step add to S the vertex $v \in V-S$ whose distance estimate from s is minimal.
3. Update the distance estimates of vertices adjacent to v.

Dijkstra's algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$
$S \leftarrow \varnothing$
$Q \leftarrow V \quad \triangleright Q$ is a priority queue maintaining $V-S$
while $Q \neq \varnothing$
do $u \leftarrow$ Extract- $\operatorname{Min}(Q)$
$S \leftarrow S \cup\{u\}$
for each $v \in \operatorname{Adj}[u]$ do if $d[v]>d[u]+w(u, v)$
then $d[v] \leftarrow d[u]+w(u, v)$

All-pairs shortest paths

Input: Digraph $G=(V, E)$, where $V=\{1,2$, $\ldots, n\}$, with edge-weight function $w: E \rightarrow \mathrm{R}$. Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

Floyd-Warshall algorithm

Also dynamic programming, but faster!
Define $c_{i j}(k)=$ weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1,2, \ldots, k\}$.

Thus, $\delta(i, j)=c_{i j}{ }^{(n)}$. Also, $c_{i j}{ }^{(0)}=a_{i j}$.

Floyd-Warshall recurrence

$c_{i j}{ }^{(k)}=\min _{k}\left\{c_{i j}{ }^{(k-1)}, c_{i k}{ }^{(k-1)}+c_{k j}{ }^{(k-1)}\right\}$

intermediate vertices in $\{1,2, \ldots, k\}$

Pseudocode for FloydWarshall

for $k \leftarrow 1$ to n
do for $i \leftarrow 1$ to n
do for $j \leftarrow 1$ to n
do if $\left.c_{i j}>c_{i k}+c_{k j}, c_{k j}\right\}$ relaxation
Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta\left(n^{3}\right)$ time.
- Simple to code.
- Efficient in practice.

