
Tutorial 6: Traffic Light Control Using TraCI

Prof. Sangyoung Park

Module ”Vehicle-2-X: Communication and Control“

Traffic Light Control Using TraCI

▪ Let’s make two circular roads with two intersections

▪ And traffic lights will be automatically generated at the intersections

Page 2

Let’s Add Traffic Lights in a Road Network

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

▪ But be careful, you shouldn’t just cross two sections of road using edge

▪ It will look like an intersection, but it’s not

▪ You connect the edges to the intersection explicitly, then it will look like

the figure below

Page 3

Let’s Add Traffic Lights in a Road Network

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

▪ We would make two traffic flows each going in respective circles using

reroute

▪ Not all details are given, please recall the past tutorials

Page 4

Let’s make traffic flows

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

<routes>

<vType id="car" type="passenger" length="5" accel="3.5" decel="2.2" emergencyDecel="5" sigma="0" maxSpeed="28"/>

<flow id="carflow1" type="car" beg="0" end="0" number="1000" from="edge1" to="edge2"/>

<flow id="carflow2" type="car" beg="0" end="0" number="1000" from="edge3" to="edge4"/>

</routes>

<additionals>

<rerouter id="rerouter_0" edges="edge1">

<interval end="1e9">

<destProbReroute id="edge2"/>

</interval>

</rerouter>

<rerouter id="rerouter_1" edges="edge2">

<interval end="1e9">

<destProbReroute id="edge1"/>

</interval>

</rerouter>

<rerouter id="rerouter_2" edges="edge3">

<interval end="1e9">

<destProbReroute id="edge4"/>

</interval>

</rerouter>

<rerouter id="rerouter_3" edges="edge4">

<interval end="1e9">

<destProbReroute id="edge3"/>

</interval>

</rerouter>

</additionals>

▪ Modify your sumocfg file accordingly, and then run your simulation

▪ There is traffic light, but no signal control program

▪ So…. Traffic accumulates in one direction

Page 5

What happens if we run simulation?

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

Page 6

Generate Traffic Light Control

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

▪ Edit -> Traffic Light -> Click on junction

▪ Click create TLS and you will see default program generated

▪ What does “rrrGGgrrrGGg” mean?

▪ When you click on the phases, you signals will be highlighted on the

junctions

Page 7

Let‘s Run Simulation Again

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

▪ Now you will see green and red lights distributed evenly across the two

roads

▪ You will find a section in .net.xml file with the following text

▪ You can see that this corresponds to the information on netedit GUI

▪ You can of course modify the text to change the traffic program if you

want to (or you could use GUI in netedit as well)

Page 8

Take a look at net.xml file

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

<tlLogic id="light1" type="static" programID="0" offset="0">

<phase duration="33" state="GGgrrrGGgrrr"/>

<phase duration="3" state="yygrrryygrrr"/>

<phase duration="6" state="rrGrrrrrGrrr"/>

<phase duration="3" state="rryrrrrryrrr"/>

<phase duration="33" state="rrrGGgrrrGGg"/>

<phase duration="3" state="rrryygrrryyg"/>

<phase duration="6" state="rrrrrGrrrrrG"/>

<phase duration="3" state="rrrrryrrrrry"/>

</tlLogic>

<tlLogic id="light2" type="static" programID="0" offset="0">

<phase duration="33" state="rrrGGgrrrGGg"/>

<phase duration="3" state="rrryygrrryyg"/>

<phase duration="6" state="rrrrrGrrrrrG"/>

<phase duration="3" state="rrrrryrrrrry"/>

<phase duration="33" state="GGgrrrGGgrrr"/>

<phase duration="3" state="yygrrryygrrr"/>

<phase duration="6" state="rrGrrrrrGrrr"/>

<phase duration="3" state="rryrrrrryrrr"/>

</tlLogic>

▪ Let‘s redue the number of cars on the carflow2 to be 1

▪ Circular road on the left has 10 cars circulating

▪ Circular road on the right has only one car re-routed

▪ Let‘s control the traffic lights such that carflow2 is not interrupted!

