

Lecture 3: ITS Sensors and Architectures

ITS Sensors and Architectures

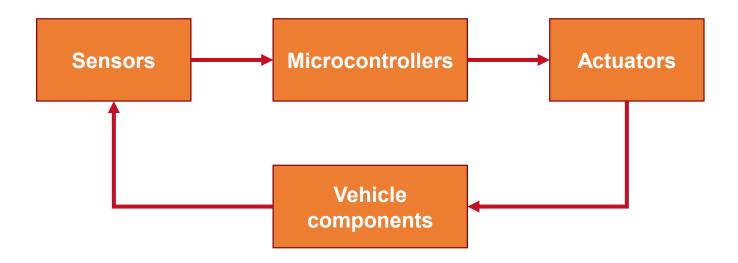
Prof. Sangyoung Park

Module "Vehicle-2-X: Communication and Control"

Contents

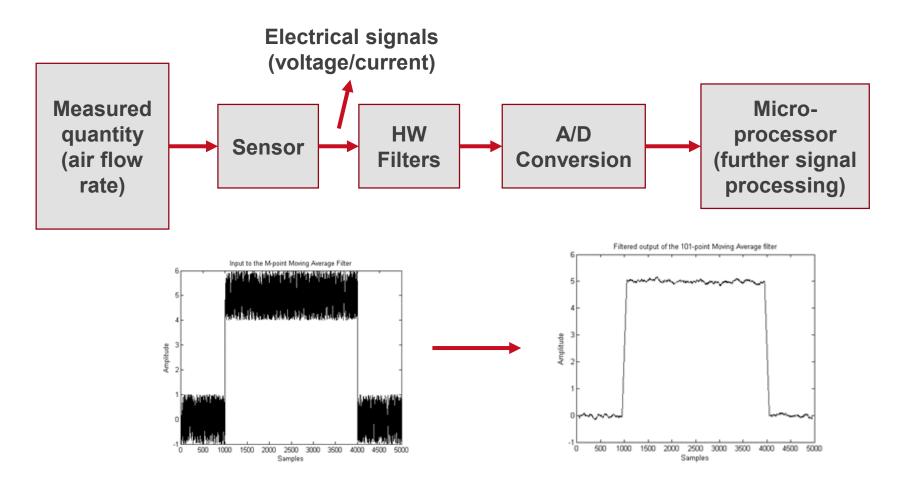
- Sensor types and applications
- Sensor applications to traffic management

Introduction



- More and more parts of the vehicle control is done now by electronic systems
 - Drive-by-wire
 - Steer-by-wire
 - X-by-wire
- Electronic control is enabling higher levels of vehicle control and safety

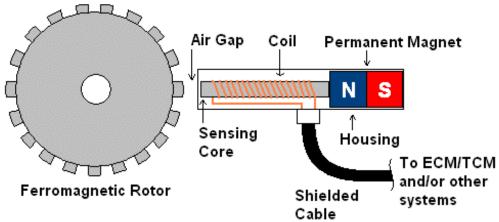
Automotive Sensors and Actuators


- Sensors and actuators are essential parts in electronic control
- Sensors Inputs
- Actuators Outputs

Sensing System

Sensors, filters, Analog-to-digital conversion

Types of Automotive Sensors


- Inductor loop detector
- Magnetic sensors
- Microwave radar
- Cameras
- LIDAR
- GPS

Magnetic Sensors

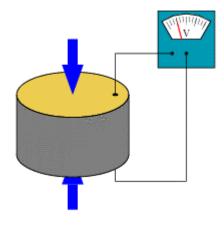
- Variable reluctance (VR) sensors
- Electro-magnetic device with a permanent magnet wound by a wire
- Rotation of a wheel with teeth can be detected by changing magnetic flux
- Applications
 - Electronically controlled transmissions
 - Vehicle speed sensing
 - Wheel speed sensing for ABS and traction control

Induction Type

Source: https://www.emaze.com/@AFLWZROT

Potentiometer

- Resistance varies according to change in position
- Application
 - Acceleration pedals, etc



