
Tutorial 5: Basic Platooning Implementation

Prof. Sangyoung Park

Module ”Vehicle-2-X: Communication and Control“

Basic Platooning Implementation

 Let‘s start with something simple

 Let‘s read the distance to the preceding vehicle only and try to adjust the

acceleration of the current vehicle

 Would you be able to implement this?

 𝑎 = 𝑝 ⋅ (𝑑 − 𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑)

Page 2

Implementation of Simple Platooning Algorithm

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

 Previously, we were allowing only the lead vehicle to broadcast

 For now, let‘s allow all the vehicles to broadcast

 In initilize(),

 Only the lead vehicle announces the service (but tbh, it‘s not necessary)

 Move the scheduleAt() out of the if clause

 Notice the change of ID from 14 to 13? Let me explain this in the next slides

Page 3

Letting all nodes to broadcast

Vehicle-2-X: Tutorial – Basic Platooning Implementation

else if (stage == 1) {
//Initializing members that require initialized other modules goes here
// Vehicle IDs are 14, 20, 26, 32, and 38, respectively

if (myId == 13){ // this is the head vehicle
startService(Channels::SCH2, currentOfferedServiceId, "Platoon Lead Vehicle Service");

}
scheduleAt(computeAsynchronousSendingTime(beaconInterval, type_CCH),sendBeaconEvt);

}

 Now, we can’t assume the sender is the lead vehicle

 We need to identify the sender upon receiving BSM before taking action

 Read the sender ID from BSM and check whether it’s from the preceding

vehicle

 Let’s define a Boolean

variable to do so (from

PrecedingVehicle)

Page 4

Identifying the Sender

Vehicle-2-X: Tutorial – Basic Platooning Implementation

void VehicleControlApp::onBSM(BasicSafetyMessage* bsm){
int senderId = bsm->getSenderAddress();

bool fromPrecedingVehicle = false;

switch (this->myId){
case 13:

break;
case 19:

if (senderId == 13) fromPrecedingVehicle = true;
break;

case 25:
if (senderId == 19) fromPrecedingVehicle = true;
break;

case 31:
if (senderId == 25) fromPrecedingVehicle = true;
break;

case 37:
if (senderId == 31) fromPrecedingVehicle = true;
break;

default:
ASSERT(0); // no other ids should exist in the simulation
break;

}

 I thought that this->getId() would yield a unique identifier, but it seems

that the return value of getId() is a component in the lower layer

 The ID of the VehicleControlApp can be obtained by directly accessing

myId of the class

 This is also equivalent to the senderId populated by populateWSM()

 So, the IDs will be now 13, 19, 25, 31, 37, ...

Page 5

Identifying the Sender

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 In onBSM(), we could adjust the acceleration (or speed) to change the

status of the vehicle if fromPrecedingVehicle == true

Page 6

Adjust the Vehicle Velocity

Vehicle-2-X: Tutorial – Basic Platooning Implementation

Coord& precedingVehicleSpeed = bsm->getSenderSpeed();
Coord& precedingVehiclePos = bsm->getSenderPos();
traciVehicle->setSpeedMode(0x1f);

double desiredDistance = 6.0;
double coeff = 1;

if (fromPrecedingVehicle)
{

double distance = (precedingVehiclePos- curPosition).length();
double acc = coeff * (distance - desiredDistance);

std::cout << "t" << simTime() << ": Distance [" << senderId << "]-[" << myId << "]: " << distance <<
" acc: " << acc << "\n";

if (acc > 0){
traciVehicle->setAccel(acc);
traciVehicle->setSpeed(100);

}
else {

traciVehicle->setDecel(-acc);
traciVehicle->setSpeed(0);

}
}

 Veins does not provide an interface to directly control the acceleration of

vehicles

 We could do the following work around (maybe there’s a better way)

