EINSTEIN

CENTER

Diaital Fut Technische .
E Universitat

Berlin

Tutorial 5: Basic Platooning Implementation

Basic Platooning Implementation

Prof. Sangyoung Park
Module "Vehicle-2-X: Communication and Control*

EINSTEIN

CENTER

Implementation of Simple Platooning Algorithm

Let's start with something simple

Let's read the distance to the preceding vehicle only and try to adjust the
acceleration of the current vehicle

Would you be able to implement this?

"a=p-(d-—dgesired)

Vehicle-2-X: Tutorial — Vehicle Speed Control and Service Announcement Page 2

EINSTEIN
Letting all nodes to broadcast s "E

= Previously, we were allowing only the lead vehicle to broadcast

= For now, let's allow all the vehicles to broadcast

= In initilize(),
= Only the lead vehicle announces the service (but tbh, it's not necessary)
= Move the scheduleAt() out of the if clause
= Notice the change of ID from 14 to 13? Let me explain this in the next slides

else if (stage == 1) {
//Initializing members that require initialized other modules goes here

// Vehicle IDs are 14, 20, 26, 32, and 38, respectively

if (myId == 13){ // this is the head vehicle
startService(Channels: :SCH2, currentOfferedServiceld, "Platoon Lead Vehicle Service");

}

scheduleAt (computeAsynchronousSendingTime(beaconInterval, type_ CCH),sendBeaconEvt);

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 3

EINSTEIN
CENTER

ldentifying the Sender

Now, we can’t assume the sender is the lead vehicle

We need to identify the sender upon receiving BSM before taking action

Read the sender ID from BSM and check whether it's from the preceding
vehicle

void VehicleControlApp::onBSM(BasicSafetyMessage* bsm){
Let’s deﬁne a Boolean int senderId = bsm->getSenderAddress();

variable to do so (fr()rT] bool fromPrecedingVehicle = false;
PrecedingVehicle) switch (this->myId){

case 13:
break;

case 19:
if (senderId == 13) fromPrecedingVehicle
break;

case 25:
if (senderId == 19) fromPrecedingVehicle
break;

case 31:
if (senderId == 25) fromPrecedingVehicle
break;

case 37:
if (senderId == 31) fromPrecedingVehicle
break;

default:
ASSERT(@); // no other ids should exist in the simulation
break;

true;

true;

true;

true;

Vehicle-2-X: Tutorial — Basic Platooning Implementation }oeeens Page 4

EINSTEIN

CENTER

ldentifying the Sender

| thought that this->getld() would yield a unique identifier, but it seems
that the return value of getld() is a component in the lower layer

The ID of the VehicleControlApp can be obtained by directly accessing
myld of the class

This is also equivalent to the senderld populated by populateWSM()
So, the IDs will be now 13, 19, 25, 31, 37, ...

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 5

EINSTEIN

Adjust the Vehicle Velocity St

= |n onBSM(), we could adjust the acceleration (or speed) to change the
status of the vehicle if fromPrecedingVehicle == true

Coord& precedingVehicleSpeed = bsm->getSenderSpeed();
Coord& precedingVehiclePos = bsm->getSenderPos();
traciVehicle->setSpeedMode(0x1f);

double desiredDistance = 6.0;
double coeff = 1;

if (fromPrecedingVehicle)

{
double distance = (precedingVehiclePos- curPosition).length();
double acc = coeff * (distance - desiredDistance);

std::cout << "t" << simTime() << ": Distance [" << senderId << "]-[" << myId << "]: " << distance <<
<< acc << "\n";

acc:

if (acc > 0){
tracivVehicle->setAccel(acc);
tracivVehicle->setSpeed(100);

}

else {
tracivehicle->setDecel(-acc);
tracivVehicle->setSpeed(0);

}

}

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 6

. . EINSTEIN
Setting Acceleration Values et W 'E

= Veins does not provide an interface to directly control the acceleration of
vehicles