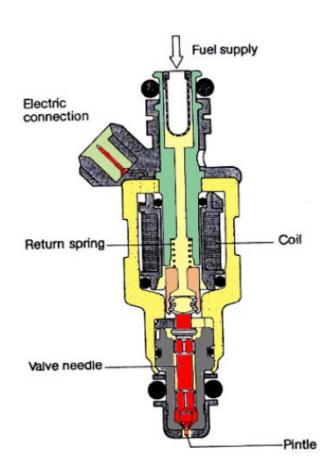
Acceleration pedals

Accelerometer

- Piezoelectric sensors can measure acceleration
- Converts force on the mass to an electrical signal (voltage)
- In reality, it will be implemented on a chip
- Applications
 - Accelerometer
 - Yaw rate sensor

Source: Bosch

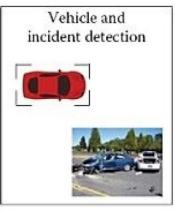
Actuators

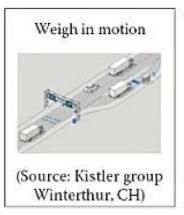


- Actuator is the output of the control mechanism
- Connects the microcontroller to the plant (instance to be controlled)
- Examples
 - DC Motors
 - Solenoids
 - Stepper motors
 - Etc..

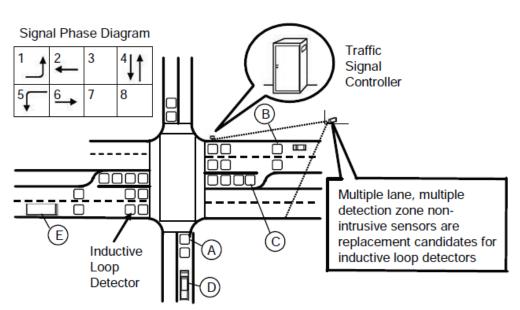
Solenoids

- Coil of wire commonly in the form of a long cylinder such that armature (movable core) moves inside the coil
- Used for controlling small movements
 - Faction of mm
 - E.g., fuel injector
- Induction of the coil plays an important role in the reaction time for solenoid



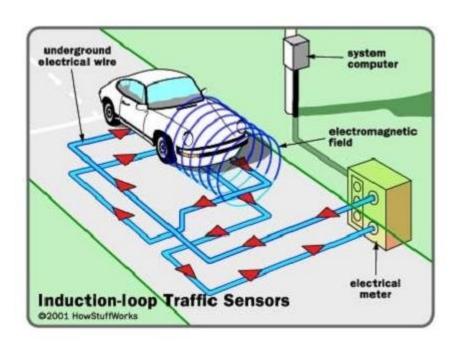

Sensors/Actuators and Traffic Management

- Sensors are not only related to vehicle control, but also to traffic management
 - Flow rate, lane occupancy, and density
 - Count, presence, and passage
 - Speed of individuals vehicles and platoons
 - Vehicle class
 - Queue lenghts
 - Origin destination pairs



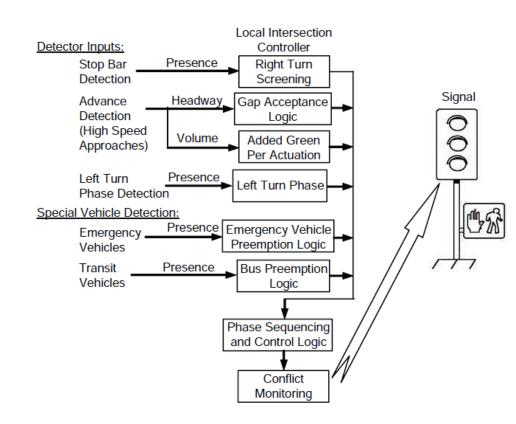
L.A. Klein, "ITS sensors and Architectures for Traffic Management and Connected Vehicles"

Sensor Applications to ITS


- Local isolated intersection control
 - Pre-timed control: sensors not required
 - Actuated control
 - Stopline sensors (A)
 - Upstream of the stopline (B)
 - Left-turn lanes (C)
 - Emergency detection positions (D)
 - Transit vehicles (E)