▪ When carflow2 is near a traffic light, carflow2 is given a green light

▪ Otherwise, carflow1 is always given the green light

Page 9

Let‘s modify the .rou.xml file

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

<routes>

<vType id="car" type="passenger" length="5" accel="3.5" decel="2.2" emergencyDecel="5" sigma="0" maxSpeed="28"/>

<flow id="carflow1" type="car" beg="0" end="0" number="10" from="edge1" to="edge2"/>

<flow id="carflow2" type="car" beg="0" end="0" number="1" from="edge3" to="edge4"/>

</routes>

▪ Let’s create another cc file for traffic light RSU

▪ New -> Create OMNet++ class -> TrafficLightRsuApp.cc & .h

▪ Let it inherit BaseWaveApplLayer again

▪ But this time, be aware of the content in the red box

Page 10

Let‘s control the traffic light using TraCI

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

#include "veins/modules/application/ieee80211p/BaseWaveApplLayer.h"
#include "veins/modules/mobility/traci/TraCIScenarioManager.h"
#include "veins/modules/mobility/traci/TraCICommandInterface.h"

namespace Veins{
class TrafficLightRsuApp : public BaseWaveApplLayer {

protected:
virtual void initialize(int stage);
virtual void onWSM(WaveShortMessage* wsm);
virtual void onWSA(WaveServiceAdvertisment* wsa);
virtual void onBSM(BasicSafetyMessage * bsm);
virtual void handleSelfMsg(cMessage* msg);

TraCIScenarioManager* manager;
std::string trafficLightId;

cMessage* initMsg;
cMessage* phaseMsg;

};
}

▪ We need this to get access to TraCI from our RSU

▪ Basically, the following code gives you access to a particular traffic light

▪ You need to have a traffic light called „light1“ in your .net.xml file

▪ Then, where do we define „program2“?

▪ We will come to that soon

Page 11

What is TraCIScenarioManager?

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

manager = TraCIScenarioManagerAccess().get();
traci = manager->getCommandInterface();

trafficLightId = "light1";
traci->trafficlight(trafficLightId).setProgram("program2");

▪ At first, I tried TrafficLightRsuApp::initialize() just like for vehicles, a

similar code exists inside BaseWaveApplLayer::initialize()

▪ But for some reason, traci connection with SUMO is not established yet

when initialize() is called

▪ So, I had to call it after the simulation has alread run for some time

▪ How do we do it? We use scheduleAt() function

▪ Number 77 is randomly

chosen

▪ You can choose any

other number

▪ Number 88 is also random

Page 12

Where should we insert the code?

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

manager = TraCIScenarioManagerAccess().get();
traci = manager->getCommandInterface();

void TrafficLightRsuApp::initialize(int stage){
BaseWaveApplLayer::initialize(stage);
if (stage == 0) {

}
else if (stage == 1){

initMsg = new cMessage("traffic light init",77);
phaseMsg = new cMessage("phase msg",88);
scheduleAt(0.1, initMsg);

}
}

▪ I know.., this is a bit tricky to understand.. So, this time, I uploaded my

source files where you can take a look

▪ Please find TrafficLightRsuApp.cc & .h files on ISIS to take a look

▪ We‘ve just schedule something at simulation time 0.1 seconds

▪ At 0.1 second handleSelfMsg() will be called (do you remember

OMNet++ example?)

▪ See the next page for source code

▪ Do you see the number 77?

▪ Here, we are now able to get access to traCI as we have already

established connection with SUMO

▪ (This took me a lot of time to figure out, sorry for the delay...)

Page 13

Getting TraCI in the RSU

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

Page 14

Getting TraCI in the RSU

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

void TrafficLightRsuApp::handleSelfMsg(cMessage* msg){
BaseWaveApplLayer::handleSelfMsg(msg);
switch (msg->getKind())
{

case 77:
manager = TraCIScenarioManagerAccess().get();
traci = manager->getCommandInterface();
switch (myId)
{
case 7: // first traffic light

trafficLightId = "light2";
traci->trafficlight(trafficLightId).setProgram("program2");
break;

case 8: // second traffic light
trafficLightId = "light1";
traci->trafficlight(trafficLightId).setProgram("program2");
break;

default:
assert(0); // something wrong, it's not a traffic light, crash the program
break;

}
break;

case 88:
traci->trafficlight(trafficLightId).setProgram("program2");
break;

default:
assert(0);
break;