= \We could do the following work around (maybe there’s a better way)
= Set maximum acceleration or deceleration value

= Set a very high speed or low speed to ensure that the vehicle is taking that
maximum acceleration or deceleration value

= | am open to suggestions or improvements

= But Veins doesn’t provide an interface to control the max acceleration
and max deceleration either

» Let’s try implement the functionalities

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 7

EINSTEIN
New Functions to the TraCl Interface CENTER .'E

= TraCl interface is no magic, all the commands and API (functions we
could use) are defined in the following three files in the folder
veins/src/veins/modules/mobility/traci/

= TraClCommandinterface.cc and TraClCommandIinterface.h
= TraClConstants.h

= For example, if you look at the function we already used, “setSpeed()”
= You can see that variableld = VAR_SPEED
= VAR_SPEED is defined in TraClConstants.h as 0x40

= You can also see 0x40 from
https://sumo.dIr.de/wiki/TraCl/Change Vehicle State

void TraCICommandInterface::Vehicle::setSpeed(double speed) {

uint8_t variableId = VAR_SPEED;

uint8_t variableType = TYPE_DOUBLE;

TraCIBuffer buf = traci->connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer() << variableId << nodeld <<
variableType << speed);

ASSERT (buf.eof());

}

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 8

https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State

EINSTEIN

New Functions to the TraCl Interface CENTER

= S0, we could implement the functions setAccel() and setDecel() in a

similar way

= Define the function format in the header file (.h)

= Define the function in the cc file (.cc)

// in TraCICommandInterface.h
void setAccel(double accel);
void setDecel(double decel);

Vehicle-2-X: Tutorial — Basic Platooning Implementation

// added by spark
void TraCICommandInterface::Vehicle::setAccel(double
accel) {

uint8_t variablelId = VAR_ACCEL;

uint8_t variableType = TYPE_DOUBLE;

TraCIBuffer buf = traci-
>connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer()
<< variableId << nodeId << variableType << accel);

ASSERT (buf.eof());

}

// added by spark
void TraCICommandInterface::Vehicle::setDecel(double
decel) {

uint8_t variableId = VAR_DECEL;

uint8_t variableType = TYPE_DOUBLE;

TraCIBuffer buf = traci-
>connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer()
<< variableId << nodeId << variableType << decel);

ASSERT (buf.eof());

}

Page 9

What About Reading Variables using TraCl? E:FZ'TSLITEEEN "E

= For example, you can read the minGap parameter in the car following
model (recall car following model lecture)

= https://sumo.dIr.de/wiki/Definition of Vehicles, Vehicle Types, and Rou
tes

//In header file
double getMinGap();

//In CC file
double TraCICommandInterface::Vehicle::getMinGap() {
return traci->genericGetDouble(CMD_GET_VEHICLE_VARIABLE, nodeId, VAR_MINGAP, RESPONSE_GET_VEHICLE_VARIABLE);

}

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 10

https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes

Plotting the Results v .'E

= Fortunately, Veins provides its own statistics mechanism, so we can just
make use of it

= After you simulate anything, data will be generated in the results folder
= |f you double click .vec file you will be able to generate .anf file

= |In the tab “browse data” at the bottom,
and then “vectors” tab at the top,

you will be able to generate graphs about v % newTest
the position, velocity, and acceleration of vehicles ¥ IE““:”;"-*
= INCIUdes
= out
¥ & results

& Default.anf
Default-#0.vci
i Default-#0.vec
& resultTrace
£ VehicleControlApp.cc
% VehicleControlApp.h

