

Lecture 1: Introduction

Introduction of the instructor and course

Prof. Sangyoung Park

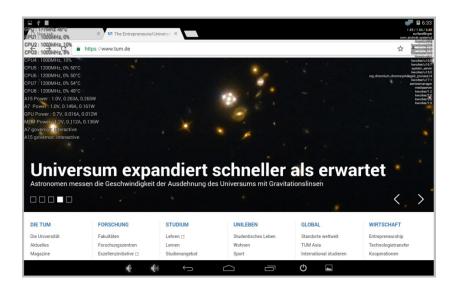
Module "Vehicle-2-X: Communication and Control"

Contents

- Who am I?
- Who are you?
- Administrative information
- Motivation for the course
- Overview of the course contents
- Introduction to the tutorial setup

Prof. Dr. Sangyoung Park

- 2008 Bachelor of Science in Electrical Engineering,
 Seoul National University
 Department of Electrical Engineering
- 2014 Doctor of Philosophy (Ph.D.) in Electrical Engineering and Computer Science, Seoul National University
 Department of Electrical Engineering and Computer Science
- 2014-2018, TU Munich, Postdoc
- 10/2018 → TU Berlin & Einstein Center, Juniorprofessur "Smart Mobiliy Systems"
- Research
 Smart mobility systems
 Smart energy systems
 Battery system design and management





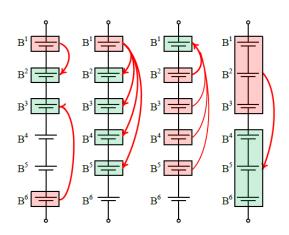
Selected Past Projects

- Low power embedded systems
 - Power management of mobile web browsers (with Google Munich)
 - Mobile games
 - Measuring power consumption
 - Controlling voltage and frequency of processors for power reduction

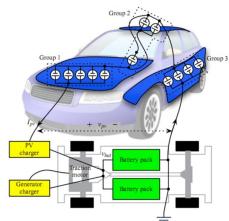


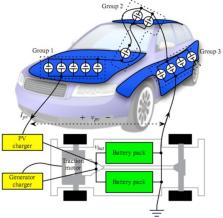
Selected Past Projects

- Battery system design and management
 - Battery + embedded systems
 - Design optimization of battery systems
 - What if we mix Li-ion + lead-acid + supercapacitors



Hybrid energy storage system prototype


Electric Vehicle Energy Management



- How do we design battery packs?
 - Monitoring circuits
 - Charge management
- How about we put solar panels on vehicles?
- One person EV!

Active cell balancinig in **EV** battery pack

Renewable/EV integration

Chair of Smart Mobility Systems, Faculty V

Teaching and research activities

Chair of Smart Mobility Systems

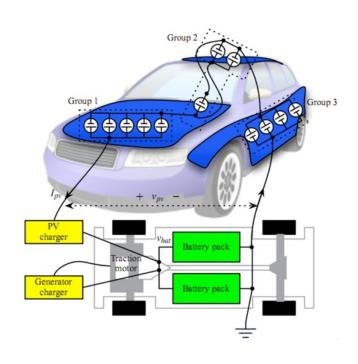
- The Chair of Smart Mobility Systems (SMS) aims at developing designs and operation methodologies for future vehicles
- Team
 - Me!
 - One PhD candidate joining in Septeber, 2019
- Now I want to add "smartness" to the research topic
- "Communication" and "computation"

Chair of Smart Mobility Systems

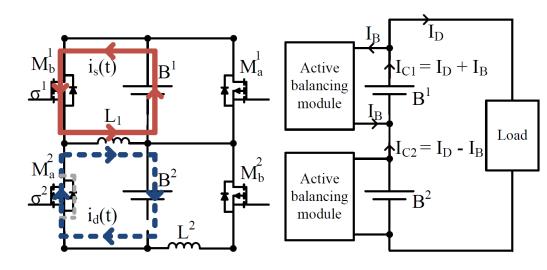
- Cooperative control of vehicles for
 - Traffic smoothing
 - Fuel consumption reduction
 - Safety
- Traffic control using V2I capabilities
 - Traffic light control

eHighway (Siemens Mobility)

- Vehicle platooning algorithms
 - Vehicle-2-X: Communications and Control
- Photovoltaic array optimization
- Battery management circuits
 - Cell balancing
- Modular battery pack designs


- Vehicle platooning algorithms
 - Setup a simulation framework to evaluate existing platooning algorithms
 - Vehicle simulator (SUMO) + network simulator (OMNet++)
- (Potentially) propose a distance control algorithm for better
 - Maintaining inter-vehicle distance
 - Fuel consumption
- Preferred skills & knowledge
 - SW programming (C++)
 - Control theory

Source: https://www.scania.com



- Photovoltaic array on vehicles
 - There is a prototype electric vehicle being built from scratch
 - The task would be to mount photovoltaic arrays on this vehicle
- Challenges
 - Photovoltaic arrays will not be flat
 - Hard to optimize the power output
 - Reconfiguration of the circuit architecture required
- Preferred skills & knowledge
 - Electric circuits design

