
Tutorial 4: Vehicle Speed Control and Service Announcement

Prof. Sangyoung Park

Module ”Vehicle-2-X: Communication and Control“

Vehicle Speed Control and Service Announcement

▪ New-> Class (OMNet++)

▪ VehicleControlApp.cc and VehicleControlApp.h

are generated

▪ Let‘s copy the contents from MyVeinsApp.cc/h

▪ Veins/src/veins/modules/application/traci/

▪ But of course, you should change the file content

to reflect the name change

Page 2

Let‘s make a new WaveApplFile (cc and h)

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

▪ New -> Network Description File (NED)

▪ Again, copy the contents from MyVeinsApp.ned to VehicleControlApp.ned

and fix the names accordingly

▪ But, there will be errors!

▪ We need to add a ned file called „package.ned“ in order to be able to use

„package newTest“ in the MyVeinsApp.ned file

▪ In the package.ned file, you also need „package newTest;“

▪ The name you write in „package.ned“ should appear in the

VehicleControlApp.ned in order to avoid error

Page 3

Let‘s make a new WaveApplFile (ned)

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

▪ Let‘s make the first car, which appears on the map, to make the service

announcement (WSA)

▪ We can make use of startService() to start a WAVE service

▪ However, we don‘t want every car to start their own services

void VehicleControlApp::initialize(int stage){
BaseWaveApplLayer::initialize(stage);
if (stage == 0) {

//Initializing members and pointers of your application goes here
EV << "Initializing " << par("appName").stringValue() << std::endl;
mobility = TraCIMobilityAccess().get(getParentModule());
//traci = mobility->getCommandInterface();
traciVehicle = mobility->getVehicleCommandInterface();
//findHost()->subscribe(mobilityStateChangedSignal, this);
subscribedServiceId = -1;
currentOfferedServiceId = 7;

wsaInterval = 5;
beaconInterval = 0.1;

}
else if (stage == 1) {

//Initializing members that require initialized other modules goes here
if (getId() == 14){

// this is the head vehicle
startService(Channels::SCH2, currentOfferedServiceId, "Platoon Lead Vehicle Service");
//scheduleAt()
scheduleAt(computeAsynchronousSendingTime(beaconInterval, type_CCH),sendBeaconEvt);

}
}

}

Page 4

Let‘s make Wave Service Announcements (WSA)

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

▪ During the initialization of each car node, we check for the ID by using

myId()

▪ If it‘s the first car, we call startService(), you can put any number for

currentOfferedServiceId

▪ Types of WAVE messages available in Veins

▪ Wave service message (WSM)

▪ Wave service announcement (WSA)

▪ Basic safety messages (BSM)

▪ If you go inside the function startService(), you will see that WSA will be

scheduled using scheduleAt() for the next CCH period

Page 5

Let‘s make Wave Service Announcements (WSA)

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

void BaseWaveApplLayer::startService(Channels::ChannelNumber channel, int serviceId, std::string serviceDescription) {
....
mac->changeServiceChannel(channel);
currentOfferedServiceId = serviceId;
currentServiceChannel = channel;
currentServiceDescription = serviceDescription;

simtime_t wsaTime = computeAsynchronousSendingTime(wsaInterval, type_CCH);
scheduleAt(wsaTime, sendWSAEvt);

}

▪ If you are wondering what scheduleAt() function would end up, it ends up

in the following function

▪ It fills up the message (populateWSM), and sends the message to MAC

layer (sendDown)

▪ It‘s going to schedule WSA periodically (period is wsaInterval) once a

service is started

Page 6

Let‘s make Wave Service Announcements (WSA)

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

void BaseWaveApplLayer::handleSelfMsg(cMessage* msg) {
switch (msg->getKind()) {
case SEND_BEACON_EVT: {

BasicSafetyMessage* bsm = new BasicSafetyMessage();
populateWSM(bsm);
sendDown(bsm);
scheduleAt(simTime() + beaconInterval, sendBeaconEvt);
break;