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 11

Plotting the Results

EINSTEIN
CENTER

Digital Future

All (117 /117) Vectors (15/15) Scalars (102 /102) Histograms (0 / 0)

runlD filter v ” module filter vH statistic name filter

Experiment Measurement Replica... Module Name Count Mean StdDev
Default =0 myTestNetwork.node[0].v... posx 188 1047,538329787234 639.299508276923
Default #0 myTestNetwork.node[0].v... posy 188 26.65 0.0
Default #0 myTestNetwork.node[0l.v... speed 187 11.45711229946524 2.3515668999989123
Default #0 myTestNetwork.node[1].v... posx 1" 78.28263463954909 41.30928952102851
Default #0 myTestNetwork.node[1].v... posy 1 26.65 4.26496119976003...
Default =0 myTestNetwork.node[0).v... acceleration 186 0.0456989247311828 0.7502063108663526
Default =0 myTestNetwork.node{0).v... co2emission 186 2.057791065871982 1.4158032077899554
Default P mzco speed 10 12.518913854066 2.945125743901908
Default & Plot acceleration 9 0.7512157577056333 2.906715550127471
Default % Add Filter Expression to Dataset... co2emission 9 4,997382577977444 8.264189843631812
Default 4 Add Selected Data to Dataset... posx 7 2109.764285714286 27.11050402652004
Default posy 7 26.650000000000002 0.0
Default Export Data speed i 13.89 0.0
Default Copy to Clipboard acceleration 5 0.0 0.0
Default : coZemission 5 2.0276130047522 0.0

Set filter

Choose Table Columns...

Show Output Vector View

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 12

EINSTEIN
CENTER

Speed vs Time Graph

= Wait why is the the velocity the same and the gap is 19.05 m? The
control doesn’t work!

o 10 20 30 40 50 &0 7O 80 20 100 110 120 130 140 180 160 170 180 192
L L L L L L L n f 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T T T T T
30 40 50 60] 80 50 100 110 120 130 140 150 160 170 180 180

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 13

EINSTEIN

Overriding the SUMO Driver Models el "E

= One thing to note is that SUMO does not allow direct control of vehicle
acceleration and deceleration, but rather lets you configure parameters in
“driver models”

= SUMO default model is “carFollowing-Krauss”

https://sumo.dIr.de/wiki/Definition_of_Vehicles, Vehicle_Types,_and_Routes

Car-Following Models

The car-following models currently implemented in SUMO are given in the following table.

Element Name Attribute Value (when o
) : Description
{deprecated) declaring as attribute)
carFollowing- The Kraul-model with some modifications
Erauss which is the default model used in SUMO
carFollowing-—) o
KraussOrig1 The original Kraui-model
Eraus=0rigl

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 14

Overriding the SUMO Driver Models CENTER "E

= S0, the vehicles are trying to maintain the minimum time and space gap
to the preceding vehicle

* The distance we'd like to achieve 6 m is going to be overridden by the
driver model from SUMO

= So far, | haven’t found a way to directly control acceleration, but we can
try to do it by setting the values minGap (space headway) and tau (time
headway) to a small value

= \We can do that in the .rou.xml file

= Let's say we set the values tau and minGap to be both 0.1 (default
values are 1.0 and 2.5)

id="car"” type="passenger"” length="5" accel="3.5" decel="2.2" sigma="8" tau="0.1" minGap="0.1" maxSpeed="28"/>

id="carflow" type="car"™ beg="0" end="8" number="2" from="edgel" to="edge2"/>»

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 15

Debugging the Code = | 'E

= Something has happened

= Vehicles collide and disappear in the simulation because our algorithm
can’t handle the situation

= X pos vs time graph
* Red line disappears after 13 seconds

£
150 :
| I S S AN SUN [i07286. 132908)
100
50
u T
0 2 4 & 8 10 12 14

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 16

Debugging the Code

EINSTEIN
CENTER

Digital Future

)

= Something’s not right about the results, the positions are not being
updated frequently as we want

= |f you look into the console window (in Omnetpp IDE), something is

wrong

* The vehicle distance is not as often updated (1 sec interval) as the BSM

send interval

* This means we can’t rely on current handleUpdatePosition() to update

the position of velocity values of the vehicles

t3.
t3.
t3.
t3.

t3

t3.
t3.
t3.
t3.
t3.
t4.
t4.