- Active cell balancing circuit for aging mitigation
 - Large battery packs such as the ones for EVs require charge balancing circuits. The purpose of this master thesis is to implement such a circuit.
- Preferred skills & knowledge
 - Embedded system design, hardware design PCB design, basic programming skills

Einstein Center Digital Future (ECDF)

- Center for digitalization research in Berlin since April 3, 2017
 - Digital infrastructure
 - Digital health
 - Digital society
 - Digital industry and services
- Co-affiliations with TU, FU, HU,
 Beuth Hochschule, HTW, and UdK

Administrative Information

- Vehicle-2-X: Communications and Control
 - Some mathematical background
 - Minimum programming skills required, but assistantance will be provided
- Time & location
 - Part 1: 03.08.2019-06.08.2019, 9AM 12PM
 - Part 2: 08.08.2019-11.08.2019, 6PM-9PM
- Credits
 - This course is split into two microcredit courses (1-0-0)
- Each lecture consists of 1.5 hours of lecture and 1.5 hours of tutorial
- Language: English

Evaluation

- There will be a quiz at the end of the course
- There could be a small programming task involving vehicle control over communication networks at the end of the course

Need Help?

- If you have questions, just email me
 - sangyoung.park@tu-berlin.de
- I am sitting in CSE R-315
- TAs will also be there to help you

Course Overview (Goal?)

Vehicles/Driver

- Dynamics
- Traffic flow

Communication
- Protocols
- Infrastructure

Cooperative control

Tutorial:
Traffic and
communicatio
n simulator

Course Overview (Goal?)

- To be honest...
 - I wanted to setup a simulation framework
 - Veins Simulator
 - I intend to investigate various problems related to intelligent transportation systems
 - Rather than covering individual topics in depth, I intend to cover the topic at appropriate depth to be able to investigate interesting research problems
 - The course materials maybe still immature
 - Give a lot of feedback!

Course Overview

- Vehicle/Driver behavior modeling
- Sensing and actuation intelligent vehicles
- Architectures for vehicular communication systems
- Vehicle longitudinal and lateral control
- Adaptive and operative cruise control
- Roadside and traffic control
- Energy and powertrain systems in intelligent automobiles and Electric vehicles

Connected Cars?

 "Cars equipped with internet access, and usually also with a wireless local area network"

Source: www.machinedesign.com

Is It Something Like This?

- Entertainment systems
- Watching movies while driving

Source: www.itp.net, "5G offers new capabilities to connected vehicles, says Gartner"

Much more Possibilities

- Often promoted using using the following videos
 - Automated intersection
 - https://www.youtube.com/watch?v=-yD09YjWKh8
 - Safety
 - https://www.youtube.com/watch?v=ReJOvW094_4

Why Intelligent, Connected Cars?: Background

- Advent of automobiles
 - Human mobility revolutionized
 - Roads were expanded and traffic regulations had been introduced
- Advancement of technology
 - Vehicle power, performance, and range have increased
 - Reshaped the way people live
- Technological sophistication
 - Leisure, comfort, sports, expression of image and personality

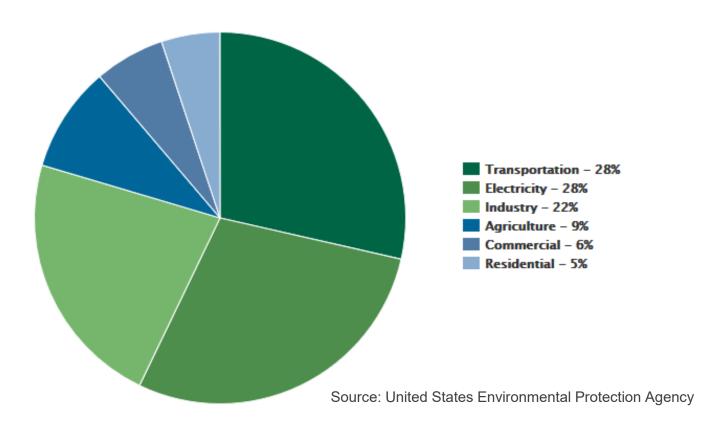
Why Intelligent, Connected Cars?: Background

- Technological advancement came with a price
 - Safety
 - Pollution
 - Energy demands
- In order to curb such effects
 - Regulations, laws, and standards have been developed
- Today, tremendous amount of engineering efforts are required to meet
 - Performance requirements
 - Safety requirements
 - Energy and environmental requirements

Why Intelligent, Connected Cars?: Background

- Use of microprocessors to in vehicles
 - ABS
 - Adaptive cruise control
 - Traction control
 - Navigation systems
 - Infotainment systems
- Still, drivers are largely in charge of driving the vehicles

- The full potential of connected, intelligent vehicles are yet to be realized
- Implications in traffic safety
 - Traffic accidents caused 33,808 fatalities and 2.2 million injuries in the USA (2009)
 - Estimated economic loss of 230.6 billion USD
- However, it has been improving
 - Fatalities per 100 million-vehicle-miles-traveled has decreased from 1.73 in 1997 to 1.13 in 2009
- With the aid of electronic systems people are now aiming for zero fatality