}
case SEND_WSA_EVT: {

WaveServiceAdvertisment* wsa = new WaveServiceAdvertisment();
populateWSM(wsa);
sendDown(wsa);
scheduleAt(simTime() + wsaInterval, sendWSAEvt);
break;

}

▪ Let‘s go back to initialize function

▪ We update the member variables curPosition and curSpeed defined in

class BaseApplLayer using the traCI interface (mobility)

▪ We make a WAVE packet, in this case a BSM, populate the packet, and

schedule to send it later

▪ It is likely that we would require this information periodically

▪ Fortunately, there is already a mechanism in the WaveApplLayer

Page 7

Let‘s send Velocity Information

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

else if (stage == 1) {
//Initializing members that require initialized other modules goes here
if (getId() == 14){

// this is the head vehicle
startService(Channels::SCH2, currentOfferedServiceId, "Platoon Lead Vehicle Service");
//scheduleAt()
scheduleAt(computeAsynchronousSendingTime(beaconInterval, type_CCH),sendBeaconEvt);

}
}

▪ Remember „scheduleAt()“ function from the OMNet++ Tictoc tutorial?

▪ scheduleAt() is used for self-messages

▪ In BaseWaveApplLayer.cc, there is function handleSelfMsg()

▪ Once scheduleAt is used with either SEND_BEACON_EVT or

SEND_WSA_EVT kind of cMessages, it‘s going to be re-scheduled

periodically

Page 8

Periodic Transmission of WAVE Messages

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

void BaseWaveApplLayer::handleSelfMsg(cMessage* msg) {
switch (msg->getKind()) {
case SEND_BEACON_EVT: {

BasicSafetyMessage* bsm = new BasicSafetyMessage();
populateWSM(bsm);
sendDown(bsm);
scheduleAt(simTime() + beaconInterval, sendBeaconEvt);
break;

}
case SEND_WSA_EVT: {

WaveServiceAdvertisment* wsa = new WaveServiceAdvertisment();
populateWSM(wsa);
sendDown(wsa);
scheduleAt(simTime() + wsaInterval, sendWSAEvt);
break;

}
default: {

if (msg)
DBG_APP << "APP: Error: Got Self Message of unknown kind! Name: " << msg->getName() << endl;

break;
}
}

}

▪ So, how do we initiate the periodic transmission of BSM?

▪ We schedule the first sendBeaconEvt in intialize()

Page 9

Periodic Transmission of WAVE Messages

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

void VehicleControlApp::initialize(int stage){
BaseWaveApplLayer::initialize(stage);
if (stage == 0) {

//Initializing members and pointers of your application goes here
EV << "Initializing " << par("appName").stringValue() << std::endl;
mobility = TraCIMobilityAccess().get(getParentModule());
//traci = mobility->getCommandInterface();
traciVehicle = mobility->getVehicleCommandInterface();
//findHost()->subscribe(mobilityStateChangedSignal, this);
subscribedServiceId = -1;
currentOfferedServiceId = 7;

wsaInterval = 5;
beaconInterval = 0.1;

}
else if (stage == 1) {

//Initializing members that require initialized other modules goes here
if (getId() == 14){

// this is the head vehicle
startService(Channels::SCH2, currentOfferedServiceId, "Platoon Lead Vehicle Service");
//scheduleAt()
scheduleAt(computeAsynchronousSendingTime(beaconInterval, type_CCH),sendBeaconEvt);

}
}

}

▪ Wait, how did I know the ID of the first car would be 14?

