
Tutorial 3: Custom Veins Example

Prof. Sangyoung Park

Module ”Vehicle-2-X: Communication and Control“

Custom Veins Example

 C++ is an objective-oriented programming language

 Deals with classes

 Classes have member functions and member variables

 Public: any member can access the functions and variables

 Private: only the object itself can access the functions and variables

 Inheritance

 Classes can inherit other classes

 The best way to deal with it is to do it yourself

 If you are not familiar with C++, I can provide a very simple example

code

 Test.cc is about basics of classes

 Car.cc is about basics of class inheritance

Page 2

For those of you not familiar with C++

Vehicle-2-X: Tutorial – Custom Veins Example

 Quickest way to test your code is to

 On Msss terminal, type

 >> g++ test.cc

 >> ./a.exe

 You will be able to find out how the code runs

 Besides this, the programming is basically Googling

 For example, if you are wondering what „printf“ is,

 Please google it for the function description

 C++ standard library (STL) documentation is available on the web

Page 3

For those of you not familiar with C++

Vehicle-2-X: Tutorial – Custom Veins Example

 We‘ve ran a tutorial example before, but we don‘t know what it actually

does

 Let‘s make a working example from scratch

 Step 1: Let‘s make a simpler road network and traffic

https://sumo.dlr.de/wiki/Tutorials/Driving_in_Circles

 Step 2: Check whether the code works with omnetpp.ini from the veins

tutorial

 Step 3: Let‘s make an application (or service which does nothing)

 Step 4: Let‘s play around with it a little bit (demo will be shown)

Page 4

Veins Simulator

Vehicle-2-X: Tutorial – Custom Veins Example

https://sumo.dlr.de/wiki/Tutorials/Driving_in_Circles

 Faithfully follow the instructions from

https://sumo.dlr.de/wiki/Tutorials/Driving_in_Circles

 Common mistakes

 First try must end in error you must add the route information to

circles.rou.xml

<flow id="carflow" type="car" beg="0" end="0" number="5" from="edge1"

to="edge2"/>

 Don‘t forget to change the „id“s of the „edges“ (not vertices) to edge1 and

edge2

 When adding circles.add.xml, you must add the following line to to

circles.sumocfg. Otherwise, SUMO simulation will not recognize the

additional file

<additional-files value="circles.add.xml"/>

Page 5

Step 1: Driving in Circles

Vehicle-2-X: Tutorial – Custom Veins Example

https://sumo.dlr.de/wiki/Tutorials/Driving_in_Circles

 Common mistakes

 You might encounter an error where the vehicles cannot find the path. This

could be due to the fact that only one-way streets are used (see figure below

no path due to wrong alignment)

 You could solve this by aligning the one-way streets, or adding two-way for

all streets

Page 6

Step 1: Driving in Circles

Vehicle-2-X: Tutorial – Custom Veins Example

 If you follow the steps correctly, you will see cars circulating forever

Page 7

Step 1: Driving in Circles

Vehicle-2-X: Tutorial – Custom Veins Example

 Make a new Omnet++ project from Omnet++

 File -> New -> Omnet++ Project

 Use whatever project name (but should not overlap with other existing

project names) and location you prefer

 Choose an empty project

 Finish

 Copy SUMO simulation files into your project folder

 circles.*.xml

 Yet you need another file „circles.launchd.xml“

Page 8

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Copy files from Veins example folder to your project folder

 Antenna.xml

 Config.xml

 Let’s make a network description file

 File -> New -> Network Description File (NED)

 Make an empty file with your choice of name

 Copy contents of RSUExampleScenario.ned to our ned file

 It’s in [veins_folder]/examples/veins/RSUExampleScenario.ned

 But let’s change the network name, because it will overlap with the original

network name (I changed it to myTestNetwork)

Page 9

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Reference to Veins libraries

 There will be lots of errors because the Omnet++ simulator is a network

simulator. By default, it is not aware of RSUs, Cars, etc., which is

implemented in Veins

 We need to reference the libraries that Veins developers have made

 Right-click your project in the project explorer (in my case newTest below)

 Properties -> Project References -> Click Veins -> “Apply and Close”

Page 10

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Copying and modifying the omnetpp.ini file

 There are a lot of things (simulation parameters), which can be configured

from the file

 As we are already using lots of codes from Veins such as RSU, cars, etc., it’s

more convenient to start with the existing omnetpp.ini file, which is in

veins/examples/veins/omnetpp.ini

 But of course, we have to modify it

 We should change the name of the network we are simulating (myTestNetwork)

 We should comment out the obstacle model because there’s no obstacle such as

buildings in our simulation

Page 11

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Copying and modifying the omnetpp.ini file

 And we have to let the ini file know that we are running circles traffic

simulation

 Finally, we have to define the behavior of RSUs, and cars

 Let‘s use MyVeinsApp

 The source code is in veins/src/modules/application/traci

Page 12

Step 2: Running the Simulation from Veins

Vehicle-2-X: Tutorial – Custom Veins Example

 Please recall OSI model layers

 PHY/MAC layers are also defined in the ini file

 The ini file lets you configure various parameters

 But now, we are interested in „application“ layer

 We‘ve designated WAVE application as MyVeinsApp

 If you open MyVeinsApp.cc, there is nothing in the functions

 This means that the application will do nothing upon receiving a WAVE

packet

 Current ini file, by default, generates an accident

 For now, let‘s remove it from the ini file

 *.node[*0].veinsmobility.accidentCount = 0

 Let‘s the run simulation!

 Right click the ini file and run as omnetpp simulation

 You‘ll see cars running in circles as you have seen from the SUMO

simulation
Page 13

Step 3: Custom Application

Vehicle-2-X: Tutorial – Custom Veins Example

 Enable beacon messages from the RSU

 SendBeacons every 10 seconds

 Define cars‘ behavior upon receiving the beacon message

 https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State#speed_mode_.280xb3.

29

 Now the cars repeatedly stop-and-go upon receiving beacon msg

Page 14

Step 4: Let‘s make the vehicles change behavior

Vehicle-2-X: Tutorial – Custom Veins Example

https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State#speed_mode_.280xb3.29

 But the simulation speed is too slow!

 Run with express speed

 You can see the results afterwards

 In the results folder in your project, there are multiple files generated

 Double click *.vec file and an output file (with extension .anf) will be

generated

 Go to “vectors” tab, and select the data you want to display, right click

and plot

 You will have graphs like the one on the next page (not exactly the same)

Page 15

Step 5: Let‘s initiate a WAVE Service

Vehicle-2-X: Tutorial – Custom Veins Example

Page 16Vehicle-2-X: Tutorial – Custom Veins Example

