Computing Lab 1.
Threads

Sourangshu Bhattacharya

What are threads ?

- Wikipedia: A thread of execution Is the smallest
sequence of programmed instructions that can be

managed Independently by a scheduler, which is
typically a part of the operating system.

» “Processes within processes’

- “Lightweight processes”

Process vs Thread

a single-threaded process = resource + execution
a multi-threaded process = resource + executions

Process 1 Process 1 Process 1 Process

\ | | |

|

1IN

Thread

Kernel {

space Kernel Kernel

(a) (b)

- A process =a unit of resource ownership, used to group resources
together

- Athread = a unit of scheduling, scheduled for execution onthe
CPU.

Process vs Thread

Threads share resources Processes share devices
Memory space CPU, disk,
File pointers memory, printers
Threads own Processes Own
Program counter Threads +
Registers Memory space
Stack File pointers

- All threads of a process have same user.
Hence no protection among threads.

Multi-threaded web server

Web server process

| ' I
Dispatcher thread
- > —‘ l Worker thread it
2 } 2 2 sL;J)zce
Web page cache
Kernel
Kernel } space
Network
connection
while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page))

read_page _from_disk(&buf, &page);
return_page(&page);

(a) (b)

Multi-threaded editor

£ A - Dbt

| e e o o= — dhed

lllllll b

lllllll Bt

IIIIIII) - —

lllllll - —
I - e
o= Kernel

Keyboard

L

Disk

Advantages of multi-threading

- Parallelisation: Use multiple cores / cpus. e.g.
multithreaded matrix multiplication.

- Responsiveness: Longer running tasks can be runin a

worker thread. The main thread remains responsive e.g.
editor.

- Cheaper: Less resource intensive than processes both
memory and time.

- Simpler sharing: IPC harder and more time consuming.

- Better system utilisation: jobs finish faster.

Each thread has own stack

. Stores data local to function. Can take advantage of
functions, recursion, etc.

- Stack Is destroyed when the thread exits.

Thread 2

1

Thread 1 Thriad 3
\

Wm// Process
Thread 1's >a E E - Thread 3's stack
stack \—/

Kernel

Thread implementation

User-level threads Kernel-level threads

Process Thread Process Thread

__/

\ _/
r \ \
- @ @ @
space <

-
Kernel { ; I K I
space erne erne
P % / A

/ X 7 |
Run-time Thread Process Process Thread
system table table table table

User-level threads

Advantages:

No dependency on OS - uniformbehaviour.
Application specificthread scheduling.

Simple and fast - creation, switching, etc.
Disadvantages:

* Entire process getsone time schedule.

* Entire process gets blocked if one thread is blocked -
requires non-blocking system calls.

* Page fault in one thread can cause blocking, even though
data for other threads are in memory.

Examples: POSIX Threads, Java threads, etc.

Kernel-level threads

. Kernel schedules threads independently - all above

disadvantages are gone.

Overhead: more information per thread needsto be stored.
Context switch is also slower.

Complexity: Kernel becomes more complex.Needs to handle
thread scheduling, etc.

Examples: Solaris, Windows NT.

Implementations are possible !!

LINnuX

corresponding LWPs in the kernel

#include <stdio.h>
#include <syscall.h>
#include <pthread.h>

int main()

{
pthread t tid = pthread self();
int sid = syscall (SYS gettid);
printf ("LWP id is %dn", sid);
printf ("POSIX thread id is %dn",
return O;

tid) ;

UID

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

:~% ps -e
PID

For a set of user threads created in a user process, there is a set of

:~/0s2018fall/code/4_thread/lwp1$./lwp1
LWP id is 20420
POSIX thread id is 0

fL
PPID

1

co~NOY BN

w

11
12
13
14
15
16
18
761
761
761
761
761
761
761
761

NN NN NNNNNNNNNNOO

-l ed wd e e o A

LWP C NLWP STIME
110 1 Pct13
2|0 1 Pct13
410 1 Pct13
6|0 1 Pct13
710 1 Pct13
8|10 1 Pct13
910 1 Pct13

100 1 Pct13
1110 1 Pct13
1210 1 Pct13
13| 0 1 Pct13
1410 1 Pct13
1510 1 Pct13
16| 0 1 Pct13
18| 0 1 Pct13

761 | O 8 Dct13

806 | O 8 Pct13

807 | O 8 Dct13

808 | © 8 Dcti13

822 |0 8 Pct13

823 |0 8 Pct13

824 | 0 8 Pct13

1293 0 8 Pct13

s e e e S)-Q'\)-\)-\J-Q-Q'Q-Q'Q-\J-Q-Q-Q-Q-Qa

TIME CMD
00:00:05 /sbin/init text
00:00:00 [kthreadd]
00:00:00 [kworker/0:0H]
00:00:00 [mm_percpu_wq]
00:00:00 [ksoftirqd/0]
00:00:02 [rcu_sched]
00:00:00 [rcu_bh]
00:00:00 [migration/0]
00:00:00 [watchdog/0]
00:00:00 [cpuhp/0]
00:00:00 [cpuhp/1]
00:00:00 [watchdog/1]
00:00:00 [migration/1]
00:00:00 [ksoftirqd/1]
00:00:00 [kworker/1:0H]
00:00:00 /usr/lib/snapd/snapd
00:00:00 /usr/lib/snapd/snapd
00:00:00 /usr/lib/snapd/snapd
00:00:00 /usr/lib/snapd/snapd
00:00:01 /usr/lib/snapd/snapd
00:00:00 /usr/lib/snapd/snapd
00:00:00 /usr/lib/snapd/snapd
00:00:00 /usr/lib/snapd/snapd