}

}

▪ There are two intersections and traffic lights, so let‘s have two RSUs

▪ Just like I figured out myIds for vehicles, I figured out myId of RSUs using

the debugger

▪ It‘s 7 and 8 for the first two RSUs

▪ Now, we associate the RSUs with the traffic lights in the .net.xml file

▪ It‘s nothing fancy, we just store the names of the traffic lights that we defined

in the .net.xml file

▪ For RSU of myId 7, we associate with traffic light2

▪ For RSU of myId 8, we associate with traffic light1

Page 15

myId of RSUs

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

case 7: // first traffic light
trafficLightId = "light2";
traci->trafficlight(trafficLightId).setProgram("program2");
break;

case 8: // second traffic light
trafficLightId = "light1";
traci->trafficlight(trafficLightId).setProgram("program2");
break;

▪ We can define it in a separate file

▪ We can also define it in the .net.xml file as well (we‘ve already seen one

generated by netedit on slide 8)

▪ Make a file called tls_program.tls.xml with the following contents

▪ You see that there are traffic programs for each traffic lights

Page 16

Where are the traffic programs?

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

<tls>

<tlLogic id="light1" type="static" programID="program1" offset="0">

<phase duration="999" state="GGgrrrGGgrrr"/>

<phase duration="999" state="GGgrrrGGgrrr"/>

</tlLogic>

<tlLogic id="light1" type="static" programID="program2" offset="0">

<phase duration="999" state="rrrGGgrrrGGg"/>

<phase duration="999" state="rrrGGgrrrGGg"/>

</tlLogic>

<tlLogic id="light2" type="static" programID="program1" offset="0">

<phase duration="999" state="rrrGGgrrrGGg"/>

<phase duration="999" state="rrrGGgrrrGGg"/>

</tlLogic>

<tlLogic id="light2" type="static" programID="program2" offset="0">

<phase duration="999" state="GGgrrrGGgrrr"/>

<phase duration="999" state="GGgrrrGGgrrr"/>

</tlLogic>

</tls>

▪ In .launchd.xml file you add the file

▪ In .sumocfg file

Page 17

We need to let SUMO know that a new file exists

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

<?xml version="1.0"?>

<!-- debug config -->

<launch>

<copy file="traffic_lights.net.xml" />

<copy file="traffic_lights.rou.xml" />

<copy file="traffic_lights.add.xml" />

<copy file="tls_program.tls.xml" />

<copy file="traffic_lights.sumocfg" type="config" />

</launch>

<input>

<net-file value="traffic_lights.net.xml"/>

<route-files value="traffic_lights.rou.xml"/>

<additional-files value="traffic_lights.add.xml tls_program.tls.xml"/>

</input>

▪ The traffic program looks difficult, but it‘s essentially two programs for two

traffic lights where you allow green lights for one street while giving red

light for the other

▪ I configured the programs in the way that „program2“ will give green light

to the traffic which goes around the left circle

▪ So the source code on page 15 shows that left circle will have default

green light for two traffic lights

▪ You will be able to check it graphically later

Page 18

Where are the traffic programs?

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

▪ Let‘s make a traffic signal control which gives green light to the right

circles only when the vehicle (single vehicle we configured on .rou.xml

file) is near the traffic light

▪ I‘ve already found out that the vehicle on the right has the myId of 25

▪ So, whenever the RSU receives a BSM from car 25, it checks for the

distance whether it‘s closer than 20 meters, and changes the traffic light

to program1

▪ After 5 seconds, we want to switch back to program2 because 5 second

sis enough for car 25 to pass through the intersection

Page 19

Now, we want our application to change the signals

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

void TrafficLightRsuApp::onBSM(BasicSafetyMessage * bsm){
if (bsm->getSenderAddress() == 25) {

if ((curPosition-bsm->getSenderPos()).length() < 20) {
if (!phaseMsg->isScheduled()) {

traci->trafficlight(trafficLightId).setProgram("program1");
scheduleAt(simTime()+5,phaseMsg);

}
}

}
}

▪ So, we schedule a phaseMsg after 5 seconds (scheduleAt() function call)