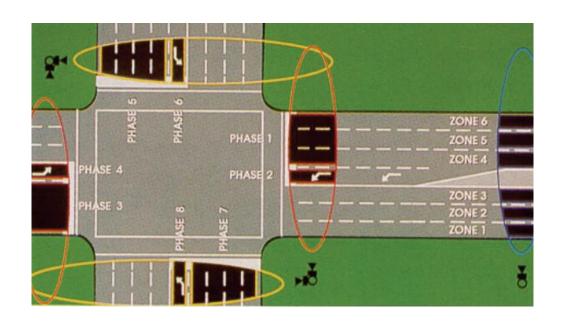
Inductive Loop Detector

Detects presence of metal using eletromagnetic induction


Source: Review of traffic data collection methods for driver's car – following behavior model under variuos weather conditions

V2XCC: Vehicle/Driver/Traffic Modeling

Isolated Intersection Control


- Data processing examples
 - Semi-actuated controls: Major streets operate in non-actuated mode (always green) unless minor street actuation is received
 - Suitable for random vehicle approaches
 - Small minor street volumes
 - Long distances between signalized intersections
 - Fully actuated controls:
 - Takes into account from all intersections (RHS figure)

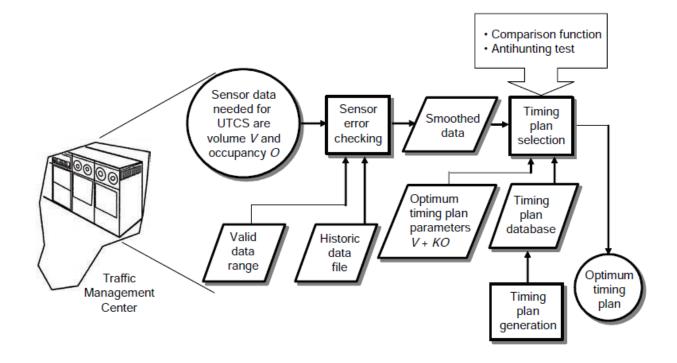
Isolated Intersection Control

- Presence-detecting microwave radar sensor application to actuated control
 - Side-looking sensors mounted on a pole
 - Radar sensors are non-intrusive, but tall vehicles may occude small vehicles

Isolated Intersection Control

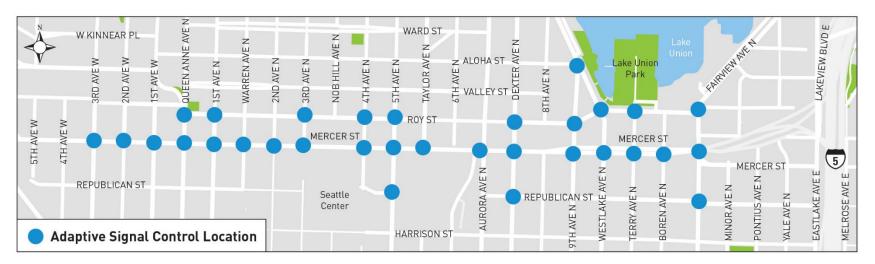
- Video detection systems (VDC) application
 - Positioning is important to ensure detection (as high as possible)
 - Sun glint is problematic when placed east-west

Interconnected Intersection Control



- Traffic responsive control
 - Selects among a library of prestored signal timing plans that best match current traffic flow conditions
 - Signal timing plans can also be generated online in real-time based on current traffic flow conditions
- Urban Traffic Control System (UTCS)
 - US FHWA (Federal Highway Administration) selects from among prestored timing plans that best match the volume and occupancy conditions on the roadway

Interconnected Intersection Control


- Urban Traffic Control System (UTCS)
 - Considers both volume V (traffic flow) and occupancy (O) data
 - What happens if you only use the volume data? (recall traffic modeling)
 - Too much traffic -> volume drops -> wrong signal!
 - V+KO

