

Lecture 2: Vehicle/Driver/Traffic Modeling

Introduction to Traffic Modeling

Prof. Sangyoung Park

Module "Vehicle-2-X: Communication and Control"

Contents

- Vehicle Dynamics
- Traffic Models
 - Microscopic
 - Macroscopic
- Driver Behaviors

Vehicle Dynamics

- Study on vehicles in motion
- How the vehicles react to driver inputs on a given road
- Factors
 - Drivetrain and braking
 - Suspension and steering
 - Distribution of mass
 - Aerodynamics
 - Tires

Source: mathworks

Drive Resistance

- v(t): vehicle velocity
- a(t): vehicle acceleration
- m_{tot} : total vehicle mass

Drive Resistance

•
$$F_t(t) = F_{air}(t) + F_c(t) + F_r(t) + F_{acc}(t)$$

$$P_t(t) = F_t(t) \cdot v(t)$$

- $F_t(t)$: Traction force
- $F_{air}(t)$: Aerodynamic drag
- $F_c(t)$: Climbing force
- $F_r(t)$: Rolling resistance
- $F_{acc}(t)$: Acceleration force
- $P_t(t)$: Traction power
- v(t): Vehicle velocity

Attention:

$$P_t(t) \neq P_{motor}(t)$$

Aerodynamic Drag

$$F_{air} = \frac{1}{2} \rho_{air} C_d A v_{rel}^2$$

- ρ_{air} : density of air, 1.225 kg/m³
- C_d : drag coefficient
- A: frontal area
- v_{rel} : relative velocity ($v_{rel} = v_{vehicle} + v_{wind}$)

Measured Drag Coefficients

Aerodynamic Drag

Drag coefficients of vehicle types

	C_d	A
Passenger vehicle	0.28	1.5-2.8
Transporter	0.35	3.0
Coach (long distance bus)	0.4	7.5
Bus 12 m	0.6	8.3
ICE 3	0.2	9.0

Source: Prof. Voß (2016), Vorlesung Alternative Antriebssysteme und Fahrzeugkonzepte

Coach

City bus (12 m)

ICE 3

Drag Resistance vs Velocity

- Power to overcome aerodynamic drag
- Again, $P = F \cdot v$, so what is the relationship between F and v then?

Larminie (2003), Electric Vehicle Technology Explained

Drag Resistance

Vehicles' shapes have become more aerodynamic over time

- Force resisting the motion when a body "rolls" on a surface
 - Deformation of the tire: Tire gets hot because tire is not perfectly elastic
 - Air circulation: Work is done on the air around the tire
 - Sliippage: Tire gets hot due to friction

What	Surface of tire and air	Tire tread Sidewall and bot				d bottom part		
	Air circulation	Slippage on	Slippage on Deformation hence dissipation of energy					
	All circulation	ground	bending	compression	shearing	bending	shearing	
How				711111				
Contri- bution	< 15	%	60 to 70%		20 to 30 %			

Source: http://thetiredigest.michelin.com/michelin-ultimate-energy-tire

- $F_r(\alpha) = C_{rr} m_{tot} g \cdot \cos(\alpha)$, where
 - *C_{rr}*: Coefficient of rolling resistance
 - m_{tot} : Total vehicle mass
 - *g*: Standard gravity
 - α: slope angle

• $F_r(\alpha) = C_{rr} m_{tot} g \cdot \cos(\alpha)$

C_{rr}	Description
0.0003 to 0.0004	Railroad steel on steel rail
0.0022 to 0.0050	Bicycle tires
0.0100 to 0.0150	Ordinary car tires on concrete
0.3000	Ordinary car tires on sand

- How much force is required for rolling a 1000 kg car on concrete?
 - $F_r = 0.01 \times 1000 \times 9.8 = 98 N$
- On sand?
 - $F_r = 0.3 \times 1000 \times 9.8 = 2,940 N$

- Other factors
 - Vehicle speed: But not as much as it affects drag
 - Tire pressure: low pressure means more deformation

Climbing Resistance

- $F_c(\alpha) = mg \cdot \sin(\alpha)$
- What is 10% in the sign?
- Slope $[\%] = \frac{dh}{dx} = \tan(\alpha)$
- 45° is 100% and 5.7° is 10%

■ The steepest roads in the world are Baldwin Street in Dunedin (38%), New Zealand and Canton Avenue in Pittsburgh (37%), Pennsylvania.

dx

Acceleration Force

- $F_{acc} = (m_{vehicle} + m_{acc}) \cdot \dot{v}$
- *m*_{vehicle}: Vehicle mass
- m_{acc} : Equivalent acceleration mass
- Force is being applied to change the motion status of vehicle
- Not all energy is $\frac{1}{2}mv^2$, but also rotational energy in vehicles and engines are there
- The rotational speed should also be changed

Mass inertia of typical wheels

235/65 R17 = 1.7 kgm² 245/55 R18 = 1.9 kgm²

Mass inertia of PSM E-Motor

 $HVH250 - 115 = 0,086 \text{ kgm}^2$ $HVH250 - 090 = 0.067 \text{ kgm}^2$

Roughly How Much Power?

