
 Consider a group of vehicles that form a string in dense traffic

 𝑑𝑖 =
1

𝑠
𝑣𝑖

 𝑣𝑖 = 𝐺𝑖 𝑠 ⋅ 𝑣𝑖−1

 𝐺𝑖(𝑠) is the speed transfer function of i-th vehicle

 𝜖𝑖 = 𝑑𝑖−1 − 𝑑𝑖 − 𝐿 (range error)

 𝜖𝑣𝑖 = 𝑣𝑖−1 − 𝑣𝑖 (range rate error)

 Let 𝐿𝑖 = 𝑇ℎ ⋅ 𝑣𝑖

 Propagation transfer function becomes,

 ҧ𝐺𝑖,𝑘 =
𝜖𝑖+𝑘

𝜖𝑖
= 𝐺𝑖 ⋅ 𝐺𝑖+1 ⋅ 𝐺𝑖+2⋯𝐺𝑖+𝑘−1 ⋅

1−𝐺𝑖+𝑘−𝑠⋅𝑇ℎ⋅𝐺𝑖+𝑘

1−𝐺𝑖−𝑠⋅𝑇ℎ⋅𝐺𝑖

V2XCC: Vehicular Control Page 1

String Stability Analysis


𝜖𝑖

𝜖𝑖−1
=

𝜖𝑣𝑖

𝜖𝑣𝑖−1
=

𝑅𝑖

𝑅𝑖−1
=

𝑣𝑖

𝑣𝑖−1
= 𝐺

 Substituting all the equations from the previous page


𝜖𝑖

𝜖𝑖−1
=

1/𝑠 1−𝐺𝑖−𝑠⋅𝑇ℎ⋅𝐺𝑖 𝑣𝑖−1

1/𝑠 1−𝐺𝑖−1−𝑠⋅𝑇ℎ⋅𝐺𝑖−1 𝑣𝑖−2
=

1/𝑠 1−𝐺−𝑠⋅𝑇ℎ⋅𝐺 𝐺𝑣𝑖−2

1/𝑠 1−𝐺−𝑠⋅𝑇ℎ⋅𝐺 𝑣𝑖−2
= 𝐺

 By similar derivation process


𝜖𝑣𝑖

𝜖𝑣𝑖−1
= 𝐺 and

𝑅𝑖

𝑅𝑖−1
= 𝐺

V2XCC: Vehicular Control Page 2

Remark

 If the ideal vehicle model is assumed

 ሶ𝑥𝑖 = 𝐴𝑖𝑥𝑖 + 𝐵𝑖𝑢𝑖

 𝑥𝑖 =
𝑑𝑖
𝑣𝑖

, 𝐴𝑖 =
0 1
0 0

, 𝐵𝑖 =
0
1

 Let’s study P-control and constant time-headway controller

 𝑢𝑖 = 𝑘1 ⋅ 𝑑𝑖−1 − 𝑑𝑖 − 𝑇ℎ𝑣𝑖 + 𝑘2 𝑣𝑖−1 − 𝑣𝑖

 Substituting the control law in to state space equation and 𝑅𝑖 = 𝑑𝑖−1 − 𝑑𝑖
gives

 ሷ𝑅𝑖 + 𝑘2 + 𝑘1𝑇ℎ ⋅ ሶ𝑅𝑖 + 𝑘1𝑅𝑖 = 𝑘2 ሶ𝑅𝑖−1 + 𝑘1 ⋅ 𝑅𝑖−1

 Range propagation function is defined as


𝑅𝑖 𝑠

𝑅𝑖−1 𝑠
=

𝑘2𝑠+𝑘1

𝑠2+ 𝑘2+𝑘1𝑇ℎ 𝑠+𝑘1

 The above function is 1 if 𝜔 = 0

V2XCC: Vehicular Control Page 3

String Stability Analysis

 Range propagation function


𝑅𝑖 𝑠

𝑅𝑖−1 𝑠
=

𝑘2𝑠+𝑘1

𝑠2+ 𝑘2+𝑘1𝑇ℎ 𝑠+𝑘1

 The above function is 1 if 𝜔 = 0

 <1 for ∀𝜔 > 0, 𝑘2 =
2−𝑘1𝑇ℎ

2

2𝑇ℎ

 The controller is string

stable only in the gray area

V2XCC: Vehicular Control Page 4

String Stability Analysis

 Sliding surface method of controller design

𝑆𝑖 = ሶ𝜖𝑖 +
𝜔𝑛

𝜉 + 𝜉2 − 1

1

1 − 𝐶1
𝜖𝑖 +

𝐶1
1 − 𝐶1

𝑣𝑖 − 𝑣𝑙

where

ሶ𝑆𝑖 = −𝜆𝑆𝑖, with 𝜆 = 𝜔𝑛(𝜉 + 𝜉2 − 1)