 Set maximum acceleration or deceleration value

 Set a very high speed or low speed to ensure that the vehicle is taking that

maximum acceleration or deceleration value

 I am open to suggestions or improvements

 But Veins doesn’t provide an interface to control the max acceleration

and max deceleration either

 Let’s try implement the functionalities

Page 7

Setting Acceleration Values

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 TraCI interface is no magic, all the commands and API (functions we

could use) are defined in the following three files in the folder

veins/src/veins/modules/mobility/traci/

 TraCICommandInterface.cc and TraCICommandInterface.h

 TraCIConstants.h

 For example, if you look at the function we already used, “setSpeed()”

 You can see that variableId = VAR_SPEED

 VAR_SPEED is defined in TraCIConstants.h as 0x40

 You can also see 0x40 from

https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State

Page 8

New Functions to the TraCI Interface

Vehicle-2-X: Tutorial – Basic Platooning Implementation

void TraCICommandInterface::Vehicle::setSpeed(double speed) {
uint8_t variableId = VAR_SPEED;
uint8_t variableType = TYPE_DOUBLE;
TraCIBuffer buf = traci->connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer() << variableId << nodeId <<
variableType << speed);
ASSERT(buf.eof());
}

https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State

 So, we could implement the functions setAccel() and setDecel() in a

similar way

 Define the function format in the header file (.h)

 Define the function in the cc file (.cc)

Page 9

New Functions to the TraCI Interface

Vehicle-2-X: Tutorial – Basic Platooning Implementation

// in TraCICommandInterface.h
void setAccel(double accel);
void setDecel(double decel);

// added by spark
void TraCICommandInterface::Vehicle::setAccel(double
accel) {

uint8_t variableId = VAR_ACCEL;
uint8_t variableType = TYPE_DOUBLE;
TraCIBuffer buf = traci-

>connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer()
<< variableId << nodeId << variableType << accel);

ASSERT(buf.eof());
}

// added by spark
void TraCICommandInterface::Vehicle::setDecel(double
decel) {

uint8_t variableId = VAR_DECEL;
uint8_t variableType = TYPE_DOUBLE;
TraCIBuffer buf = traci-

>connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer()
<< variableId << nodeId << variableType << decel);

ASSERT(buf.eof());
}

 For example, you can read the minGap parameter in the car following

model (recall car following model lecture)

 https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Rou

tes

Page 10

What About Reading Variables using TraCI?

Vehicle-2-X: Tutorial – Basic Platooning Implementation

//In CC file
double TraCICommandInterface::Vehicle::getMinGap() {

return traci->genericGetDouble(CMD_GET_VEHICLE_VARIABLE, nodeId, VAR_MINGAP, RESPONSE_GET_VEHICLE_VARIABLE);
}

//In header file
double getMinGap();

https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes

 Fortunately, Veins provides its own statistics mechanism, so we can just

make use of it

 After you simulate anything, data will be generated in the results folder

 If you double click .vec file you will be able to generate .anf file

 In the tab “browse data” at the bottom,

and then “vectors” tab at the top,

you will be able to generate graphs about

the position, velocity, and acceleration of vehicles

Page 11

Plotting the Results

Vehicle-2-X: Tutorial – Basic Platooning Implementation

Page 12

Plotting the Results

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Wait why is the the velocity the same and the gap is 19.05 m? The

control doesn’t work!

Page 13

Speed vs Time Graph

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 One thing to note is that SUMO does not allow direct control of vehicle

acceleration and deceleration, but rather lets you configure parameters in

“driver models”

 SUMO default model is “carFollowing-Krauss”

Page 14

Overriding the SUMO Driver Models

Vehicle-2-X: Tutorial – Basic Platooning Implementation

https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes

 So, the vehicles are trying to maintain the minimum time and space gap

to the preceding vehicle

 The distance we’d like to achieve 6 m is going to be overridden by the

driver model from SUMO

 So far, I haven’t found a way to directly control acceleration, but we can

try to do it by setting the values minGap (space headway) and tau (time

headway) to a small value

 We can do that in the .rou.xml file

 Let’s say we set the values tau and minGap to be both 0.1 (default

values are 1.0 and 2.5)