Interconnected Intersection Control

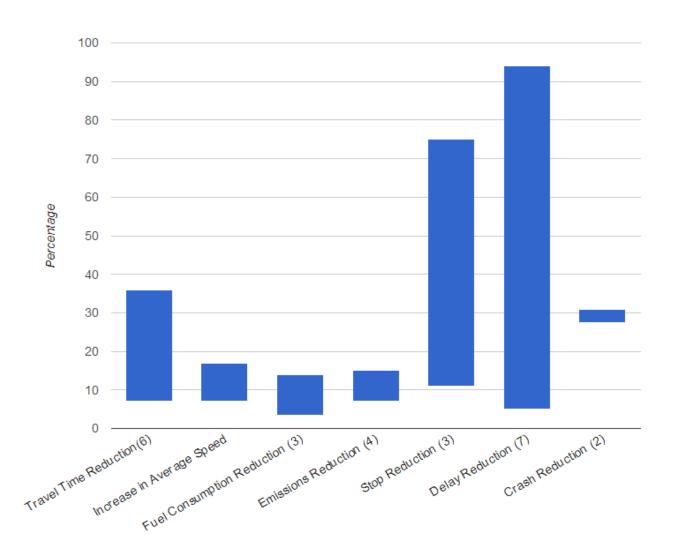
- Prestored timing plans developed offline are best suited for traffic flow on a normal day
- Cannot cope with situations which are significantly different (football matches?!)
- "City of Seattle introduces Mercer adaptive signal system to keep traffic moving", April 24, 2017
 - Split cycle offset optimization technique (SCOOT)

Source: seattle.gov

Initial Capital Cost per Intersection

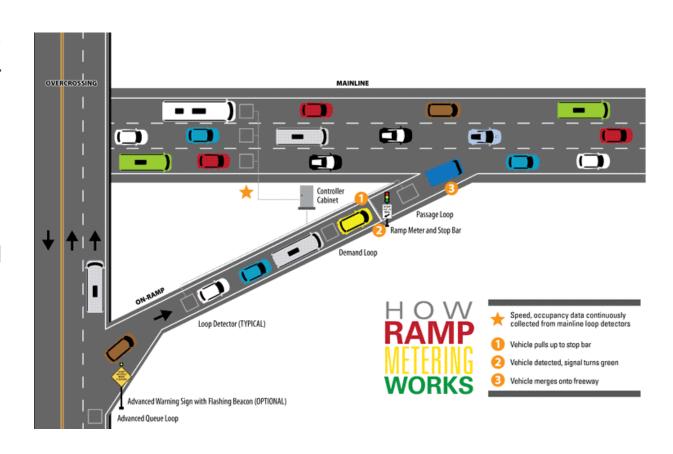
 Such adaptive systems reuquire greater number of sensors, computers and manpower

System	Initial Capital cost per intersection (USD)	System developer	System distributor
SCOOT	30,000-60,000	Transport research laboratory, UK	Siemens UK
SCATS	25,000-30,000	Road transit authority, Sydney	TransCore
OPACS	20,000-50,000	Unversity of Massachusetts	PB Farradyne
RHODES	30,000-50,000	University of Arizona	Siemens ITS
ACS-Lite	8,000-12,000	FHWA, USA	Siemens ITS
LA-ATCS	30,000-60,000	LA Dept. Of Transportation	McTrans Center
InSync	25,000-35,000	Rhythm Engineering	Rhythm Engineering


