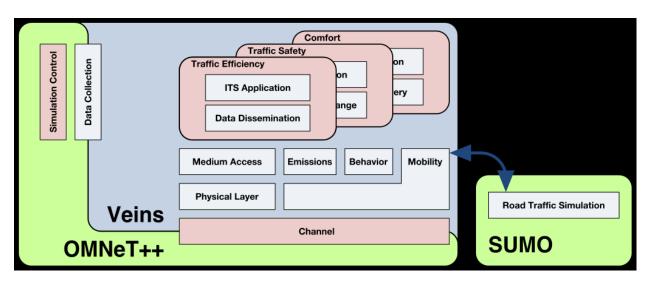


Tutorial 1: Introduction to the Simulation Setup

Introduction to the Simulation Setup

Prof. Sangyoung Park


Module "Vehicle-2-X: Communication and Control"

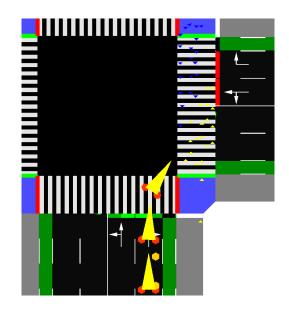
Tutorial Setup

- Veins simulator
 - Traffic simulator + network simulator
 - SUMO: Simulation of urban mobility
 - OMNet++
 - Discrete event simulator for networks
- What can we test?
 - To be elaborated at Tutorial parts

Source: Veins simulator website

SUMO – Simulation of Urban Mobility

- Microscopic transport simulation
- DLR's open source microscopic transport system simulation software
- Under development since 2001 with the explicit goal to simulate large cities in real-time
- TraCl (Traffic Control Interface) allows access to a running road traffic simulation

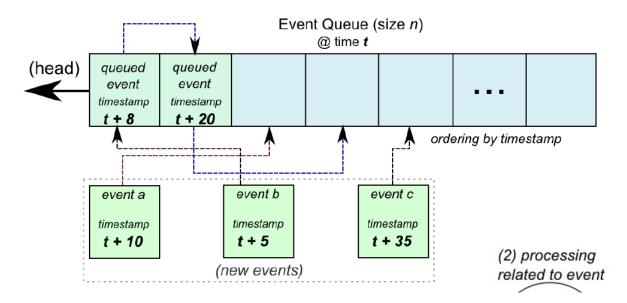


- It allows to retrieve values of simulated objects and to manipulate their behavior "on-line"
- In our case "Veins simulator" connects to SUMO via TraCI!

SUMO – What can be Run?

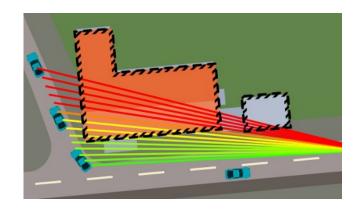
- Cars
- Busses
- Passengers
- Bicycles
- Pedestrians
- Ships
- Goods traffic

SUMO – What can be done?



- Planning and evaluation/assessment
 - Traffic management
 - Infrastructure changes (traffic lights?)
 - Public transport
 - New technologies
 - Vehicular communication
 - Automated transport systems
 - Optimization
 - Traffic lights
 - Routing
 - Data fusion for traffic surveillance

OMNet++


- Objective Modular Network Testbed in C++
- Discrete event simulator
- Provides generalized framework for network simulation
- Written in C++
 - Source code publicly available
- Simulation model for Internet, IPv6, Mobility, etc.

Veins Simulator

- Open source framework for running vehicular network simulations
- Based on two well-established simulators
 - OMNeT++: network simulator
 - SUMO: traffic simulator
- Allows online re-configuration and re-routing of vehicles in reaction to network packets
- Relies on IEEE 802.11p and IEEE 16094 DSRC/WAVE network layers
- Cellular networking: LTE
- Can perform city-block level simulations in real-time
- Suits our purpose! I'm sold, let's use this

But You Need Some Skills

- Some software skills required
- Open source programs are usually developed on Linux/Unix platforms
- We have Windows machines
- MinGW is a free and open source software development environment to create MS Windows applications
 - Includes a port of the GCC (compiler), GNU Binutils, Window specific header files and import libraries

But You Need Some Skills

- MinGW commands
 - Is: display files and folders
 - cd: change directory (e.g., cd .. Changes directory up!)
 - ./file_name: Execute an executable
 - echo \$PATH: displays environment variable PATH
 - export PATH=PATH:/User/user/src/
 - Adds a path to the PATH variable so that the system could find the location of the libraries and binaries
- Now I want you to start with Veins Tutorial
 - https://veins.car2x.org/tutorial/

Things to be careful

- Do not install the newest version of the softwares
- If you scroll down on the SUMO release page, you will find "older releases" please install the version indicated in the Veins tutorial (0.32.0)
- You will find that the simulation is really slow
- This is due to the animation effects of the packets
- If you run at fast or express speed you will see that simulation is orders of magnitude faster
 - There are buttons on the top of the OMNet++ GUI when you launch the simulation