String Stability Analysis

- Consider a group of vehicles that form a string in dense traffic
- $d_i = \frac{1}{s} v_i$
- $v_i = G_i(s) \cdot v_{i-1}$
- $G_i(s)$ is the speed transfer function of i-th vehicle
- $\epsilon_i = d_{i-1} d_i L$ (range error)
- $\epsilon_{vi} = v_{i-1} v_i$ (range rate error)
- Let $L_i = T_h \cdot v_i$
- Propagation transfer function becomes,
- $\bar{G}_{i,k} = \frac{\epsilon_{i+k}}{\epsilon_i} = G_i \cdot G_{i+1} \cdot G_{i+2} \cdots G_{i+k-1} \cdot \frac{1 G_{i+k} S \cdot T_h \cdot G_{i+k}}{1 G_i S \cdot T_h \cdot G_i}$

Remark

$$\bullet \frac{\epsilon_i}{\epsilon_{i-1}} = \frac{\epsilon_{vi}}{\epsilon_{vi-1}} = \frac{R_i}{R_{i-1}} = \frac{v_i}{v_{i-1}} = G$$

Substituting all the equations from the previous page

$$\frac{\epsilon_i}{\epsilon_{i-1}} = \frac{1/s(1 - G_i - s \cdot T_h \cdot G_i)v_{i-1}}{1/s(1 - G_{i-1} - s \cdot T_h \cdot G_{i-1})v_{i-2}} = \frac{1/s(1 - G - s \cdot T_h \cdot G)Gv_{i-2}}{1/s(1 - G - s \cdot T_h \cdot G)v_{i-2}} = G$$

By similar derivation process

$$\bullet \frac{\epsilon_{vi}}{\epsilon_{vi-1}} = G \text{ and } \frac{R_i}{R_{i-1}} = G$$

String Stability Analysis

- If the ideal vehicle model is assumed
- $\dot{x}_i = A_i x_i + B_i u_i$

•
$$x_i = \begin{bmatrix} d_i \\ v_i \end{bmatrix}$$
, $A_i = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B_i = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Let's study P-control and constant time-headway controller
- $u_i = k_1 \cdot (d_{i-1} d_i T_h v_i) + k_2 (v_{i-1} v_i)$
- Substituting the control law in to state space equation and $R_i = d_{i-1} d_i$ gives
- $\ddot{R}_i + (k_2 + k_1 T_h) \cdot \dot{R}_i + k_1 R_i = k_2 \dot{R}_{i-1} + k_1 \cdot R_{i-1}$
- Range propagation function is defined as
- The above function is 1 if $\omega = 0$

String Stability Analysis

Range propagation function

- The above function is 1 if $\omega = 0$
- <1 for $\forall \omega > 0, k_2 = \frac{2 k_1 T_h^2}{2T_h}$
- The controller is string stable only in the gray area

Upper Level Controller Design 2

Sliding surface method of controller design

$$S_i = \dot{\epsilon}_i + \frac{\omega_n}{\xi + \sqrt{\xi^2 - 1}} \frac{1}{1 - C_1} \epsilon_i + \frac{C_1}{1 - C_1} (v_i - v_l)$$

where

$$\dot{S}_i = -\lambda S_i$$
, with $\lambda = \omega_n(\xi + \sqrt{\xi^2 - 1})$

The desired acceleration of the vehicle is then given by

$$\ddot{x}_{i,des} = (1 - C_1)\ddot{x}_{i,des} + C_1\ddot{x}_l - 2\left(2\xi - C_1\left(\xi + \sqrt{\xi^2 - 1}\right)\right)$$

$$\omega_n \dot{\epsilon}_i - \left(\xi + \sqrt{\xi^2 - 1}\right)\omega_n C_1(v_i - v_l) - \omega_n^2 \epsilon_i$$

- The control gains to be tuned are C_1, ξ , ω_n
 - C_1 : $0 \le C_1 \le 1$, can be viewed as weighting on the lead vehicle's speed and acceleration
 - ξ : can be viewed as the damping ratio, critical damping if 1
 - ω_n : bandwidth of the controller

Upper Controller Design 2

- $\dot{S}_i = -\lambda S_i$, with $\lambda = \omega_n(\xi + \sqrt{\xi^2 1})$, ensures the system converges to the sliding surface
- Prior research shows that the system is "string stable"
 - D. Swaroop, et al., "String Stability of Interconnected Systems," IEEE Transactions on Automatic Control, 1996
- Robusness of the controller
 - To lags induced by the lower-level controller can also be guaranteed
- Setting $C_1 = 0$, we have the following classical second-order system $\ddot{x}_{i,des} = \ddot{x}_{i-1} 2\xi \omega_n \dot{\epsilon}_i \omega^2 \epsilon_i$

More Sophisticated Upper-Level Control?