Sensor Technologies

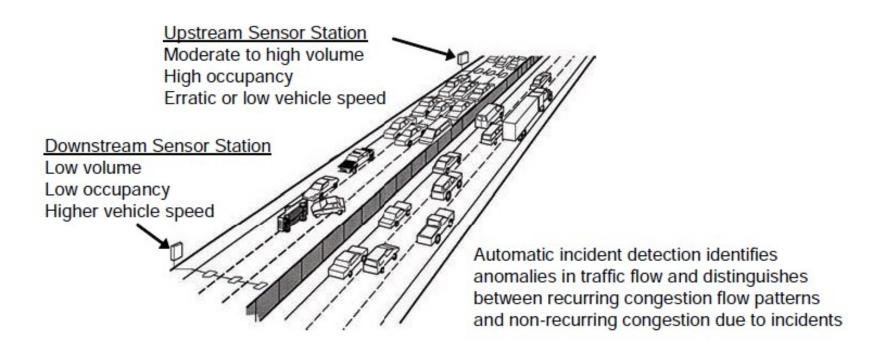
- SCOOT
- Sensor technology
 - ILD (2 m in direction of travel), VDS, possibly presence detecting microwave radar
- Sensor locations
 - Approx. 15 m downstrem of the previous intersection
- Data collected
 - Volume, occupancy
- Data processing interval and location
 - Second by second interval, Central
- Backup if real-time sensor data not available
 - Default parameters based on time of day (TOD) and day of week

Benefits of Traffic Adaptive Signal Control



- Red-light running vehicle detection
 - Vast majority of serious red-light running accidents are caused by drivererror due to impaired vision, poorly engineering signal timing, tiredness and distraction, and medical emergency
 - Alternatives to cameras include improved signal timing
 - Increased yellow light timing by 0.3 seconds reduce violations by 70-80% (California)
 - But of course at a cost of reduced traffic flow
- Travel time notification
 - Encourages drivers to take other routes

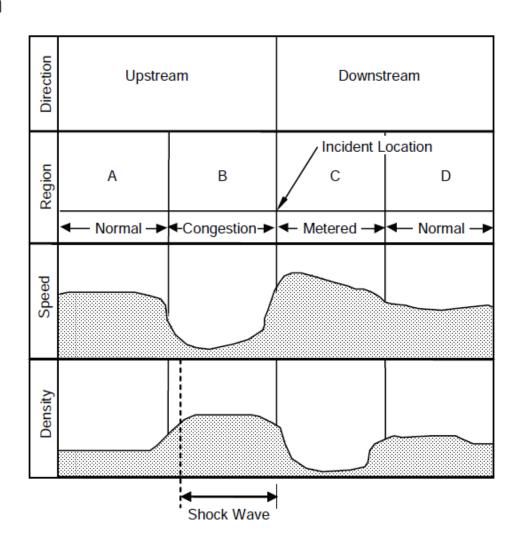
- Ramp metering
 - Common technique for addressing recurring congestion on freeways
- Sensor locations
 - Speed and occupancy continuously logged from mainline loop
 - Sensors at the ramp detect passage
 - Sensor at arterial road detect spilling over


V2XCC: Vehicle/Driver/Traffic Modeling

Source: US DOT

Page 25

Automatic incident detection



L.A. Klein, ITS Sensors and Architectures for Traffic Management and Connected Vehicles

V2XCC: Vehicle/Driver/Traffic Modeling

- Automatic incident detection
 - A is far away
 - B is congested
 - C is fast
 - D is normal again

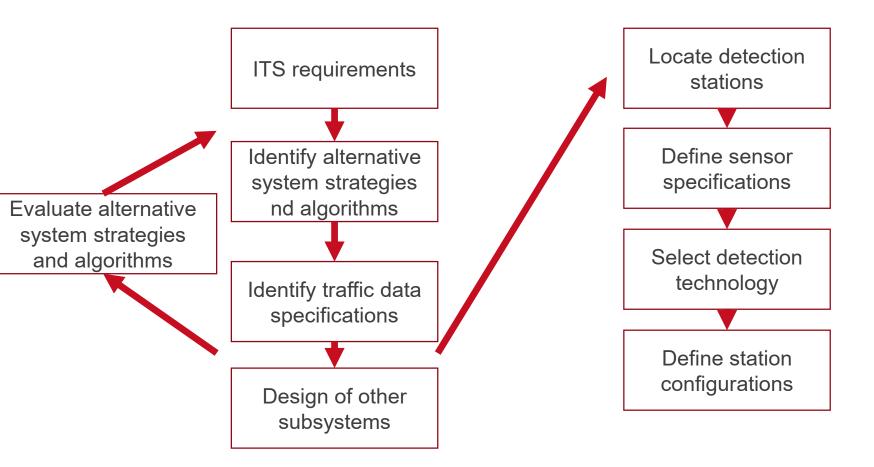
Active Transportation and Demand Management

