Computing Lab-1 (2021) Tutorial on SAT Solvers

Sourav Das

Topics

- Introduction on SAT
- DIMACS Format
- Using the SAT Solver API's
- Encoding a given problem in SAT.

Introduction to SAT

- In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where each clause is a disjunction of literals

- The input of the SAT Solvers are a set of clauses in CNF
- We need to model the problem with a set of literals, and express the constraints in terms of clauses made from those literals.
- Tseytin Transformation takes an input of any arbitrary combinatorial logic circuit and produces a Boolean formula in CNF, which can be solved by the SAT Solver

DIMACS Format

- Each file starts with a header of the form "p cnf <no_of_variables> <no_of_clauses>"
- After that <no_of_clauses> lines follow stating each stating a clause
- Literals with positive polarity are marked with their corresponding index, whereas literals with negative polarity are marked with their respective negative index. (For eg. x_{15} represented as 15 and $\neg x_{15}$ represented as -15).
- The lines are terminated by 0
- Comment lines in the Dimacs format starts with c

Example format:
pcnf 33 //header
$-120 / /-x_{1} V x_{2}$
-130
$1230 / / x_{1} V x_{3} V x_{2}$

$$
\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)
$$

c This is a sample DIMACS Format File

Tseytin Transformation

- It breaks the given formula into smaller sub-formulas at the cost of adding new variables.
- Consider the formula
- $\quad \phi:=((p \vee q) \wedge r) \rightarrow(\neg s)$

$$
\begin{aligned}
& \mathrm{x}_{1} \leftrightarrow(\neg \mathrm{~s}) \\
& \mathrm{x}_{2} \leftrightarrow(\mathrm{p} \vee \mathrm{q}) \\
& \mathrm{x}_{3} \leftrightarrow \mathrm{x}_{2} \wedge r \\
& \mathrm{x}_{4} \leftrightarrow \mathrm{x}_{3} \rightarrow \mathrm{x}_{1} \\
& \mathrm{~T}(\phi)=\mathrm{x}_{4} \wedge\left(\mathrm{x}_{4} \leftrightarrow \mathrm{x}_{3} \rightarrow \mathrm{x}_{1}\right) \wedge\left(\mathrm{x}_{3} \leftrightarrow \mathrm{x}_{2} \wedge \mathrm{r}\right) \wedge\left(\mathrm{x}_{2} \leftrightarrow(\mathrm{p} \vee \mathrm{q})\right) \wedge\left(\mathrm{x}_{1} \leftrightarrow(\neg \mathrm{~s})\right)
\end{aligned}
$$

Using SAT Solver API's

- You will be provided with a sample header file of "togasat" (Sat solver with C++ API)
- Using togasat in C++
- Include togasat header file
- Command to Initialise the SAT Solver
- togasat::Solver solver;
- Clause Formation is a vector<int> in C++
- Command to add the clause in Solver
- solver.addClause(clause);
- Invoking the SAT Solver (Returns 0: SAT, 1; UNSAT; 2: UNKNOWN)
- togasat::Ibool status = solver.solve();
- Finally getting the result
- solver.printAnswer();

Encoding a given problem in SAT

- Suppose you are asked to sort 3 number using Boolean Satisfiability problem.
- Key Idea in using sat solvers is to represent the given problem in CNF using boolean variables.
- Add constraints to the SAT solvers to prune the search space
- How many variables do you require for this problem?
- You have 3 numbers $\mathrm{N}_{1} ; \mathrm{N}_{2} ; \mathrm{N}_{3}$ and for sorting you need a permutation order of these numbers.
- So the 3 numbers goes to 3 places say $\mathrm{P}_{1} ; \mathrm{P}_{2} ; \mathrm{P}_{3}$
- So we can say that the number N_{1} can be either in place $\mathrm{P}_{1} ; \mathrm{P}_{2}$; or P_{3}. Since this is a boolean satisfiability problem we add 3 variables $N_{1} P_{1} ; N_{1} P_{2} ; N_{1} P_{3}$, where $N_{x} P_{y}=1$ if N_{x} is placed in position $\mathrm{P}_{\mathrm{y}} 0$ otherwise.
- So a total of 9 variables to start with.

Encoding a given problem in SAT

- What constraints do you think you need to add?
- Each variable N_{x} must be placed in either of $P_{1} ; P_{2}$; or P_{3}
- $\quad\left(N_{x} P_{1} \vee N_{x} P_{2} \vee N_{x} P_{3}\right)$
- Each variable N_{x} must be placed in exactly one position only
- $\quad N_{x} P_{1} \rightarrow \neg N_{x} P_{2} \wedge \neg N_{x} P_{3} \wedge\left(\forall_{y}(y!=x) \neg N_{y} P_{1}\right)$
- $\quad N_{1} P_{1} \rightarrow\left(\neg N_{1} P_{2} \wedge \neg N_{1} P_{3} \wedge \neg N_{2} P_{1} \wedge \neg N_{3} P_{1}\right)$
- What more do you need to do?
- Add constraints based on ordering i.e
- $\quad\left(N_{x} P_{1} \wedge N_{y} P_{2}\right) \rightarrow N_{x} L N_{y}$ (where $N_{x} L N_{y}$ is true if $N_{x}<=N_{y}$ because we need a sorted list)
- $\quad\left(N_{x} P_{2} \wedge N_{y} P_{3}\right) \rightarrow N_{x} L N_{y}$
- So this results in 6 more variables for our problem ($\left.N_{1} \mathrm{LN}_{2} ; N_{1} \mathrm{LN}_{3} ; N_{2} \mathrm{LN}_{1} ; \mathrm{N}_{2} \mathrm{LN}_{3} ; \mathrm{N}_{3} \mathrm{LN} N_{1} ; \mathrm{N}_{3} \mathrm{LN} N_{2}\right)$
- Finally based on the input values we need to add the last 6 constraints by doing pairwise comparison.

Thank You.