Page 15

Overriding the SUMO Driver Models

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Something has happened

 Vehicles collide and disappear in the simulation because our algorithm

can’t handle the situation

 X pos vs time graph

 Red line disappears after 13 seconds

Page 16

Debugging the Code

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Something’s not right about the results, the positions are not being

updated frequently as we want

 If you look into the console window (in Omnetpp IDE), something is

wrong

 The vehicle distance is not as often updated (1 sec interval) as the BSM

send interval

 This means we can’t rely on current handleUpdatePosition() to update

the position of velocity values of the vehicles

Page 17

Debugging the Code

Vehicle-2-X: Tutorial – Basic Platooning Implementation

t3.029858499977: Distance [13]-[19]: 10.5 acc: 4.5
t3.129870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.229870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.329870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.429870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.529870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.629870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.729870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.829870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.929870016741: Distance [13]-[19]: 10.5 acc: 4.5
t4.029870056769: Distance [13]-[19]: 16.5 acc: 10.5
t4.129870056769: Distance [13]-[19]: 16.5 acc: 10.5

 Let me figure something out about this…. Very soon..

Page 18

Debugging the Code

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 TraCI interface to traffic light control is given in

TraCICommandInterface.cc as well

Page 19

Traffic Light Control

Vehicle-2-X: Tutorial – Basic Platooning Implementation

class Trafficlight {
public:
Trafficlight(TraCICommandInterface* traci, std::string trafficLightId) : traci(traci), trafficLightId(trafficLightId)
{
connection = &traci->connection;
}

std::string getCurrentState() const;
int32_t getDefaultCurrentPhaseDuration() const;
std::list<std::string> getControlledLanes() const;
std::list<std::list<TraCITrafficLightLink> > getControlledLinks() const;
int32_t getCurrentPhaseIndex() const;
std::string getCurrentProgramID() const;
TraCITrafficLightProgram getProgramDefinition() const;
int32_t getAssumedNextSwitchTime() const;

void setProgram(std::string program);/**< set/switch to different program */
void setPhaseIndex(int32_t index); /**< set/switch to different phase within the program */
void setState(std::string state);
void setPhaseDuration(int32_t duration); /**< set remaining duration of current phase in milliseconds */
void setProgramDefinition(TraCITrafficLightProgram::Logic program, int32_t programNr);

protected:
TraCICommandInterface* traci;
TraCIConnection* connection;
std::string trafficLightId;
};

 If you want to work on realistic maps, you can import maps from

openstreetmap

 https://sumo.dlr.de/wiki/Tutorials/Import_from_OpenStreetMap

Page 20

Importing Realistic Maps

Vehicle-2-X: Tutorial – Basic Platooning Implementation

https://sumo.dlr.de/wiki/Tutorials/Import_from_OpenStreetMap

 Platooning Extension (PLEXE) available if you want to use it, you can of

course use it

Page 21

Further Information

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Notice for the Term Project

Page 22

Notice for the Term Project

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 2 students per group

Page 23

Forming the Groups

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 I do not expect something too complicated from you

 The project should be doable within the given time frame

 Should resolve your genuine curiosity about V2X communication

 Platooning algorithm parameter studies

 Implement some of the existing platooning algorithms

 Impact of the communication networks

 When is platooning impossible? How dense should the traffic be?

 How do we negotiate between sparsely populated vehicles to form a platoon?

 How do you decide the lead vehicle and size of the platoon in a distributed system like car

platoons?

 What happens if there’s a hostile (or compromised) vehicle system within a platoon

 Can you detect them?

 How do we distinguish communication packets when there are multiple platoons in

vicinity?

 Could traffic lights be synchronized with platoon lengths to avoid cutting the platoon in

half using communication?

Page 24

Examples

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Please form a group and suggest a topic before next Tuesday by email

 sangyoung.park@tu-berlin.de

 I will be available every tutorial session for help with the programming

 Topics can be very flexible

 But don‘t choose a topic, which is too complex and require too much

manpower unless you are really into it

Page 25

Topic Suggestion

Vehicle-2-X: Tutorial – Basic Platooning Implementation

mailto:sangyoung.park@tu-berlin.de