- Active transportation and demand management (ATDM)
 - Dynamic management
 - Control
 - Influence of travel demand
 - Traffic demand
 - Facility demand on the entire system

ATDM strategy	Amount congestion reduction (%)			
Car pooling	5			
Alternate route	5			
Flexible working hours	35			
Working at home	25			
Working at another location	5			
Traveling with public transportation	10			
Cycling	15			

Yet Other Options

- Toll-paying vehicles dynamic pricing
- High-occupancy lanes
- Express lanes



Source. US DOT

Sensor Data Requirements

How do we determine sensor requirements and sensor specifications?

Sensor Data Requirements

- Incident detection algorithms
 - Mcmaster Algorithm, time series algorithm, and the high occupancy algorithm
 - Volume error within +-1 veh/min at flows of 2000 veh/h
 - Lane ocupancy accuracy is +-1%
 - HIOCC algorithm triggers alarm when occupancy increased abnormally during consecutive 1-s observation intervals

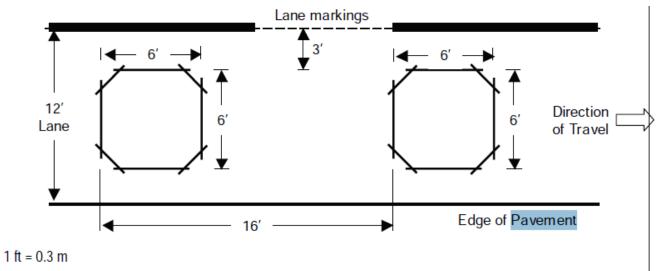
	Traffic variables		Data collection interval		Number of stations		
Algorithm	Flow rate	Occ.	Speed	1 s	30-60 s	Single	Adjacent
Comparative		*			*		*
McMaster	*	*	*		*	*	*
Time seires	*	*			*	*	*
HIOCC		*		*		*	

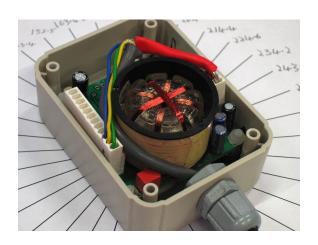
Sensor Data Requirements: Example

- Signalized intersection control traffic parameter specifications (US DOT)
- Approach flow profiles (veh)
 - Collection interval 1s
 - Allowable error: +- 2 veh/signal cycle
- Turninig movement flow rate (veh)
 - Collection interval: 1 cycle
 - Allowable error: +- 2 veh/signl cycle
- Average link travel time (s)
 - Collection interval: 1 cycle
 - Allowable error: +- 2s
- Average approach speed (mi/h)
 - Collection interval: 1 cycle
 - +- 2 (mil/h)

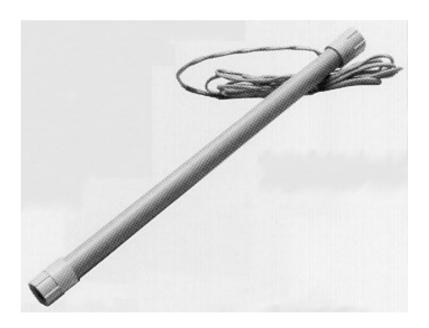
- ...

- Inductive loops
 - Speed measurement with speed trap measurement
 - $S = \frac{d}{\Delta T}$
 - Vehicle classification
 - Special configurations of inductive loops are able to detect axles and their relative position in vehicles



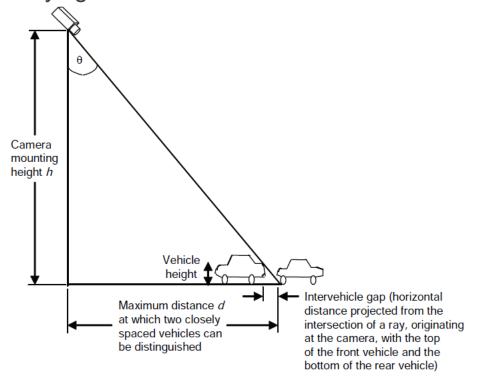

Figure 3-1. Vehicle speed measurement using two inductive-loop detectors placed a known distance apart.