▪ However, BSM is sent every 0.1 seconds, we want to change traffic

program only once when the vehicle approaches

▪ So, we will check whether phaseMsg is already scheduled first and then

execute the code

▪ When the vehicle is within 20 meters of the traffic signal for the first time,

the code enters inside the if clause

▪ Every 0.1 second after that, phaseMsg is already scheduled so we don‘t

enter the if clause

Page 20

Now, we want our application to change the signals

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

void TrafficLightRsuApp::onBSM(BasicSafetyMessage * bsm){
if (bsm->getSenderAddress() == 25) {

if ((curPosition-bsm->getSenderPos()).length() < 20) {
if (!phaseMsg->isScheduled()) {

traci->trafficlight(trafficLightId).setProgram("program1");
scheduleAt(simTime()+5,phaseMsg);

}
}

}
}

Page 21

What happens after 5 seconds?

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

void TrafficLightRsuApp::handleSelfMsg(cMessage* msg){
BaseWaveApplLayer::handleSelfMsg(msg);
switch (msg->getKind())
{

case 77:
manager = TraCIScenarioManagerAccess().get();
traci = manager->getCommandInterface();
switch (myId)
{
case 7: // first traffic light

trafficLightId = "light2";
traci->trafficlight(trafficLightId).setProgram("program2");
break;

case 8: // second traffic light
trafficLightId = "light1";
traci->trafficlight(trafficLightId).setProgram("program2");
break;

default:
assert(0); // something wrong, it's not a traffic light, crash the program
break;

}
break;

case 88:
traci->trafficlight(trafficLightId).setProgram("program2");
break;

default:
assert(0);
break;

}

}

Back to handleSelfMsg()

Remember number 88 from page 12?

▪ In the myTestNetwork.ned file

▪ We are now adding TWO RSUs!! (See the red rectangle)

Page 22

Now, we need to let RSU to use our application

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

package newTest;
import org.car2x.veins.nodes.RSU;
import org.car2x.veins.nodes.Scenario;

network myTestNetwork extends Scenario
{

submodules:
rsu[2]: RSU {

@display("p=50,50;i=veins/sign/yellowdiamond;is=vs");
}

}

▪ And, in the .ini file, we need to designate the location of the RSUs

▪ I‘ve added text in the rectangles

▪ We designate our just created app

▪ We also designate the coordinates of our RSUs

Page 23

Now, we need to let RSU to use our application

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

##
RSU SETTINGS
#
#
##
*.rsu[0].mobility.x = 485
*.rsu[0].mobility.y = 445
*.rsu[0].mobility.z = 3

*.rsu[1].mobility.x = 556
*.rsu[1].mobility.y = 103
*.rsu[1].mobility.z = 3

.rsu[].applType = "TrafficLightRsuApp"

▪ We can‘t automatically detect the coordinates of the RSUs

▪ Coordinate systems for SUMO and Veins are unfortunatey not aligned

▪ We need to manually find out

▪ How I did it is that I let the vehicles stop at the traffic light and read the

coordinates in the .anf file

Page 24

How do we know the coordinates of the RSUs?

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

Vehicle stopped.

This is (556, 103)

The value I used

in .ini file

Graph of posx and posy

▪ TrafficLightRsuApp.ned

▪ There are occasions where the simulator doesn‘t find the class because

the different namespaces

▪ If you encounter such errors, try adding veins:: in front of the class

names

Page 25

Don‘t forget the .ned file!

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

simple TrafficLightRsuApp extends BaseWaveApplLayer
{

@class(Veins::TrafficLightRsuApp);
string appName = default("My first Veins App!");

}

▪ Traffic lights are not well visualized in Veins GUI

▪ So, let‘s run sumo-gui this time to see the traffic lights

▪ In the Msys terminal, we use sumo-gui.exe instead of sumo.exe

▪ sumo-launchd.py -vv -c {YOURPATH}/sumo-gui.exe

▪ You run simulation with „Express speed“

▪ And SUMO-GUI will be launched

▪ You need to click „start“ in SUMO-GUI as well

Page 26

Let‘s run the simulation!

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

▪ You will see the traffic lights which are red, will turn green only when a

car passes by from the right circle!

Page 27

Traffic lights are controlled as we want!

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

▪ If you have a lot of questions, drop by my office (H4133) or wait for

Tuesday

▪ Send me email if you have short simple questions

Page 28

Questions?

Vehicle-2-X: Tutorial – Traffic Light Contro Using TraCI