 The desired acceleration of the vehicle is then given by

ሷ𝑥𝑖,𝑑𝑒𝑠 = 1 − 𝐶1 ሷ𝑥𝑖,𝑑𝑒𝑠 + 𝐶1 ሷ𝑥𝑙 − 2 2𝜉 − 𝐶1 𝜉 + 𝜉2 − 1

𝜔𝑛 ሶ𝜖𝑖 − 𝜉 + 𝜉2 − 1 𝜔𝑛𝐶1 𝑣𝑖 − 𝑣𝑙 − 𝜔𝑛
2𝜖𝑖

 The control gains to be tuned are 𝐶1,𝜉, 𝜔𝑛

 𝐶1: 0 ≤ 𝐶1 ≤ 1, can be viewed as weighting on the lead vehicle‘s speed and

acceleration

 𝜉: can be viewed as the damping ratio, critical damping if 1

 𝜔𝑛: bandwidth of the controller

V2XCC: Vehicular Control Page 5

Upper Level Controller Design 2

 ሶ𝑆𝑖 = −𝜆𝑆𝑖, with 𝜆 = 𝜔𝑛(𝜉 + 𝜉2 − 1), ensures the system converges to

the sliding surface

 Prior research shows that the system is „string stable“

 D. Swaroop, et al., „String Stability of Interconnected Systems,“ IEEE

Transactions on Automatic Control, 1996

 Robusness of the controller

 To lags induced by the lower-level controller can also be guaranteed

 Setting 𝐶1 = 0, we have the following classical second-order system

ሷ𝑥𝑖,𝑑𝑒𝑠 = ሷ𝑥𝑖−1 − 2𝜉𝜔𝑛 ሶ𝜖𝑖 − 𝜔2𝜖𝑖

V2XCC: Vehicular Control Page 6

Upper Controller Design 2

 Control with information of “r” preceding vehicles

 Mini-platoon control strategy

 Information from the lead vehicle increases the robustness

 Why don’t we divide a platoon into multiple mini-platoons and have more

lead vehicle information?

 Model predictive control

 Various objectives possible

 Minimizing gap regulating error

 Preserving string stability

 Driver comfort

 Minimizing fuel consumption

V2XCC: Vehicular Control Page 7

More Sophisticated Upper-Level Control?

 Lower level controller

 Throttle and brake actuator puts are determined so as to track the desired

acceleration

 Again, standard sliding surface control technique

 If the torque is chosen as 𝑇𝑛𝑒𝑡,𝑖 =
𝐽𝑒

𝑅ℎ
ሷ𝑥𝑖𝑑𝑒𝑠 + 𝑐𝑎𝑅

3ℎ3𝜔𝑒
2 + 𝑅 ℎ𝐹𝑓 + 𝑇𝑏𝑟 𝑗

, then

the acceleration of the vehicle equals the desired acceleration defined by the

upper level controller ሷ𝑥𝑖 = ሷ𝑥𝑖𝑑𝑒𝑠
 The map 𝑇𝑛𝑒𝑡 𝜔𝑒 , 𝑚𝑎 is inverted to obtain the desired air mass flow in

