Shortest Path Algorithms

Sourangshu Bhattacharya



" .~ dingle-source shortest paths

\
_
wY o

Problem. From a given source vertex s € V, find
the shortest-path weights o(s, v) forall v € V.

If all edge weights w(u, v) are nonnegative, all
shortest-path weights must exist.

IDEA: Greedy.

1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step add to S the vertex v € /' —§

whose distance estimate from s 1s minimal.

3. Update the distance estimates of vertices
adjacent to .



""" Dijkstra’s algorithm
dls ] 0
for cachv € V— {s}
do d|v] <
SO
O« V =>() 1s a priority queue maintaining /" — S
while O =
do u < EXTRACT-MIN(Q)
S« Su{u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, v)
then d|v] < d[u] +w(u, v)



All-pairs shortest paths

Input: Digraph G = (V, E), where ' = {1, 2,
..., n}, with edge-weight function w : £ — R.

Output: n x n matrix of shortest-path lengths
o(i,j) foralli,j € V.



Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define ¢, (¥ = weight of a shortest path from i
to / with intermediate vertices
belonging to the set {1, 2, ..., k}.

D DD

Thus, 8(i, /) =c¢ . Also,c D=qa .
l l

J J Y



Floyd-Warshall recurrence

®K=min {c *D, ¢ "D+ G}
ij ko g ik ki

intermediate vertices 1n {1, 2, ..., &}

L19.6



Pseudocode for Floyd-
Warshall

for k< 1ton
dofori< 1 ton
do for; < | ton
doif c;;> c;+ ¢y

then c;; < ¢; + ¢

} relaxation

Notes:

» Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in O(7°) time.

 Simple to code.

» Efficient 1n practice.



