
Shortest Path Algorithms

Sourangshu Bhattacharya

Single-source shortest paths
Problem. From a given source vertex s Î V, find
the shortest-path weights d(s, v) for all v Î V.
If all edge weights w(u, v) are nonnegative, all
shortest-path weights must exist.
IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v Î V – S

whose distance estimate from s is minimal.
3. Update the distance estimates of vertices

adjacent to v.

Dijkstra’s algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬¥
S ¬Æ
Q ¬ V ⊳Q is a priority queue maintaining V – S
while Q ¹Æ

do u ¬ EXTRACT-MIN(Q)
S ¬ S È {u}
for each v Î Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ¬ d[u] + w(u, v)

All-pairs shortest paths
Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E ® R.
Output: n ´ n matrix of shortest-path lengths
d(i, j) for all i, j Î V.

Floyd-Warshall algorithm

Also dynamic programming, but faster!

ijDefine c (k) = weight of a shortest path from i
to j with intermediate vertices
belonging to the set {1, 2, …, k}.

jjii £ kk £ kk £ kk £ kk

Thus, d(i, j) = c (n). Also, c (0)= a .
ij ij ij

Floyd-Warshall recurrence
(k) = min {c (k–1), c (k–1) + c (k–1)}cij k ij ik kj

k

L19.6

ii
c (k–1)

cik(k–1) (k–1)ckj

jj
ij

intermediate vertices in {1, 2, …, k}

Pseudocode for Floyd-
Warshall

for k ¬ 1 to n
do for i ¬ 1 to n

do for j ¬ 1 to n
do if cij > cik + ckj

then cij ¬ cik + ckj
relaxation

Notes:
• Okay to omit superscripts, since extra relaxations

can’t hurt.
• Runs in Q(n3) time.
• Simple to code.
• Efficient in practice.

