Dept. of Computer Science and Engineering,
CS69011: Computing Lab 1

Assignment 4
Maximum Marks: 30

In this assignment, we will solve some real-world problems using

Linear Programming (https://en.wikipedia.org/wiki/Linear programming) and

Integer Programming (https://en.wikipedia.org/wiki/Integer programming).
We are going to wuse the opensource library GLPK (GNU Linear Programming Kit,

https://www.gnu.org/software/glpk/) for solving the optimization problem.

In this assignment we are going to solve the

Optimal Transport problem (https://en.wikipedia.org/wiki/Transportation theory (mathematics)) and
Facility location problem (https://en.wikipedia.org/wiki/Facility location problem).

Task 1

Consider that an army has located its units in n locations and has to supply soldiers to m battlegrounds. The cost
of supplying one soldier to from unit i to battleground j, is ¢;;. Also, there is a demand of at least d; soldiers in
battleground j, and there is an upper bound of u; on the total number of soldiers who can be accommodated at
unit location i. The task is to find the optimal fraction of demand for soldiers d; to be met by the unit location i,
denoted as x;;. This can be obtained by solvmg the linear program:

minzz Cij * dj * x;j
Xi]

i=1 j=1

sub.to.z dix;j <u; Vi=1,.
j=1

n
z xij21 V]=1,,m
i=1

€ [0,1] Vi,j
Here, the objective function measures total cost of transporting all soldiers. Note that, d; * x;; are the number of
soldiers supplied from location i to battleground j. The first set of constraints ensures that not more than u;
soldiers are supplied from location i, and the second set of constraints ensure that at least d; soldiers are supplied

to battleground j.

Input:

The input file format is:

<value of n> <value of m>

<vector of u; (n numbers in one line)>

<vector of d; (m numbers in one line)>

<first row of cost matrix ¢;; (m numbers in one line)>

<last (nth) row of cost matrix ¢;; (m numbers in one line)>

Output:
Print input data: values of n and m, u vector, d vector, and ¢ matrix.

Print the matrix of optimal allocation of soldiers from unit location I to battleground j: d; * x;;



Task 2:

Consider the problem of locating army units in at most n locations (facility points) for servicing the needs of
mbattle grounds (demand points). Each facility point i has a cost of ¢;; of supplying the demand point j, this
could be the cost of transporting one soldier to from unit location i to battleground j. Each battleground j has a
demand for d; soldiers, assumed to be known. Moreover, each facility i has an initial fixed cost of f; of setting
up, and an upper bound u; on the demand for number of soldiers which can be accommodated. Let us say we
want to open k of the n facilities. The problem is to find out the optimal fraction x;; of the soldiers d; which will
be supplied by facility location i to battleground j. Additionally, we must find out which of the n locations should
be used to set up unit facilities, maximum number of them being k. This can be solved using a mixed integer
linear programming problem. Let y; be a binary integer variable denoting whether facility location i should be
opened (y; = 1) or not (y; = 0). The optimization problem becomes:

n m

n
minZZcU * dj X +Zfi * Y,
Xij 4 .

=1

m
sub.to.z' 1djxl-j <wy; Vi=1,..,n

n
Z. xij21 V]=1,,m

i=1
n
Zyi <k
i=1
xij € [0,1] Vl,]

Here, the objective function measures total cost of transporting all soldiers (first term) and the total setup cost of

all open facilities (second term). Note that, d; * x;; are the number of soldiers supplied from location i to
battleground j. If location i is not open (y; = 0) the upper bound is 0, otherwise it is u;. The first set of constraints
ensures that not more than u; soldiers are supplied from location i, and the second set of constraints ensure that
at least d; soldiers are supplied to battleground j. Here, y; are integral binary variables.

Input:

The input file format is:

<value of n> <value of m>

<vector of u; (n numbers in one line)>

<vector of f; (n numbers in one line)>

<vector of d; (m numbers in one line)>

<first row of cost matrix ¢;; (m numbers in one line)>

<last (nth) row of cost matrix ¢;; (m numbers in one line)>

Output:

Print input data: values of n and m, u vector, f vector, d vector, and ¢ matrix.

Print the list of opened facilities: y vector.

Print the matrix of optimal allocation of soldiers from unit location I to battleground j: d; * x;;

GLPK Guide:



Get yourself introduced to the GLPK API. If you want to install it in your personal machine (like laptop), you
need to download the package from the standard repositories (http://ftp.gnu.org/gnu/glpk/) and compiling it from
source. For Ubuntu, pre-built binaries can be installed using:

$ sudo apt install glpk-utils libglpk-dev glpk-doc

Read the user’s manual from (https://cse.iitkgp.ac.in/~abhij/course/lab/CompLab-I/Autumn 19/glpk.pdf). Include
the following directive in your program.

#include <glpk.h>

Compile your code with the following flags.

gcc -Wall glpkdemo.c -1lglpk -1m

GLPK supports both real-valued linear programming and mixed-integer optimization. The basic API calls

are glp simplexand glp intopt. The integer optimizer needs an initial solution. You can start with the
output of the simplex solver.