NAME top

LI n ux clone, _ clone2 - create a child process

SYNOPSIS top

/* Prototype for the glibc wrapper function */

#define _GNU_SOURCE
$#include <sched.h>

int clone (int(Xfn) (void *), void *child stack,
int flags, void *arg, ...

/* pid_t *ptid, void *newtls, pid_t *ctid */);

/* For the prototype of the raw system call, see NOTES */

DESCRIPTION top

clone() creates a new process, in a manner similar to fork(2).
This page describes both the glibc clone() wrapper function and the
underlying system call on which it is based. The main text describes

the wrapper function; the differences for the raw system call are
described toward the end of this page.

Unlike fork(2), clone() allows the child process to share parts of

its execution context with the carrin__g-h__crt_l g _process, such as the virtua
address space, the table of file descriptors, and the table of signal
T TN (o T TR T BT R b T R T LAl i
corresponas to "parent process". But see the description of
CLONE_PARENT below.)

One use of clone‘z is to imglement threads: multisle flows of control
in_a program that run concurrent y in a shared address space.

POSIX Threads

IEEE 1003.1 c: The standard for writing portable threaded programs. The
threads package it defines is called Pthreads, including over 60 function
calls, supported by most UNIX systems.

Some functions:

Thread call Description

pthread create Create a new thread

pthread exit Terminate the calling thread

pthread join Wait for a specific thread to exit

pthread yield Release the CPU to let another
thread run

pthread attr init Create and initialize a thread’s at-
tribute structure

pthread attr destroy | Remove a thread’s attribute
structure

Typical structure

main()
pthread
create(func) func()
pthread
join(id
join(id) pthread

‘ exit()

Thread creation

Types: pthread t —type of a thread

Some calls:

int pthread create(pthread t *thread,
const pthread attr t *attr,
void * (*start routine) (void *),
vold *arqg);

int pthread join(pthread t thread, wvoid **status);

1nt pthread detach(();

volid pthread exit();

No explicit parent/child model, except main thread holds process info
Call pthread exit in main, don’t just fall through;

Most likely you wouldn’t need pthread join
status = exit value returned by joinable thread

Detached threads are those which cannot be joined (can also set this at
creation)

POSIX Threads Example

Pthread Creation and Termination Example

#include <pthread.h>
$#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)

{
long tid;
tid = (long)threadid;
printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit (NULL);
}
int main (int argc, char *argv([])
{
pthread_t threads[NUM _THREADS];
int rc;
long t;

for(t=0; t<NUM_THREADS; t++){
printf("In main: creating thread %1ld\n", t);
rc = pthread create(&threads[t], NULL, PrintHello, (void *)t);

if (rc){
printf ("ERROR; return code from pthread create() is %d\n", rc);
exit(-1);

}

pthread_exit (NULL);

POSIX Threads Example

Output:

In main:
In main:

Hello World!

In main:

Hello World!
Hello World!

In main:
In main:

Hello World!
Hello World!

creating
creating
It's
creating
It's
It's
creating
creating
It's
It's

thread O
thread 1
me, thread
thread 2
me, thread
me, thread
thread 3
thread 4
me, thread
me, thread

#0 !
#1!
#2!

#3 !
#4!

Pthread Mutex

Type: pthread mutex t

int pthread mutex init (pthread mutex t *mutex,
const pthread mutexattr t *attr);
int pthread mutex destroy(pthread mutex t *mutex);
int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);

Attributes: for shared mutexes/condition vars among processes,
for priority inheritance, etc.
use defaults

Important. Mutex scope must be visible to all threads!

Pthread Mutex

Using Mutexes Example

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

typedef struct

{
double *a:
double *b:
double sum;
int veclen;
} DOTDATA;

#define NUMTHRDS 4

#define VECLEN 100
DOTDATA dotstr;
pthread t callThd[NUMTHRDS];
pthread mutex_ t mutexsum;

void *dotprod(void *argqg)

Pthread Mutex

int i, start, end, len
long offset;

double mysum, *x, *y;
offset = (long)arg;

len = dotstr.veclen;
start = offset*len;
end = start + len;
Xx = dotstr.a;
vy = dotstr.b;

mysum = 0;
for (i=start; i<end ;

{

r

it++)

mysum += (x[i] * y[i]);

}

pthread mutex_ lock (&mutexsum);

dotstr.sum += mysum;

pthread mutex_unlock (&mutexsum);

pthread exit((void*) 0);

Pthread Mutex

int main (int argc, char *argv[])
{

long 1i;

double *a, *b;

void *status;

pthread_ attr t attr;

