
i

106 CONCURRENT PROCESSES Chap. 3

to point out that the arguments made earlier in favor of the language
construct for simple critical regions can also be made for message buffers.

In Section 3.4.1, we found that a system consisting of processes
connected only by buffers can be made functional as a whole. But this is
only true if the send and receive operations are implemented correctly and
if they are the only operations on the buffers. A compiler is unable to
recognize the data structure B in Algorithm 3.6 as a message buffer and
check that it is used correctly. So when message buffers are used
frequently, it may well be worth including them as a primitive concept in a
programming language.

We now proceed to the next problem, which is due to Courtois,
Heymans, and Parnas (1971).

3.4.5. An Example: Readers and Writers

Problem Definition

Two kinds of concurrent processes, called readers and writers, share a
single resource. The readers can use the resource simultaneously, but each
writer must have exclusive access to it. When a writer is ready to use the
resource, it should be enabled to do so as soon as possible.

The first step is to introduce a terminology which enables us to talk
about the problem in a meaningful manner. A process must declare its wish
to use the resource, and, since the resource may be occupied at that
moment , the process must then be prepared to wait for it. A process must
also indicate when it has completed its use of the resource.

So any solution to this kind of resource allocation problem must be of
the following nature:

request resource;
use resource;
release resource;

All processes must go through such a sequence of events, and I would
expect the solution to be symmetrical with respect to the readers and
writers. To simplify matters, I will start by solving a simpler problem in
which I do not bother to ensure that the writers exclude one another, but
only that they exclude all readers, and vice versa. They are thus more
symmetrical with the readers.

A process is called active from the moment it has requested the
resource until it has released the resource again. A process is called running
from the moment it has been granted permission to use the resource until it
has released the resource again.

Sec. 3.4.

The state of the
initialized to zero:

a r

1T

a w

r w

Correctness Criteria

PROCESS COOPERATION 107

system can be characterized by four integers, all

the number of active readers
the number of running readers
the number of active writers
the number of running writers

A solution to the simplified problem is correct if the following criteria
are satisfied:

(1) Scheduling o f waiting processes: Readers can use the resource
simultaneously and so can writers, but the number of running processes
cannot exceed the number of active processes:

O ~ rr ~ ar & O ~ rw ~ aw

This invariant will be called W.

(2) Mutual exclusion of running processes: Readers and writers cannot
use the resource at the same time:

n o t (r r > 0 & r w > O)

This invariant will be called X.

(3) No deadlock o f active processes: When no processes are running,
active processes can start using the resource within a finite time:

(rr = 0 & rw = O) & (ar > 0 or aw > O) implies

(IT > 0 or rw > O) within a finite time

(4) Writers have priority over readers: The requirement of mutual
exclusion means that the resource can only be granted to an active writer
when there are no running readers (rr = 0). To give priority to writers, we
make the slightly stronger condition that the resource can only be granted
to an active reader when there are no active writers (aw = 0).

Solution With Semaphores

This time we will solve the problem first by means of simple critical
regions and semaphores. Two semaphores, called reading and writing,

108 CONCUR RENT PROCESSES Chap. 3

enable the readers and writers to wait for the resource. They are both
initialized to zero. The solution is Algorithm 3.8.

ALGORITHM 3.8 The Readers and Writers Problem Solved With Semaphores

type T = record ar, rr, a w , rw: in teger end

vat v: shared T; reading, wr i t ing: s e m a p h o r e ;

"Initially ar = rr = a w = rw = reading = w r i t i ng = 0 "

cobegin
begin " r e a d e r "

region v do
begin

ar:= ar + 1;
gran t reading(v , reading);

end
wai t (read ing) ;

read;

region v do
begin

rr: = rr - I ;
ar:= ar - 1;
gran t wr i t ing (v , wr i t ing) ;

end
. ° •

end

beg in " w r i t e r "

region v do
begin

aw:= a w + 1;
gran t wr i t ing (v , wr i t ing) ;

end
wai t (wr i t i ng) ;

wr i t e ;

region v do
begin

rw:= rw - 1;
aw: = a w - 1;
gran t reading(v , reading);

e n d
. . .

end
. . .

coend

Sec. 3.4. PROCESS COOPERATION 109

A reader indicates that it is active by increasing ar by one. It then calls a
procedure, grant reading, which examines whether the resource can be
granted for reading immediately. Then the reader waits until it can use the
resource. Finally, it leaves the running and active states by decreasing rr and
ar by one and calls another procedure, grant writing, which determines
whether the resource should now be granted to the writers. The behavior of
a writer is quite symmetrical.