engine 𝑚𝑎𝑑𝑒𝑠

 A single surface controller is then used to calculate the throttle angle 𝛼 to

make 𝑚𝑎 track 𝑚𝑎𝑑𝑒𝑠

V2XCC: Vehicular Control Page 8

Lower Level Controller

 Define the surface as 𝑠2 = 𝑚𝑎 −𝑚𝑎𝑑𝑒𝑠

 Setting ሶ𝑠2 = −𝜂2𝑠2,

𝑀𝐴𝑋 ⋅ 𝑇𝐶 𝛼 𝑃𝑅𝐼 𝑚𝑎 = ሶ𝑚𝑎𝑜 − ሶ𝑚𝑎𝑑𝑒𝑠 − 𝜂2𝑠2

 Since 𝑇𝐶 𝛼 is invertible, he desired throttle angle can be calculated

 If the desired torque is negative, brake actuators is used to provide he

desired torque

V2XCC: Vehicular Control Page 9

Lower Level Controller

 Lead vehicle velocity profile

 Convergence of inter-vehicle distance

V2XCC: Vehicular Control Page 10

Experimental Results from PATH Project

Source: Handbook of Intelligent Vehicles

 Response to disturbance

 Uphill, downhill

V2XCC: Vehicular Control Page 11

Experimental Results from PATH Project

Source: Handbook of Intelligent Vehicles

 Lane control and longitudinal control can be performed mostly

independently of each other

 Coordination needed when joining or exiting a platoon

 Supervisor coordinates longitudinal and lateral control

V2XCC: Vehicular Control Page 12

Integration with Lateral Control System

 Supervisor of the vehicle requesting to join a platoon

V2XCC: Vehicular Control Page 13

Integration with Lateral Control System

 Supervisor of the follower vehicle, which splits from the preceding car

V2XCC: Vehicular Control Page 14

Integration with Lateral Control System

 „Tutorial on Control Theory“, Stefan Simrock, ITER, 2011

 J. Zhou, et al., „Range policy of adaptive cruise control vehicles for

improved flow stability and string stability,“ IEEE Transactions on

Intelligent Transportation Systems, 2005

 L. Xiao, et al., “Practical String Stability of Platoon of Adaptive Cruise

Control Vehicles”, IEEE Transactions on Intelligent Transportation

Systems, 2011

 C.Y. Liang, “Traffic-Friendly Adaptive Cruise Control Design”,

Dissertation, U. Mich. 2000

V2XCC: Vehicular Control Page 15

References

Lecture 6: Practical Issues in Digital Control

Prof. Sangyoung Park

Module ”Vehicle-2-X: Communication and Control“

Basic Platooning Implementation

 Controller design

 Using equations

 Controller implementation

Page 17

Control System Design

Vehicle-2-X: Tutorial – Basic Platooning Implementation

System

Identification

Controller

design

Control

system

analysis

System

models

Controller

Code

generation

Task

partitioning

Task mapping

& scheduling

No

Message

scheduling

Timing and

performance

analysis

Are control

objects

satisfied?

 Assumptions in controller design (control theorist)

 Infinite numerical accuracy

 Computing control law takes negligible time

 No delay from sensor to controller

 No delay from controller to actuator

 No jitter

 Controller implementation (Embedded systems engineer)

 Fix-precision arithmetic

 Tasks have non-negligible execution times

 Often large message delays

 Time- and event-triggered communication

Page 18

Control System Design

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 There is a gap between model and implementation

 Control theorist:

 “These are implementation details.

Not my problem!”

 Embedded systems engineer:

 “Model-level assumptions are not

satisfied by implementation”

 Research questions

 How do we quantify this gap?

 How should we close this gap?

 Solution: Controller/architecture co-design

Page 19

Semantic Gap

Vehicle-2-X: Tutorial – Basic Platooning Implementation

Controller design

Controller

implementation

 Performnace metrics have been different for

computer science domain and control algorithms

 Control algorithms are evaluated by

 Stability

 Settling time

 Peak overshot

 ...

 Computer programs are evaluated by

 Computation time

 Communication bandwidth

 Memory footprint

 Enegy consumption

 ...

Page 20

Implementation-Aware Controller Design

Vehicle-2-X: Tutorial – Basic Platooning Implementation

Controller design

Controller

implementation

 The deadlines are not hard for control-related messages

 What does it mean deadline are hard or soft?

 Hard deadline: something catastrophic happens when a control task is not

finished withint the given deadline

 Aircraft crashes, battery explodes, etc

 Soft deadline: there is degradation in performance, but a deadline miss to a

certain degree is tolerable

 Video streaming frame rate drop, etc

Page 21

Control Task Characteristics

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 The deadlines are not hard for control-related messages

 DC motor
𝑑

𝑑𝑡

ሶ𝜃
𝑖
=

−
𝑏

𝐽
−

𝐾

𝐽

−
𝐾

𝐿
−

𝑅

𝐿

ሶ𝜃
𝑖
+

0
1

𝐿

𝑉 → ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡

 Objective: ሶ𝜃 = 50

 As samples drop (ar

Page 22

Control Task Characteristics

Vehicle-2-X: Tutorial – Basic Platooning Implementation

http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling

 Sensitivity of control performance depends on the state of the controlled

plant

 The computation requirement at the steady-state is less, i.e., sampling

frequency can be reduced (e.g., event-triggered sampling)

 The communication requirements are less at steady-state, (e.g., ower

priority can be assigned to the feedback signals)

Page 23

Control Task Characteristics

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Traditional Emedded control system design

 Meeting deadilnes is of paramount importance

 Co-design

 Deadline takes the back seat

 Design space become bigger

 Resuling design is robust, cost-effective, ..

 Design objectives shift from low level metrics like deadlines to metric

governing system dynamics (like stability)

Page 24

Bottomline

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Networked Computer Systems

 Take network characteristics into account when desining the control laws

 Packet drops, delays, jitter, ...

Page 25

What about NCS?

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Arbitrated networked control systems

 ANCS – we can design the network

 By taking into account control performance constraints

 Problem: How to design the network?

 Given a network, how to design the controller?

 NCS problem

 Co-design problem: How to design the network and the controller

together?

Page 26

What about NCS?

Vehicle-2-X: Tutorial – Basic Platooning Implementation

 Samarjit Chakraborty, „Embedded Control Systems“, TU Munich

Page 27

References

Vehicle-2-X: Tutorial – Basic Platooning Implementation