• Acceleration from 0 to 100 kph? (m = 1600 kg)

- Cruising at 60 kph with $C_D A = 0.3 \cdot 2.2 \ m^2 = 0.66 \ m^2$ and $\rho = 1.2 \frac{kg}{m^3}$
 - What is the share of aerodynamic drag?

- Cruising at 120 kph?
 - What is the share of aerodynamic drag?

Powertrain

- Powertrain
 - Main components that generate power and deliver it to the road surface, water or air
 - Engine
 - Transmission
 - Drive shafts
 - Differentials

D. Steckberg, "Development of an internal combustion engine fuel map model based on on-board acquisition"

Side Note: Model-Based Design (MBD)

- A mathematical and visual method of addressing problems associated with designing complex control, signal processing, and communication systems (from Wikipedia)
- A system model is at the center of the development process from requirements development, through design, implementation, and testing
- Steps
 - Step 1: modeling a plant
 - Step 2: Analyzing and synthesizing a controller for a plant
 - Step 3: Simulating the plant and controller
 - Step 4: Integrating all these phases by deploying the controller

V-Model

- Graphical representation of a systems development lifecycle
- Left-side: decomposition of requirements, creation of system specifications,
- Right side: Integration of parts and validation
- Correct model is essential in such life cycle!

Powertrain Modeling

- MATLAB/Simulink example
 - Vehicle with four-speed transmission

Vehicle with Four-Speed Transmission

- 1. Plot speeds of shafts and vehicle (see code)
- 2. Explore simulation results using sscexplore
- 3. Learn more about this example

Source: Mathworks

- Generic Engine Model
 - Programmed relationship between torque and speed
 - Controlled by the throttle signal
- Throttle valve controls the amount of air fed into the engine

Generic engine

Source: mathworks

Throttle valve

Source: W. Ribbens, "Understanding automotive electronics"

- Rough outline
 - Air inflow is controlled by throttle plate
 - Fuel is mixed with air
 - Electronic engine control controls the ignition

(Gasoline) Engine control diagram

Source: W. Ribbens, "Understanding automotive electronics"

- Engine power demand
 - Maximum power available $g(\Omega)$ for a given engine speed Ω
 - Third order polynomial model is often used
- Normalized throttle input signal T specifies the actual engine power P
 - A fraction of the maximum power in a steady-state engine speed
 - $P(\Omega, T) = T \cdot g(\Omega)$
 - Engine torque is $\tau = P/\Omega$
- There is minimum speed
 - Stall speed usually 500 RPM

Engine power demand

- Fuel consumption model?
 - Constant per revolution?
 - As a function of speed and torque? Brake-specific fuel consumption (BSFC)]
 - $BSFC = \frac{r}{P}$, where r is the fuel consumption rate (gram/sec), and $P = \tau \Omega$

Powertrain Modeling: Transmission

- Simpler to model
 - Dog clutch, cone clutch, disk friction clutch
- Efficiency?
 - $\eta_c = C_{sr}C_{tr}$, where the RHS are speed ratio and torque ratios

Powertrain Modeling: Differentials

Differentials

- Gear arrangement that permits power from engine to be transmitted to a pair of driving wheels diving the force equally between them
- Gear train with three shafts that has the property that the rotational speed of one shaft is the average of the others
- Allows the wheels to follow paths of different lenghts when turning a corner of traversing an uneven road
- https://www.youtube.com/watch?v=rxHjKoB2vn4
- Planetary gear

Brake Modeling

- Band brakes
 - High torque at cost of low precision (chain-saw, go-kart)
- Disc brakes
 - Braking torque

•
$$T_{br} = F_{br}R_m = \mu_k P A_{tot}R_m = \mu_k P \frac{\pi D_b^2 N}{4} R_m$$
, when $\Omega \neq 0$

