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Module ”Vehicle-2-X: Communication and Control“

Basic Platooning Implementation



 Let‘s start with something simple

 Let‘s read the distance to the preceding vehicle only and try to adjust the 

acceleration of the current vehicle

 Would you be able to implement this?

 𝑎 = 𝑝 ⋅ (𝑑 − 𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑)
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Implementation of Simple Platooning Algorithm

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement



 Previously, we were allowing only the lead vehicle to broadcast

 For now, let‘s allow all the vehicles to broadcast

 In initilize(),

 Only the lead vehicle announces the service (but tbh, it‘s not necessary)

 Move the scheduleAt() out of the if clause

 Notice the change of ID from 14 to 13? Let me explain this in the next slides
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Letting all nodes to broadcast
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else if (stage == 1) {
//Initializing members that require initialized other modules goes here
// Vehicle IDs are 14, 20, 26, 32, and 38, respectively

if (myId == 13){ // this is the head vehicle
startService(Channels::SCH2, currentOfferedServiceId, "Platoon Lead Vehicle Service");

}
scheduleAt(computeAsynchronousSendingTime(beaconInterval, type_CCH),sendBeaconEvt);

}



 Now, we can’t assume the sender is the lead vehicle

 We need to identify the sender upon receiving BSM before taking action

 Read the sender ID from BSM and check whether it’s from the preceding 

vehicle

 Let’s define a Boolean

variable to do so (from

PrecedingVehicle)
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Identifying the Sender
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void VehicleControlApp::onBSM(BasicSafetyMessage* bsm){
int senderId = bsm->getSenderAddress();

bool fromPrecedingVehicle = false;

switch (this->myId){
case 13:

break;
case 19:

if (senderId == 13 ) fromPrecedingVehicle = true;
break;

case 25:
if (senderId == 19 ) fromPrecedingVehicle = true;
break;

case 31:
if (senderId == 25 ) fromPrecedingVehicle = true;
break;

case 37:
if (senderId == 31 ) fromPrecedingVehicle = true;
break;

default:
ASSERT(0); // no other ids should exist in the simulation
break;

} .....



 I thought that this->getId() would yield a unique identifier, but it seems 

that the return value of getId() is a component in the lower layer

 The ID of the VehicleControlApp can be obtained by directly accessing 

myId of the class

 This is also equivalent to the senderId populated by populateWSM()

 So, the IDs will be now 13, 19, 25, 31, 37, ...
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Identifying the Sender
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 In onBSM(), we could adjust the acceleration (or speed) to change the 

status of the vehicle if fromPrecedingVehicle == true
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Adjust the Vehicle Velocity
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Coord& precedingVehicleSpeed = bsm->getSenderSpeed();
Coord& precedingVehiclePos = bsm->getSenderPos();
traciVehicle->setSpeedMode(0x1f);

double desiredDistance = 6.0;
double coeff = 1;

if (fromPrecedingVehicle)
{

double distance = (precedingVehiclePos- curPosition).length();
double acc = coeff * (distance - desiredDistance);

std::cout << "t" << simTime() << ": Distance [" << senderId << "]-[" << myId << "]: " << distance << 
" acc: " << acc << "\n";

if ( acc > 0){
traciVehicle->setAccel(acc);
traciVehicle->setSpeed(100);

}
else {

traciVehicle->setDecel(-acc);
traciVehicle->setSpeed(0);

}
}



 Veins does not provide an interface to directly control the acceleration of 

vehicles

 We could do the following work around (maybe there’s a better way)

 Set maximum acceleration or deceleration value

 Set a very high speed or low speed to ensure that the vehicle is taking that 

maximum acceleration or deceleration value

 I am open to suggestions or improvements

 But Veins doesn’t provide an interface to control the max acceleration 

and max deceleration either

 Let’s try implement the functionalities
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Setting Acceleration Values
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 TraCI interface is no magic, all the commands and API (functions we 

could use) are defined in the following three files in the folder 

veins/src/veins/modules/mobility/traci/

 TraCICommandInterface.cc and TraCICommandInterface.h

 TraCIConstants.h

 For example, if you look at the function we already used, “setSpeed()”

 You can see that variableId = VAR_SPEED

 VAR_SPEED is defined in TraCIConstants.h as 0x40

 You can also see 0x40 from 

https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State
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New Functions to the TraCI Interface
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void TraCICommandInterface::Vehicle::setSpeed(double speed) {
uint8_t variableId = VAR_SPEED;
uint8_t variableType = TYPE_DOUBLE;
TraCIBuffer buf = traci->connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer() << variableId << nodeId << 
variableType << speed);
ASSERT(buf.eof());
}

https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State


 So, we could implement the functions setAccel() and setDecel() in a 

similar way

 Define the function format in the header file (.h)

 Define the function in the cc file (.cc)
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New Functions to the TraCI Interface

Vehicle-2-X: Tutorial – Basic Platooning Implementation

// in TraCICommandInterface.h
void setAccel(double accel);
void setDecel(double decel);

// added by spark
void TraCICommandInterface::Vehicle::setAccel(double
accel) {

uint8_t variableId = VAR_ACCEL;
uint8_t variableType = TYPE_DOUBLE;
TraCIBuffer buf = traci-

>connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer() 
<< variableId << nodeId << variableType << accel);

ASSERT(buf.eof());
}

// added by spark
void TraCICommandInterface::Vehicle::setDecel(double
decel) {

uint8_t variableId = VAR_DECEL;
uint8_t variableType = TYPE_DOUBLE;
TraCIBuffer buf = traci-