(double*) malloc (NUMTHRDS*VECLEN*sizeof (double));

a
b (double*) malloc (NUMTHRDS*VECLEN*sizeof (double));

for (i=0; i<VECLEN*NUMTHRDS; i++)
{
a[i]=1.0;
b[i]=a[i];
}

dotstr.veclen = VECLEN;
dotstr.a = a;
dotstr.b = b;
dotstr.sum=0;

pthread_mutex_init(&mutexsum, NULL);

pthread_attr_init(&attr);
pthread attr setdetachstate(&attr, PTHREAD CREATE JOINABLE) ;

Pthread Mutex

for(i=0; i<NUMTHRDS; i++)

{

[*

Each thread works on a different set of data. The offset is specified
by 'i'. The size of the data for each thread is indicated by VECLEN.
* [

pthread create(&callThd[i], &attr, dotpreod, (void *)i);

}

pthread_attr_destroy(&attr);

/* Wait on the other threads */
for(i=0; i<NUMTHRDS; i++)

{

pthread join(callThd[i], &status);

}

/* After joining, print out the results and cleanup */
printf ("Sum = %f \n", dotstr.sum);

free (a);

free (b);

pthread mutex_destroy(&mutexsum);

pthread exit (NULL);

Condition variables

« Used for condition - based synchronization between threads.

 Example: new data is available for a thread to compute.

Type pthread cond t

int pthread cond 1init(pthread cond t *cond,
const pthread condattr t *attr);
int pthread cond destroy(pthread cond t *cond);
int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
int pthread cond singal (pthread cond t *cond);
int pthread cond broadcast (pthread cond t *cond);

Condition variables

« pthread cond _init (condition,attr)
Initialize condition variable.

« pthread _cond_destroy (condition)
Destroy condition variable.

« pthread cond_ wait (condition,mutex)
Wait on condition variable.

« pthread cond_signal (condition)
Wake up a random thread waiting on condition variable.

« pthread cond broadcast (condition)
Wake up all threads waliting on condition variable.

Pthread Sync Example

* This simple example code demonstrates the use of several Pthread condition
variable routines.

 The main routine creates three threads.

 Two of the threads perform work and update a "count" variable.

* The third thread waits until the count variable reaches a specified value

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define NUM THREADS 3
#define TCOUNT 10
#define COUNT LIMIT 12

int count = 0;

int thread ids[3] = {0,1,2};
pthread mutex t count mutex;
pthread cond t count threshold cv;

Pthread Sync Example

int main (int argc, char *argv[])
{
int i, rc;
long tl=1, t2=2, t3=3;
pthread t threads[3];
pthread attr t attr;

/* Initialize mutex and condition variable objects */
pthread mutex init(&count mutex, NULL);
pthread cond init (&count_ threshold cv, NULL);

/* For portability, explicitly create threads in a joinable state */
pthread attr init(&attr);

pthread attr setdetachstate(&attr, PTHREAD CREATE JOINABLE);

pthread create(&threads([0], &attr, watch count, (void *)tl);

pthread create(&threads[1l], &attr, inc count, (void *)t2);

pthread create(&threads[2], &attr, inc count, (void *)t3);

/* Wait for all threads to complete */
for (i=0; i<NUM _THREADS; i++) {
pthread join(threads[i], NULL);

}
printf ("Main(): Waited on %d threads. Done.\n", NUM THREADS);

/* Clean up and exit */
pthread attr destroy(&attr);

pthread mutex destroy(&count mutex);
pthread cond destroy(&count threshold cv);
pthread exit(NULL);

Pthread Sync Example

void *inc count(void *t)
{

nt A

long my id = (long)t;

for (1i=0; i<TCOUNT; i++) {
pthread mutex lock(&count mutex);
count++;

/ *
Check the value of count and signal waiting thread when condition is
reached. Note that this occurs while mutex is locked.
*/
if (count == COUNT LIMIT) {
pthread cond signal(&count threshold cv);
printf("inc count(): thread %1d, count = $d Threshold reached.\n",
my id, count);
}

printf("inc count(): thread %1d, count = %d, unlocking mutex\n",
my id, count);
pthread mutex unlock(&count mutex);

/* Do some "work" so threads can alternate on mutex lock */
sleep(1l);

}
pthread exit (NULL);

}

Pthread Sync Example

void *watch count(void *t)

{

long my id = (long)t;
printf("Starting watch count(): thread %$1d\n", my id);

/%
Lock mutex and wait for signal. Note that the pthread cond wait
routine will automatically and atomlcally unlock mutex while it waits.
Also, note that if COUNT LIMIT is reached before this routine is run by
the waiting thread, the loop will be skipped to prevent pthread cond wait
from never returning.
*/
pthread mutex lock(&count mutex);
while (count<COUNT LIMIT) {
pthread cond wait(&count threshold cv, &count mutex);
printf("watch count(): thread %1d Condition signal received.\n", my id);
count += 125;
printf("watch count(): thread %1ld count now = %d.\n", my id, count);
}
pthread mutex unlock(&count mutex);
pthread exit(NULL);