The scheduling procedures, grant reading and grant writing, are defined
by Algorithm 3.9.

ALGORITHM 3.9 The Readers and Writers Problem (cont.)

p r o c e d u r e grant reading(var v: T; reading: semaphore);
begin

with v do
i f a w = 0 t h e n
while rr < ar do
begin

rr:= rr + 1;
signal(reading);

end
end

procedure grant writing(var v: T; writing: semaphore);
begin

with v do
if rr = 0 t h e n
while rw < aw do
begin

rw:= rw + 1;
signal(writing);

end
end

The resource can be granted to all active readers (rr = ar) provided no
writers are active (aw = 0). And it can be granted to all active writers
(rw = aw) provided no readers are running (rr = 0).

I will now outline a correctness proof of this solution. The arguments
are explained informally to make them easy to understand, but a purist will
not find it difficult to restate them formally as assertions directly in the
program text.

Let us first verify that the components of variable v have the meaning
intended. Since ar and aw are increased by one for each request and
decreased by one for each release made by readers and writers, respectively,
we immediately conclude that they have the following meanings:

!

110 CONCURRENT PROCESSES Chap. 3

ar = n u m b e r o f act ive readers

aw = n u m b e r o f act ive wri ters

It is a little more difficult to see the meanings of the variables rr and rw.
Consider for example rr: It is increased by one for each signal on the
semaphore reading and decreased by one for each release made by a reader,
SO:

rr = n u m b e r o f signals(reading) - n u m b e r o f releases made by readers

From the program structure, it is also clear that the running readers are
those which have been enabled to complete a wai t on the semaphore
reading minus those which have released the resource again. So

n u m b e r o f running readers =

n u m b e r o f readers which can or has passed wait(reading) -

n u m b e r o f releases m a d e by readers

The semaphore invariant ensures that

n u m b e r o f readers which can or has passed wait(reading) =

n u m b e r o f signals(reading)

So we finally conclude that

rr = n u m b e r o f running readers

and similarly for writers that

rw = n u m b e r o f running writers

Consider now correctness criteria 1 and 2. We assume that the
assertions W and X hold immediately before a request by a reader. This is
trivially true after initialization when

0 = r r = a r & O = rw = aw

The increase of ar by one inside a request does not change the validity of W
and X, so we have:

"reader r e q u e s t "
region v do
begin "W & X "

ar:= ar + 1; (con t.)

Sec. 3.4. PROCESS COOPERATION 111

"W & X "
g r a n t r ead ing (v , read ing) ;

end

The proeedure g r a n t r ead ing either does nothing (when a w ~ 0 or rr =

ar) , in which ease W and X stin hold, or it increases the number of running
readers by one until

O < r r = a r & O = r w = a w

holds. This implies that W and X still hold:

? impfies W & X

Consider now a reader release. A release is only made by a running
process, so we have rr > 0 immediately before. Assuming that W and X
also hold initially, we have

" r e a d e r r e l e a s e "
region v d o
begin " W & X & rr > 0 "

rr: = rr - 1;
ar:= ar - 1;
,,??,,

g r a n t w r i t i n g (v , w r i t i n g) ;
,,???,,

end

Now W & X & rr > 0 is equivalent to 0 < rr ~ ar & 0 = r w ~ a w so

?? =- 0 ~< rr ~< ar & O = r w ~< a w

which in turn implies W & X.
The procedure g r a n t w r i t i n g either does nothing (when rr =/= 0 or r w =

a w) , in which case W and X still hold, or it increases the number of running
writers by one until

O=rr~< a r & O < r w = a w

holds. This implies that W and X still hold:

??? implies W & X

By similar arguments, you can show that the invariance of W and X is
maintained by a writer request and release.