- Where
- D_h is the area of an oil piston
- N is the number of pistons
- μ_k kinetic friction coef.
- P brake oil pressure
- R_m mean effective radius (axlemidline of brake calipers)

Tires

- Non-slipping
 - $V_x = r_w \Omega$, where V_x is velocity, r_w is tire radius, and Ω is angular velocity
- Slip
 - $V_{SX} = r_W \Omega V_X$, where V_{SX} is the wheel slip velocity
 - Wheel slip is $k = \frac{V_{SX}}{|V_X|}$, k = -1 for perfect sliding, 0 for perfect rolling
- Deformation
 - Because of the deformation, tire-road contact turns at slightly different angular velocity Ω'

Drive cycles - Passenger Cars and Light-duty Trucks

NEDC

Fig. A.1 Vehicle speed and acceleration versus time of the European NEDC

Distance [m]	11,000	Duration [s]	1180
Idling time [%]	24	Average speed [km/h]	34
Cruising time [%]	40	Maximum speed [km/h]	120
Acceleration time [%]	21	Number of stops	14

Source: Giarkoumis

Drive cycles - Passenger Cars and Light-duty Trucks

WLTC

Fig. A.25 Vehicle speed and acceleration versus time of the WLTC Class 3-2

Distance [m]	23266	Duration [s]	1800
Idling time [%]	13	Average speed [km/h]	47
Cruising time [%]	4	Maximum speed [km/h]	131
Acceleration time [%]	44	Number of stops	8

- WLTC = Worldwide Harmonized Light-Duty Vehicles Test Cycle
- WLTP = Worldwide Light-Duty VehiclesTest Procedure

Introduced Sept. 2017

Comparison of NEDC and WLTC (NEFZ und WLTP)

	NEDC	WLTC	Modification	Consequences
Distance [m]	11,000	23266	+ 100%	Closer to real driving cycle
Duration [s]	1180	1800	+ 50%	Higher CO2 emissions
Idling time [%]	24	13	- 50%	Higher energy consumption
Cruising time [%]	40	4		Lower electric range
Acceleration time [%]	21	44	More dynamic	
Number of stops	14	8		
Average speed [km/h]	34	47	+ 40%	
Maximum speed [km/h]	120	131	+ 10%	

Drive cycles - Passenger Cars and Light-duty Trucks

FTP 75

Fig. A.9 Vehicle speed and acceleration versus time of the U.S. FTP-75

Distance [m]	17769	Duration [s]	1877
Idling time [%]	18	Average speed [km/h]	47
Cruising time [%]	8	Maximum speed [km/h]	91
Acceleration time [%]	39	Number of stops	19

Drive cycles – Heavy Duty Vehicles

Braunschweig

Fig. A.34 Vehicle speed and acceleration versus time of the Braunschweig cycle

Distance [m]	10873	Duration [s]	1740
Idling time [%]	24	Average speed [km/h]	23
Cruising time [%]	6	Maximum speed [km/h]	58
Acceleration time [%]	40	Number of stops	8

Contents

- Microscopic traffic modeling
 - "Single vehicle-driver units, so the dynamic variables of the models represent microscopic properties like the position and velocity of single vehicles" – Wikipedia
- Macroscopic traffic modeling
 - It is a mathematical traffic model that formulates the relationships among traffic flow characteristics like density flow, mean speed of a traffic stream, etc.

Macroscopic Traffic Model

- Fundamental diagram of traffic flow
 - Relationship between traffic flux (vehicles/hour) and the traffic density (vehicles/km)
 - Primary tool for graphically displaying traffic flow information
 - Comprises three different graphs
 - Flow-density
 - Speed-flow
 - Speed-density
 - Flow: cars/h
 - Speed: km/h
 - Density: ?

$$Q = D \cdot V$$

Flow = Speed * Density

Macroscopic Traffic Model

- Speed-density
 - The denser the traffic (cars/km), slower the speed
 - Could you drive fast at a very small inter-vehicle distance?
 - V_f : Free flow speed
 - D_{max} : Jam density

Macroscopic Traffic Model

- Flow-Density
 - If the car density is small, flow is small because number of cars is small
 - If the density is large, flow is small because flow velocity (km/h) is small
 - The "apex" is the capacity of the segment of the road
 - There exists an optimal traffic density
 - "Wave speed" (w): slope of the stable region

