
Computing Lab 1:

Threads

Sourangshu Bhattacharya

What are threads ?

• Wikipedia: A thread of execution is the smallest

sequence of programmed instructions that can be

managed independently by a scheduler, which is

typically a part of the operating system.

• “Processes within processes”

• “Lightweight processes”

Process vs Thread
a single-threaded process = resource + execution

a multi-threaded process = resource + executions

• A process =a unit of resource ownership, used to group resources

together

• A thread = a unit of scheduling, scheduled for execution on the

CPU.

Process vs Thread
Threads share resources

Memory space

File pointers

…

Processes share devices

CPU, disk,

memory, printers

…

Threads own

Program counter

Registers

Stack

…

Processes Own

Threads +

Memory space

File pointers

…

• All threads of a process have same user.

Hence no protection among threads.

Multi-threaded web server

Multi-threaded editor

Advantages of multi-threading

• Parallelisation: Use multiple cores / cpus. e.g.

multithreaded matrix multiplication.

• Responsiveness: Longer running tasks can be run in a

worker thread. The main thread remains responsive e.g.

editor.

• Cheaper: Less resource intensive than processes both

memory and time.

• Simpler sharing: IPC harder and more time consuming.

• Better system utilisation: jobs finish faster.

Each thread has own stack

•

•

Stores data local to function. Can take advantage of

functions, recursion, etc.

Stack is destroyed when the thread exits.

Thread implementation

User-level threads Kernel-level threads

User-level threads
Advantages:

★ No dependency on OS - uniformbehaviour.

★ Application specific thread scheduling.

★Simple and fast - creation, switching, etc.

Disadvantages:

★ Entire process getsone time schedule.

★ Entire process gets blocked if one thread is blocked -

requires non-blocking system calls.

★ Page fault in one thread can cause blocking, even though

data for other threads are in memory.

Examples: POSIX Threads, Java threads, etc.

Kernel-level threads

Advantage: Kernel schedules threads independently - all above

disadvantages are gone.

Disadvantages:

★ Overhead: more information per thread needsto be stored.

Context switch is also slower.

★ Complexity: Kernel becomes more complex.Needs to handle

thread scheduling, etc.

Examples: Solaris, Windows NT.

Hybrid implementations are possible !!

Linux

Linux

POSIX Threads
•

IEEE 1003.1 c: The standard for writing portable threaded programs. The

threads package it defines is called Pthreads, including over 60 function

calls, supported by most UNIX systems.

Some functions:

Typical structure

main()

pthread_

create(func) func()

pthread_

join(id)
pthread_

exit()

Thread creation

Types: pthread_t – type of a thread

Some calls:
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void * (*start_routine)(void *),
void *arg);

int pthread_join(pthread_t thread, void **status);
int pthread_detach();
void pthread_exit();

No explicit parent/child model, except main thread holds process info
Call pthread_exit in main, don’t just fall through;
Most likely you wouldn’t need pthread_join

status = exit value returned by joinable thread
Detached threads are those which cannot be joined (can also set this at
creation)

POSIX Threads Example

POSIX Threads Example

Output:

In main: creating thread 0

In main: creating thread 1

Hello World! It's me, thread #0!

In main: creating thread 2

Hello World! It's me, thread #1!

Hello World! It's me, thread #2!

In main: creating thread 3

In main: creating thread 4

Hello World! It's me, thread #3!

Hello World! It's me, thread #4!

Pthread Mutex

Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Attributes: for shared mutexes/condition vars among processes,
for priority inheritance, etc.

use defaults

Important: Mutex scope must be visible to all threads!

Pthread Mutex

Pthread Mutex

Pthread Mutex

Pthread Mutex

Condition variables

• Used for condition - based synchronization between threads.

• Example: new data is available for a thread to compute.

Type pthread_cond_t

int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_singal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

Condition variables

• pthread_cond_init (condition,attr)

Initialize condition variable.

• pthread_cond_destroy (condition)

Destroy condition variable.

• pthread_cond_wait (condition,mutex)

Wait on condition variable.

• pthread_cond_signal (condition)

Wake up a random thread waiting on condition variable.

• pthread_cond_broadcast (condition)

Wake up all threads waiting on condition variable.

Pthread Sync Example

• This simple example code demonstrates the use of several Pthread condition
variable routines.

• The main routine creates three threads.
• Two of the threads perform work and update a "count" variable.
• The third thread waits until the count variable reaches a specified value

Pthread Sync Example

Pthread Sync Example

Pthread Sync Example