>connection.query(CMD_SET_VEHICLE_VARIABLE, TraCIBuffer() 
<< variableId << nodeId << variableType << decel);

ASSERT(buf.eof());
}



 For example, you can read the minGap parameter in the car following 

model (recall car following model lecture)

 https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Rou

tes
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What About Reading Variables using TraCI?
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//In CC file
double TraCICommandInterface::Vehicle::getMinGap() {

return traci->genericGetDouble(CMD_GET_VEHICLE_VARIABLE, nodeId, VAR_MINGAP, RESPONSE_GET_VEHICLE_VARIABLE);
}

//In header file
double getMinGap();

https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes


 Fortunately, Veins provides its own statistics mechanism, so we can just 

make use of it

 After you simulate anything, data will be generated in the results folder

 If you double click .vec file you will be able to generate .anf file

 In the tab “browse data” at the bottom, 

and then “vectors” tab at the top,

you will be able to generate graphs about

the position, velocity, and acceleration of vehicles
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Plotting the Results
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Plotting the Results
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 Wait why is the the velocity the same and the gap is 19.05 m? The 

control doesn’t work! 
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Speed vs Time Graph
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 One thing to note is that SUMO does not allow direct control of vehicle 

acceleration and deceleration, but rather lets you configure parameters in 

“driver models”

 SUMO default model is “carFollowing-Krauss”
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Overriding the SUMO Driver Models
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https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes



 So, the vehicles are trying to maintain the minimum time and space gap 

to the preceding vehicle

 The distance we’d like to achieve 6 m is going to be overridden by the 

driver model from SUMO

 So far, I haven’t found a way to directly control acceleration, but we can 

try to do it by setting the values minGap (space headway) and tau (time 

headway) to a small value

 We can do that in the .rou.xml file

 Let’s say we set the values tau and minGap to be both 0.1 (default 

values are 1.0 and 2.5)
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Overriding the SUMO Driver Models
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 Something has happened

 Vehicles collide and disappear in the simulation because our algorithm 

can’t handle the situation

 X pos vs time graph

 Red line disappears after 13 seconds
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Debugging the Code
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 Something’s not right about the results, the positions are not being 

updated frequently as we want

 If you look into the console window (in Omnetpp IDE), something is 

wrong

 The vehicle distance is not as often updated (1 sec interval) as the BSM 

send interval

 This means we can’t rely on current handleUpdatePosition() to update 

the position of velocity values of the vehicles
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Debugging the Code
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t3.029858499977: Distance [13]-[19]: 10.5 acc: 4.5
t3.129870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.229870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.329870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.429870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.529870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.629870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.729870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.829870016741: Distance [13]-[19]: 10.5 acc: 4.5
t3.929870016741: Distance [13]-[19]: 10.5 acc: 4.5
t4.029870056769: Distance [13]-[19]: 16.5 acc: 10.5
t4.129870056769: Distance [13]-[19]: 16.5 acc: 10.5



 Let me figure something out about this…. Very soon..
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Debugging the Code
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 TraCI interface to traffic light control is given in 

TraCICommandInterface.cc as well
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Traffic Light Control
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class Trafficlight {
public:
Trafficlight(TraCICommandInterface* traci, std::string trafficLightId) : traci(traci), trafficLightId(trafficLightId) 
{
connection = &traci->connection;
}

std::string getCurrentState() const;
int32_t getDefaultCurrentPhaseDuration() const;
std::list<std::string> getControlledLanes() const;
std::list<std::list<TraCITrafficLightLink> > getControlledLinks() const;
int32_t getCurrentPhaseIndex() const;
std::string getCurrentProgramID() const;
TraCITrafficLightProgram getProgramDefinition() const;
int32_t getAssumedNextSwitchTime() const;

void setProgram(std::string program);/**< set/switch to different program */
void setPhaseIndex(int32_t index); /**< set/switch to different phase within the program  */
void setState(std::string state);
void setPhaseDuration(int32_t duration); /**< set remaining duration of current phase in milliseconds */
void setProgramDefinition(TraCITrafficLightProgram::Logic program, int32_t programNr);

protected:
TraCICommandInterface* traci;
TraCIConnection* connection;
std::string trafficLightId;
};



 If you want to work on realistic maps, you can import maps from 

openstreetmap

 https://sumo.dlr.de/wiki/Tutorials/Import_from_OpenStreetMap
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Importing Realistic Maps
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https://sumo.dlr.de/wiki/Tutorials/Import_from_OpenStreetMap


 Platooning Extension (PLEXE) available if you want to use it, you can of 

course use it
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Further Information
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 Notice for the Term Project
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Notice for the Term Project
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 2 students per group
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Forming the Groups
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 I do not expect something too complicated from you

 The project should be doable within the given time frame

 Should resolve your genuine curiosity about V2X communication

 Platooning algorithm parameter studies

 Implement some of the existing platooning algorithms

 Impact of the communication networks

 When is platooning impossible? How dense should the traffic be?

 How do we negotiate between sparsely populated vehicles to form a platoon?

 How do you decide the lead vehicle and size of the platoon in a distributed system like car 

platoons?

 What happens if there’s a hostile (or compromised) vehicle system within a platoon

 Can you detect them?

 How do we distinguish communication packets when there are multiple platoons in 

vicinity?

 Could traffic lights be synchronized with platoon lengths to avoid cutting the platoon in 

half using communication?
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Examples
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 Please form a group and suggest a topic before next Tuesday by email

 sangyoung.park@tu-berlin.de

 I will be available every tutorial session for help with the programming

 Topics can be very flexible

 But don‘t choose a topic, which is too complex and require too much 

manpower unless you are really into it
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Topic Suggestion
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