029858499977
129870016741:
229870016741:
329870016741:
.429870016741:
529870016741:
629870016741:
729870016741
829870016741:
929870016741:
029870056769
129870056769

Vehicle-2-X: Tutorial — Basic Platooning Implementation

Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance
Distance

[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:
[13]-[19]:

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
16.
16.

viutuntuvluolnulululuon vl ot i

dccC:
daccC:
daccC:
daccC:
daccC:
daccC:
daccC:
daccC:
daccC:
daccC:
daccC:
acc:

e T UTUTUTUTUTUTUTL UTW

P RrARAPMPMPMPRAALMPLL
Ul U

Page 17

Debugging the Code o "E

= Let me figure something out about this.... Very soon..

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 18

EINSTEIN

Traffic Light Control S

= TraCl interface to traffic light control is given in
TraClCommandInterface.cc as well

class Trafficlight {

public:

Trafficlight(TraCICommandInterface* traci, std::string trafficLightId) : traci(traci), trafficLightId(trafficLightId)
{

connection = &traci->connection;

}

std::string getCurrentState() const;

int32_t getDefaultCurrentPhaseDuration() const;

std::1list<std::string> getControlledLanes() const;
std::list<std::1list<TraCITrafficLightLink> > getControlledLinks() const;
int32_t getCurrentPhaseIndex() const;

std::string getCurrentProgramID() const;

TraCITrafficLightProgram getProgramDefinition() const;

int32_t getAssumedNextSwitchTime() const;

void setProgram(std::string program);/**< set/switch to different program */

void setPhaseIndex(int32_t index); /**< set/switch to different phase within the program */

void setState(std::string state);

void setPhaseDuration(int32_t duration); /**< set remaining duration of current phase in milliseconds */
void setProgramDefinition(TraCITrafficLightProgram::Logic program, int32_t programNr);

protected:
TraCICommandInterface* traci;
TraCIConnection* connection;
std::string trafficLightId;

1

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 19

EINSTEIN

Importing Realistic Maps S s

= |f you want to work on realistic maps, you can import maps from
openstreetmap

= https://sumo.dIr.de/wiki/Tutorials/Import from OpenStreetMap

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 20

https://sumo.dlr.de/wiki/Tutorials/Import_from_OpenStreetMap

: Faciliy
Further Information '

= Platooning Extension (PLEXE) available if you want to use it, you can of
course use it

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 21

EINSTEIN

Notice for the Term Project s "E

= Notice for the Term Project

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 22

. EINSTEIN
Forming the Groups oo W |

= 2 students per group

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 23

EINSTEIN
CENTER

Examples

* | do not expect something too complicated from you
» The project should be doable within the given time frame

= Should resolve your genuine curiosity about V2X communication
= Platooning algorithm parameter studies
» Implement some of the existing platooning algorithms
Impact of the communication networks
= When is platooning impossible? How dense should the traffic be?
= How do we negotiate between sparsely populated vehicles to form a platoon?

» How do you decide the lead vehicle and size of the platoon in a distributed system like car
platoons?

= What happens if there’s a hostile (or compromised) vehicle system within a platoon
= Can you detect them?
= How do we distinguish communication packets when there are multiple platoons in
vicinity?
= Could traffic lights be synchronized with platoon lengths to avoid cutting the platoon in
half using communication?

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 24

: : CENTER
Topic Suggestion oo W |

» Please form a group and suggest a topic before next Tuesday by emaill
» sangyoung.park@tu-berlin.de

= | will be available every tutorial session for help with the programming

= Topics can be very flexible

= But don't choose a topic, which is too complex and require too much
manpower unless you are really into it

Vehicle-2-X: Tutorial — Basic Platooning Implementation Page 25

mailto:sangyoung.park@tu-berlin.de