▪ Let‘s use the debugger

▪ Add the line in the red rectangle to the source code

▪ Double click on the left to create a „breakpoint“

▪ A small blue dot will appear

▪ Omnetpp.ini (right click) -> debug as -> omnet++ simulation

Page 10

Using Debugger

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

▪ The perspective of the Omnet IDE changes to the „debug perspective“

▪ If you run, the program will stop at the breakpoint

▪ If you lay your mouse cursor on top of idDebug, you will be able to see

the value of the variable

▪ Or, you can look into the sub-window in the top-right corner to find

„variables“ window to read the value of the variables or the member

variables of the current object (this)

▪ In my case, the value was 14

Page 11

Using Debugger

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

▪ Changing perspectives, if you want to exit the debugger perspective, you

can click on the small buttons on the top-right corner to change

perspectives

Page 12

Using Debugger

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

▪ We haven‘t allowed the usage of SCH

▪ We can configure such parameters in the omnetpp.ini file

Page 13

Oops, errors exist

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

##
11p specific parameters
#
NIC-Settings
##
*.connectionManager.sendDirect = true
*.connectionManager.maxInterfDist = 2600m
*.connectionManager.drawMaxIntfDist = false

*.**.nic.mac1609_4.useServiceChannel = true

*.**.nic.mac1609_4.txPower = 20mW
*.**.nic.mac1609_4.bitrate = 6Mbps
*.**.nic.phy80211p.sensitivity = -89dBm

*.**.nic.phy80211p.useThermalNoise = true
*.**.nic.phy80211p.thermalNoise = -110dBm

*.**.nic.phy80211p.decider = xmldoc("config.xml")
*.**.nic.phy80211p.analogueModels = xmldoc("config.xml")
*.**.nic.phy80211p.usePropagationDelay = true

*.**.nic.phy80211p.antenna = xmldoc("antenna.xml",
"/root/Antenna[@id='monopole']")

▪ The following function handles the position changes in SUMO and reflect

the changes to the Veins simulation platform

▪ The function is automatically invoked everytime there is a change of

movement in the cars in SUMO simulator

▪ Hence, if we change the status of the lead vehicle (id == 14) according to

time, we can control the movement of the vehicle

Page 14

Changing the Speed of the Lead Vehicle

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

void VehicleControlApp::handlePositionUpdate(cObject* obj){
BaseWaveApplLayer::handlePositionUpdate(obj);

if (this->getId() == 14){
const simtime_t t = simTime();
if (t == 10) {

traciVehicle->setSpeedMode(0x1f);
traciVehicle->setSpeed(0);

}
else if (t == 20) {

traciVehicle->setSpeedMode(0x1f);
traciVehicle->setSpeed(20);

}
}

}

▪ Upon receiving the BSM from the leading vehicle, we can adjust the

speed of the vehicle

▪ Why do I use .length() for speed?

▪ Try to find out by exploring the „Coord“ class

Page 15

Behavior of vehicles upon receiving a BSM

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

void VehicleControlApp::onBSM(BasicSafetyMessage* bsm){
Coord& leadVehicleSpeed = bsm->getSenderSpeed();

traciVehicle->setSpeedMode(0x1f);
traciVehicle->setSpeed(leadVehicleSpeed.length());

}

▪ Now, the speed of the lead vehicle is shared with other vehicles every 0.1

s

▪ There‘s too much animation going on to describe the packet movements

▪ We can speed up the simulation by adjusting the amount of animation we

want to view

▪ In the omnet simulation environment

▪ Simulate -> Fast run / Express run

▪ Simulation will be performed with increased speed without executing the

animations

Page 16

Simulation Speed

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

▪ https://sumo.dlr.de/wiki/Tools/Visualization

▪ Let‘s try to get some graphs!

▪ (But I have to work on it... Sry)

Page 17

Reading Out the Simulation Results

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

https://sumo.dlr.de/wiki/Tools/Visualization

▪ In folder doc/doxy/

▪ There is some documentation available on the veins library

▪ (To be honest, it‘s not that useful)

Page 18

Documentation of Veins Library

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

▪ Let‘s start with something simple

▪ Let‘s read the distance to the preceding vehicle only and try to adjust the

acceleration of the current vehicle

▪ Would you be able to implement this?

▪ 𝑎 = 𝑝 ⋅ (𝑑 − 𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑)

Page 19

Implementation of Simple Platooning Algorithm

Vehicle-2-X: Tutorial – Vehicle Speed Control and Service Announcement