- Inductive loops
- Output data
 - Count, presence, lane occupancy
 - Average vehicle speed
 - Single installation with vehicle length assumption
 - Speed-trap configuration
 - Vehicle-class when operated at high-frequency control unit
- Installed in roadway
- Advantages
 - Low per unit cost
 - Mature well-understood tech
- Limitations
 - Traffic interrupt for repair
 - Susceptible to damage by heavy vehicles



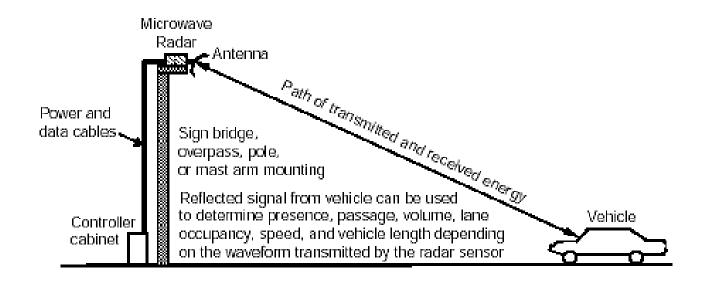
- Magnetometer sensors
 - While inductive loops is active sensing, this is passive sensing
 - Detecs metallic objects by perturbation in the Earth's magnetic field
 - Similar to a compass

- Magnetic detectors
 - Search coil magnetometer (like mine detectors)
 - Earth's magnetic field is perturbs when a ferromagnetic object perturbs the field
 - Can't detect a still vehicle

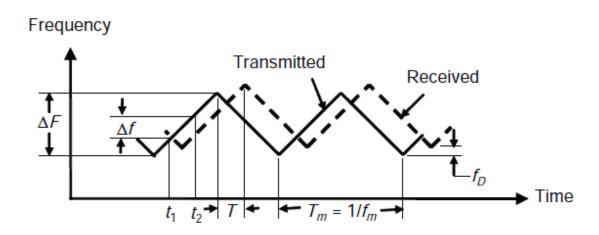

- Magnetic sensors
- Typical output
 - Count
 - Presence: Magnetometer (yes), magnetic detectors (no)
 - Lane occupancy
 - Vehicle speed with speed-trap configuration
- Embedded in roadway
- Advantages
 - Low per unit cost
 - Can detect small vehicles including bicycles
- Disadvantages
 - Traffic interrupted for repair
 - Hard to distinguish closely placed vehicles or line straddling vehicles such as motor cycles

- Video Detection System (VDS)
 - Requires significant video image processing (VIP)
 - Vehicle identification, speed detection, position, etc
 - Kalman filtering techniques could be used to track vehicles
 - Height is important in separately identifying vehicles

VIP in a roadside cabinet

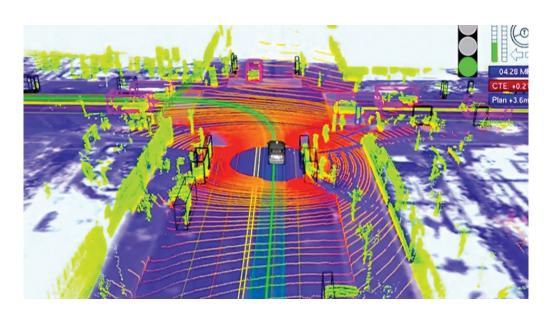


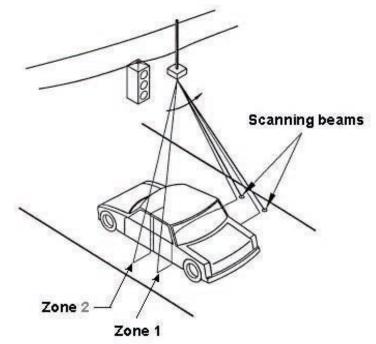
- VDS
- Overhead installation
- Advantages
 - Repair don't disrupt traffic
 - Single camera can serve multiple lanes
 - Rich array of data available
- Disadvantages
 - Large vehicles project/mask image into adjacent lanes
 - Shadows, reflections from wet pavement, day/night transitions
 - Reliable night detection requires street lighting



