
Computing Lab - 1 (2021)
Tutorial on SAT Solvers
Sourav Das

Topics

● Introduction on SAT

● DIMACS Format

● Using the SAT Solver API’s

● Encoding a given problem in SAT.

Introduction to SAT

● In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a

conjunction of one or more clauses, where each clause is a disjunction of literals

● The input of the SAT Solvers are a set of clauses in CNF
● We need to model the problem with a set of literals, and express the constraints in terms of clauses made

from those literals.
● Tseytin Transformation takes an input of any arbitrary combinatorial logic circuit and produces a

Boolean formula in CNF, which can be solved by the SAT Solver

(¬x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

clauses

literals

DIMACS Format

● Each file starts with a header of the form “p cnf <no_of_variables> <no_of_clauses>”
● After that <no_of_clauses> lines follow stating each stating a clause
● Literals with positive polarity are marked with their corresponding index, whereas literals with

negative polarity are marked with their respective negative index. (For eg. x
15

 represented as 15
and ¬x

15
 represented as -15).

● The lines are terminated by 0
● Comment lines in the Dimacs format starts with c

Example format:

p cnf 3 3 //header
-1 2 0 // ¬x1 ∨ x2
-1 3 0 // ¬x1 ∨ x3
1 2 3 0 // x1 ∨ x3 ∨ x2

c This is a sample DIMACS Format File

(¬x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Tseytin Transformation

● It breaks the given formula into smaller sub-formulas at the cost of adding new variables.

● Consider the formula
○ 𝜙 := ((p ∨ q) ∧ r) → (¬s)

x
1

 ↔ (¬s)
x2 ↔ (p ∨ q)
x

3
 ↔ x

2
∧ r

x
4

 ↔ x
3

 → x
1

T(𝜙) = x
4
∧ (x

4
 ↔ x

3
 → x

1
) ∧ (x

3
 ↔ x

2
∧ r) ∧ (x2 ↔ (p ∨ q)) ∧ (x

1
 ↔ (¬s))

Tseytin Transformation : https://en.wikipedia.org/wiki/Tseytin_transformation

Using SAT Solver API’s

● You will be provided with a sample header file of “togasat” (Sat solver with C++ API)

● Using togasat in C++
○ Include togasat header file

○ Command to Initialise the SAT Solver

■ togasat::Solver solver;

○ Clause Formation is a vector<int> in C++

○ Command to add the clause in Solver

■ solver.addClause(clause);

○ Invoking the SAT Solver (Returns 0: SAT, 1; UNSAT; 2: UNKNOWN)

■ togasat::lbool status = solver.solve();

○ Finally getting the result

■ solver.printAnswer();

Togasat Github Link: https://github.com/togatoga/togasat

Encoding a given problem in SAT

● Suppose you are asked to sort 3 number using Boolean Satisfiability problem.

● Key Idea in using sat solvers is to represent the given problem in CNF using boolean variables.

● Add constraints to the SAT solvers to prune the search space

● How many variables do you require for this problem?
○ You have 3 numbers N

1
; N

2
; N

3
 and for sorting you need a permutation order of these numbers.

○ So the 3 numbers goes to 3 places say P
1

; P
2

; P
3

○ So we can say that the number N
1

 can be either in place P
1

; P
2

; or P
3

. Since this is a boolean satisfiability

problem we add 3 variables N
1

P
1

; N
1

P
2

; N
1

P
3

 , where N
x
P

y
 = 1 if N

x
 is placed in position P

y ;
0 otherwise.

○ So a total of 9 variables to start with.

Encoding a given problem in SAT

● What constraints do you think you need to add?
○ Each variable N

x
 must be placed in either of P

1
 ; P

2
 ; or P

3

■ (N
x
P

1
 ∨ N

x
P

2
 ∨ N

x
P

3
)

○ Each variable N
x
 must be placed in exactly one position only

■ N
x
P

1
 → ¬N

x
P

2
 ∧ ¬N

x
P

3
∧ (∀

y
 (y != x) ¬N

y
P

1
)

■ N
1

P
1

 → (¬N
1

P
2

 ∧ ¬N
1

P
3
∧ ¬N

2
P

1
 ∧ ¬N

3
P

1
)

● What more do you need to do?
○ Add constraints based on ordering i.e

■ (N
x
P

1
 ∧ N

y
P

2
) → N

x
LN

y
(where N

x
LN

y
is true if N

x
 <= N

y
 because we need a sorted list)

■ (N
x
P

2
 ∧ N

y
P

3
) → N

x
LN

y

■ So this results in 6 more variables for our problem (N
1

LN
2

 ; N
1

LN
3

; N
2

LN
1

; N
2

LN
3

; N
3

LN
1

; N
3

LN
2

)

■ Finally based on the input values we need to add the last 6 constraints by doing pairwise comparison.

Thank You.

