
Tutorial 3: Custom Veins Example

Prof. Sangyoung Park

Module ”Vehicle-2-X: Communication and Control“

Custom Veins Example

 C++ is an objective-oriented programming language

 Deals with classes

 Classes have member functions and member variables

 Public: any member can access the functions and variables

 Private: only the object itself can access the functions and variables

 Inheritance

 Classes can inherit other classes

 The best way to deal with it is to do it yourself

 If you are not familiar with C++, I can provide a very simple example

code

 Test.cc is about basics of classes

 Car.cc is about basics of class inheritance

Page 2

For those of you not familiar with C++

Vehicle-2-X: Tutorial – Custom Veins Example

 Quickest way to test your code is to

 On Msss terminal, type

 >> g++ test.cc

 >> ./a.exe

 You will be able to find out how the code runs

 Besides this, the programming is basically Googling

 For example, if you are wondering what „printf“ is,

 Please google it for the function description

 C++ standard library (STL) documentation is available on the web

Page 3

For those of you not familiar with C++

Vehicle-2-X: Tutorial – Custom Veins Example

 We‘ve ran a tutorial example before, but we don‘t know what it actually

does

 Let‘s make a working example from scratch

 Step 1: Let‘s make a simpler road network and traffic

https://sumo.dlr.de/wiki/Tutorials/Driving_in_Circles

 Step 2: Check whether the code works with omnetpp.ini from the veins

tutorial

 Step 3: Let‘s make an application (or service which does nothing)

 Step 4: Let‘s play around with it a little bit (demo will be shown)

Page 4

Veins Simulator

Vehicle-2-X: Tutorial – Custom Veins Example

https://sumo.dlr.de/wiki/Tutorials/Driving_in_Circles

 Faithfully follow the instructions from

https://sumo.dlr.de/wiki/Tutorials/Driving_in_Circles

 Common mistakes

 First try must end in error you must add the route information to

circles.rou.xml

<flow id="carflow" type="car" beg="0" end="0" number="5" from="edge1"

to="edge2"/>

 Don‘t forget to change the „id“s of the „edges“ (not vertices) to edge1 and

edge2

 When adding circles.add.xml, you must add the following line to to

circles.sumocfg. Otherwise, SUMO simulation will not recognize the

additional file

<additional-files value="circles.add.xml"/>

Page 5

Step 1: Driving in Circles

Vehicle-2-X: Tutorial – Custom Veins Example

https://sumo.dlr.de/wiki/Tutorials/Driving_in_Circles

 Common mistakes

 You might encounter an error where the vehicles cannot find the path. This

could be due to the fact that only one-way streets are used (see figure below

no path due to wrong alignment)

 You could solve this by aligning the one-way streets, or adding two-way for

all streets

Page 6

Step 1: Driving in Circles

Vehicle-2-X: Tutorial – Custom Veins Example

 If you follow the steps correctly, you will see cars circulating forever

Page 7

Step 1: Driving in Circles

Vehicle-2-X: Tutorial – Custom Veins Example

 Make a new Omnet++ project from Omnet++

 File -> New -> Omnet++ Project

 Use whatever project name (but should not overlap with other existing

project names) and location you prefer

 Choose an empty project

 Finish

 Copy SUMO simulation files into your project folder

 circles.*.xml

 Yet you need another file „circles.launchd.xml“

Page 8

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Copy files from Veins example folder to your project folder

 Antenna.xml

 Config.xml

 Let’s make a network description file

 File -> New -> Network Description File (NED)

 Make an empty file with your choice of name

 Copy contents of RSUExampleScenario.ned to our ned file

 It’s in [veins_folder]/examples/veins/RSUExampleScenario.ned

 But let’s change the network name, because it will overlap with the original

network name (I changed it to myTestNetwork)

Page 9

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Reference to Veins libraries

 There will be lots of errors because the Omnet++ simulator is a network

simulator. By default, it is not aware of RSUs, Cars, etc., which is

implemented in Veins

 We need to reference the libraries that Veins developers have made

 Right-click your project in the project explorer (in my case newTest below)

 Properties -> Project References -> Click Veins -> “Apply and Close”

Page 10

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Copying and modifying the omnetpp.ini file

 There are a lot of things (simulation parameters), which can be configured

from the file

 As we are already using lots of codes from Veins such as RSU, cars, etc., it’s

more convenient to start with the existing omnetpp.ini file, which is in

veins/examples/veins/omnetpp.ini

 But of course, we have to modify it

 We should change the name of the network we are simulating (myTestNetwork)

 We should comment out the obstacle model because there’s no obstacle such as

buildings in our simulation

Page 11

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Copying and modifying the omnetpp.ini file

 And we have to let the ini file know that we are running circles traffic

simulation

 Finally, we have to define the behavior of RSUs, and cars

 Let‘s use MyVeinsApp

 The source code is in veins/src/modules/application/traci

Page 12

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Please recall OSI model layers

 PHY/MAC layers are also defined in the ini file

 The ini file lets you configure various parameters

 But now, we are interested in „application“ layer

 We‘ve designated WAVE application as MyVeinsApp

 If you open MyVeinsApp.cc, there is nothing in the functions

 This means that the application will do nothing upon receiving a WAVE

packet

 Current ini file, by default, generates an accident

 For now, let‘s remove it from the ini file

 *.node[*0].veinsmobility.accidentCount = 0

 Let‘s the run simulation!

 Right click the ini file and run as omnetpp simulation

 You‘ll see cars running in circles as you have seen from the SUMO

simulation
Page 13

Step 3: Custom Application

Vehicle-2-X: Tutorial – Custom Veins Example

 Enable beacon messages from the RSU

 SendBeacons every 10 seconds

 Define cars‘ behavior upon receiving the beacon message

 https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State#speed_mode_.280xb3.

29

 Now the cars repeatedly stop-and-go upon receiving beacon msg

Page 14

Step 4: Let‘s make the vehicles change behavior

Vehicle-2-X: Tutorial – Custom Veins Example

https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State#speed_mode_.280xb3.29

 But the simulation speed is too slow!

 Run with express speed

 You can see the results afterwards

 In the results folder in your project, there are multiple files generated

 Double click *.vec file and an output file (with extension .anf) will be

generated

 Go to “vectors” tab, and select the data you want to display, right click

and plot

 You will have graphs like the one on the next page (not exactly the same)

Page 15

Step 5: Let‘s initiate a WAVE Service

Vehicle-2-X: Tutorial – Custom Veins Example

Page 16Vehicle-2-X: Tutorial – Custom Veins Example