Macroscopic Traffic Model

- Flow-speed graph
 - There exist two flows
 - V_C: Critical speed

Macroscopic Traffic Model

- Some key terms used in the model
- Stability?
 - If one of the vehicles brake, does this result in persistent stop-and-go?
 - Free: less than 12 vehicles per mile are on a road
 - Stable: between 12 and 30 vehicles per mile per lane
 - Unstable: more than 30 vehicles per miles per lane
 - Jam density: Traffic stops! (more than 185-250 vehicles per mile per lane)
 - Remember the congestion in the ring road from the first lecture?
 - The numbers are "empirical" (not causal from mathematical derivations)

Microscopic Traffic Model

- Newell's car following model
 - It assumes that the vehicles will maintain the minimum time and space gap
 - But why?
 - If you assume each vehicle follows the same trajectory, you can move the trajectory of a vehicle in parallel in distance (by δ) and time (by τ)
- In time-space diagram,
 - $s_A = v_A \tau + \delta$, where τ is time separation and δ is space separation
 - Why is it called time and space gap?
 - Imagine large v_A and 0
 - Shockwave speed $w = \frac{\delta}{\tau}$
 - But why?

- What exactly are shockwaves?
 - Shock wave is basically the movement of the point that demarcates the two stream conditions: Hence the red and blue slopes
- Typical shockwaves propagation
 - Forward wave speed
 - Backward wave speed

- Shockwave is also equivalent to the slope between two points in flowdensity diagram
- Why?
 - Let's say there's a shockwave demarcated by two different streams v_A , q_A , and k_A (velocity, flow, and density), v_B , q_B , and k_B
 - Let's assume shockwave speed is w
 - Relative speeds of two streams to the shockwave are $v_A w$ and $v_B w$
 - The number of vehicles passing through the demarcation line are $(v_A w)k_A$ and $(v_B w)k_B$, which of course have to be the same as cars don't disappear or appear at the demarcation line

$$(v_A - w)k_A = (v_B - w)k_B$$

• If you substitute $q = v \cdot k$, arrange by w

$$w = \frac{q_A - q_B}{k_A - k_B}$$

Microscopic Traffic Model

- In time-space diagram,
 - $s_A = v_A \tau + \delta$, where τ is time separation and δ is space separation
- $k_A = 1/s_A$, where k_A is the density at traffic state A and s_A is spacing
- From flow-density graph, $w = \frac{(q_A 0)}{(k_i k_A)} = \frac{k_A v_A}{k_i k_A}$, if you re-arrange
- $k_A = (k_j w)/(v_A + w)$, where k_j is the jam density, w is the wave speed
- So, $\tau = 1/(wk_i)$ and $\delta = 1/k_i$
- Separation is independent of the speed of the leading vehicle

Microscopic Traffic Model

- Then, the location of vehicle i at time t will be
- $x_i(t) = \min(x_A^F(t), x_A^C(t)),$
- Where
- $x_A^F(t) = x_i(t-\tau) + v_f \cdot \tau$, is the position of vehicle under free-flow
- $x_i^{\mathcal{C}}(t) = x_{i-1}(t-\tau) \delta$, is the position of vehicle under congested conditions

- However, in reality, the spacing of vehicles is not perfectly maintained by human drivers
- Car following models
 - Use of partial differential equations describing the complete dynamics of the vehicles' positions
 - Simplest model determines the acceleration of the vehicle α considering the velocity of the preceding vehicle α -1
 - $\dot{x_{\alpha}}(t) = \dot{v_{\alpha}}(t) = F(v_{\alpha}(t), s_{\alpha}(t), v_{\alpha-1}(t))$
 - The simplest control would be

 - Which means you adjust acceleration proportional to the speed difference with the preceding vehicle every time period T

- Driver aggressiveness
- More on this in the "control" part later

- Intelligent driver model (IDM)
 - Free road behavior + behavior at high approaching rates

$$\ddot{x_{\alpha}} = \frac{dx_{\alpha}}{dt} = v_{\alpha}$$

•
$$\dot{v_{\alpha}} = \frac{dv_{\alpha}}{dt} = a(1 - \left(\frac{v_{\alpha}}{v_{0}}\right)^{\delta} - \left(\frac{s^{*}(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}}\right)^{2})$$

• With
$$s^*(v_{\alpha}, \Delta v_{\alpha}) = s_0 + v_{\alpha}T + \frac{v_{\alpha}\Delta v_{\alpha}}{2\sqrt{ab}}$$
,

- v_{α} is the desired velocity at free traffic
- s₀ is the minimum spacing
- T is the desired headway
- a is the desired acceleration
- b is the comfortable braking deceleration

Example result for IDM

References

- W. Ribbens, Understanding Automotive Electronics
- Simscape Driveline Documentation