- Microwave radar sensors
 - Presence detecting: stopped vehicles intersections
 - Doppler: requires minimum vehicle speed highways

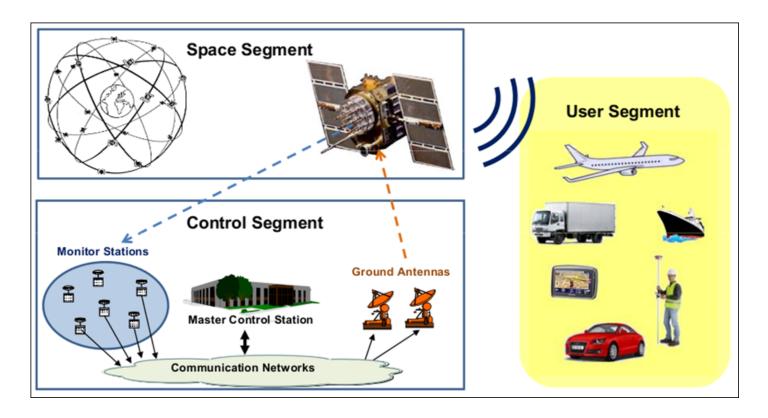
- Microwave radar sensors
 - Vehicle speed is proportional to the frequency change
 - $f_D = \frac{2SFcos\theta}{c}$, S is vehicle speed, F is transmitted frequency, θ is the angle of radar wave and vehicle movement




- Microwave radar
- Overhead installation
- Advantages
 - No traffic disruption
 - Direct measurement of speed
 - Multilane data collection
 - Day/night operation
- Disadvantages
 - Side-mounting can be affected by tall-vehicles occluding lanes behind
 - Vehicle undercounting in heavy congestion
 - Stochastic property radar detection (scatter etc.) may miss some vehicles

LIDAR sensors

- Illuminates detection zones with energy transmitted by laser diodes operating in the near-infrared region 0.85 µm
- A portion of energy is reflected and scattered back to the sensor
- Typically the laser beams are projected at different angles (several degrees) and scanned across using a rotating mirror



- LIDAR sensors
- Overhead of side installation
- Advantages
 - No traffic interruption
 - Day/night operation
 - Multilane operation
- Disadvantages
 - Performance degraded under heavy fog or blowing snow
 - Poor foliage (leaves) penetration

Alternative Sources of Navigation and Traffic Flow

- Global navigation satellite systems (GNSS)
 - Russia, the EU, China, India, and Japan are developing GNSS constellations similar to those in the US
- US GPS architecture

US GPS

- The US GPS is committed to maintaining availability of 24 satellites (out of 31), 95% percent of the time
- Each satellite circles the earth twice a day at an altitude of 20,200 km
- The receiver obtains the distance to satellites and their positions, which is broadcast, and triangulates and compensates for local clock bias
- GPS accuracy
 - A standard, inexpensive (US\$200~400) single-frequency GPS receiver tracks the code signal of the NAVSTAR constellation at the frequency of 1575 MHz
 - Accuracy depends on the receiver location, difference in clock time between the satellite and the receiver caused by special and general relativity, etc
 - Worst case pseudo-range accuracy of 7.8 m at a 95% confidence level

Inertial Navigation Systems (INS)

- Vehicle tracking in urban areas is limited by
 - Foliage
 - Inability to access signals blocked by buildings
- Inertial measurement units (IMU) can be used to augment the GPS information for better navigation
- $v = \int_0^{t1} a \, dt$
- INS is used when GPS is blocked and GPS compensates and calibrates the INS in normal operation

References

 L.A. Klein, ITS sensors and architectures for traffic management and connected vehicles