- Control with information of "r" preceding vehicles
- Mini-platoon control strategy
 - Information from the lead vehicle increases the robustness
 - Why don't we divide a platoon into multiple mini-platoons and have more lead vehicle information?
- Model predictive control
 - Various objectives possible
 - Minimizing gap regulating error
 - Preserving string stability
 - Driver comfort
 - Minimizing fuel consumption

Lower Level Controller

- Lower level controller
 - Throttle and brake actuator puts are determined so as to track the desired acceleration
 - Again, standard sliding surface control technique
 - If the torque is chosen as $T_{net,i} = \frac{J_e}{Rh} \ddot{x}_{i_{des}} + \left[c_a R^3 h^3 \omega_e^2 + R \left(h F_f + T_{br} \right) \right]_j$, then the acceleration of the vehicle equals the desired acceleration defined by the upper level controller $\ddot{x}_i = \ddot{x}_{i_{des}}$
 - The map $T_{net}(\omega_e,m_a)$ is inverted to obtain the desired air mass flow in engine $m_{a_{des}}$
 - A single surface controller is then used to calculate the throttle angle α to make m_a track $m_{a_{des}}$

Lower Level Controller

- Define the surface as $s_2 = m_a m_{a_{des}}$
- Setting $\dot{s}_2 = -\eta_2 s_2$, $MAX \cdot TC(\alpha)PRI(m_a) = \dot{m}_{ao} \dot{m}_{a_{des}} \eta_2 s_2$
- Since $TC(\alpha)$ is invertible, he desired throttle angle can be calculated
- If the desired torque is negative, brake actuators is used to provide he desired torque

Experimental Results from PATH Project

- Lead vehicle velocity profile
- Convergence of inter-vehicle distance

Source: Handbook of Intelligent Vehicles

Experimental Results from PATH Project

- Response to disturbance
 - Uphill, downhill

Source: Handbook of Intelligent Vehicles

Integration with Lateral Control System

- Lane control and longitudinal control can be performed mostly independently of each other
- Coordination needed when joining or exiting a platoon
- Supervisor coordinates longitudinal and lateral control

Integration with Lateral Control System

Supervisor of the vehicle requesting to join a platoon

Integration with Lateral Control System

Supervisor of the follower vehicle, which splits from the preceding car

References

- "Tutorial on Control Theory", Stefan Simrock, ITER, 2011
- J. Zhou, et al., "Range policy of adaptive cruise control vehicles for improved flow stability and string stability," IEEE Transactions on Intelligent Transportation Systems, 2005
- L. Xiao, et al., "Practical String Stability of Platoon of Adaptive Cruise Control Vehicles", IEEE Transactions on Intelligent Transportation Systems, 2011
- C.Y. Liang, "Traffic-Friendly Adaptive Cruise Control Design", Dissertation, U. Mich. 2000

Lecture 6: Practical Issues in Digital Control

Basic Platooning Implementation

Prof. Sangyoung Park

Module "Vehicle-2-X: Communication and Control"

Control System Design

- Controller design
 - Using equations

Controller implementation

Control System Design

- Assumptions in controller design (control theorist)
 - Infinite numerical accuracy
 - Computing control law takes negligible time
 - No delay from sensor to controller
 - No delay from controller to actuator
 - No jitter
- Controller implementation (Embedded systems engineer)
 - Fix-precision arithmetic
 - Tasks have non-negligible execution times
 - Often large message delays
 - Time- and event-triggered communication

Semantic Gap

- There is a gap between model and implementation
- Control theorist:
 - "These are implementation details.
 Not my problem!"
- Embedded systems engineer:
 - "Model-level assumptions are not satisfied by implementation"
- Research questions
 - How do we quantify this gap?
 - How should we close this gap?
- Solution: Controller/architecture co-design

Implementation-Aware Controller Design

- Performnace metrics have been different for computer science domain and control algorithms
- Control algorithms are evaluated by
 - Stability
 - Settling time
 - Peak overshot
 - ...
- Computer programs are evaluated by
 - Computation time
 - Communication bandwidth
 - Memory footprint
 - Enegy consumption
 - ...

Control Task Characteristics

- The deadlines are not hard for control-related messages
- What does it mean deadline are hard or soft?
 - Hard deadline: something catastrophic happens when a control task is not finished withint the given deadline
 - Aircraft crashes, battery explodes, etc
 - Soft deadline: there is degradation in performance, but a deadline miss to a certain degree is tolerable
 - Video streaming frame rate drop, etc

Control Task Characteristics

The deadlines are not hard for control-related messages

■ DC motor
$$\frac{d}{dt} \begin{bmatrix} \dot{\theta} \\ i \end{bmatrix} = \begin{bmatrix} -\frac{b}{J} & -\frac{K}{J} \\ -\frac{K}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} V \rightarrow \dot{x}(t) = Ax(t) + Bu(t)$$

- Objective: $\dot{\theta} = 50$
- As samples drop (ar

http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling

Control Task Characteristics

- Sensitivity of control performance depends on the state of the controlled plant
- The computation requirement at the steady-state is less, i.e., sampling frequency can be reduced (e.g., event-triggered sampling)
- The communication requirements are less at steady-state, (e.g., ower priority can be assigned to the feedback signals)

Bottomline

- Traditional Emedded control system design
 - Meeting deadilnes is of paramount importance
- Co-design
 - Deadline takes the back seat
 - Design space become bigger
 - Resuling design is robust, cost-effective, ...
- Design objectives shift from low level metrics like deadlines to metric governing system dynamics (like stability)

What about NCS?

Networked Computer Systems

- Take network characteristics into account when desining the control laws
 - Packet drops, delays, jitter, ...

What about NCS?

Arbitrated networked control systems

- ANCS we can design the network
 - By taking into account control performance constraints
- Problem: How to design the network?
- Given a network, how to design the controller?
 - NCS problem
- Co-design problem: How to design the network and the controller together?

References

Samarjit Chakraborty, "Embedded Control Systems", TU Munich