- Counter measures in precrash, crash, postcrash is required to achieve the goal
 - Positioning, navigation, trajectory control
 - Driver assistance
 - Safety and comfort systems
 - Drowsy and fatigues driver detection

- Energy and environment
 - Transportation sector alone accounts for 28% of the global carbon emissions

2016 U.S. GHG Emissions by Sector

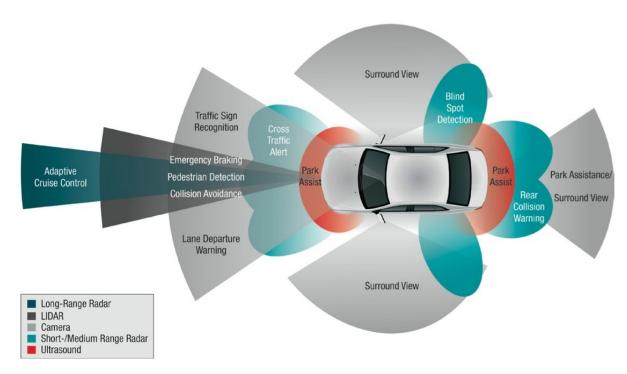
- Intelligent vehicles are aimed at
 - Increasing safety
 - Improving fuel economy
 - Improve comfort of travel
 - Reduce environmental pollution

So What Exactly are Intelligent Vehicles?

- "Guided or controlled by a computer; especially: using a built-in microprocessor for automatic operation, for processing of data, or for achieving greater versatility" – Webster's Dictionary
- Intelligent vehicle
 - Performs certian aspects of driving either autonomously or assists the driver to perform his/her driving functions more effectively

What role does connectivity play?

- Vehicular communication systems
 - Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications
- Advanced driver-assistance systems (ADAS)
 - Depend on sensory inputs from a vehicle has limitations in range and line of sight (also expensive)
 - Radar
 - LIDAR: can cost up to several 75,000 USD, now the cost has come down, but still expensive
 - Camera


Lidar

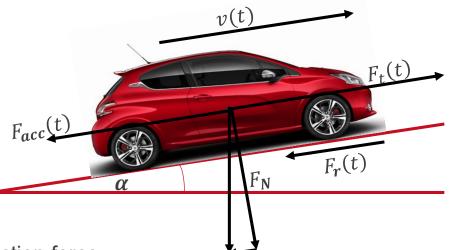
Radar

What role does connectivity play?

- Connectivity can greatly expand the range of sensors with the help of others
 - Information from other cars can extend the sensor outreach than any other on-board surround sensing

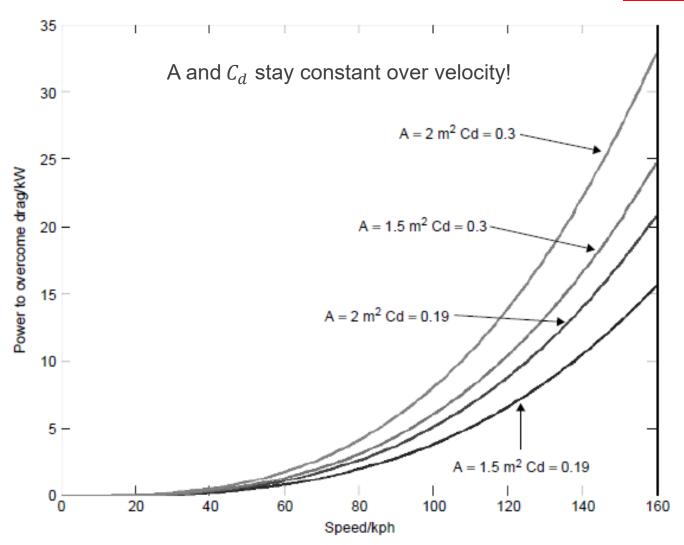
Source: https://mtri.org/automotivebenchmark.html

Vehicle Modeling


- v(t) vehicle velocity
- a(t) acceleration
- m_{tot} total vehicle mass

Vehicle Modelinig: Driving resistance equation

$$F_t(t) = F_{air}(t) + F_c(t) + F_r(t) + F_{acc}(t)$$
$$P_t(t) = F_t(t) \cdot v(t)$$


- $F_t(t)$ Traction Force
- $F_{air}(t)$ Aerodynamic drag, aerodynamic friction force
- $F_c(t)$ Climbing Force
- $F_r(t)$ Rolling resistance, rolling friction force
- $F_{acc}(t)$ Acceleration Force
- $P_t(t)$ Traction Power
- v(t) Vehicle Velocity

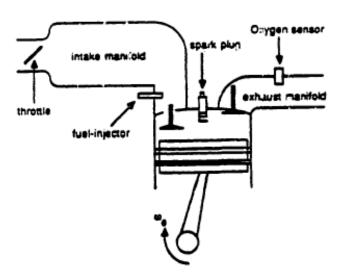
Attention:

 $P_t(t) \neq P_{motor}(t)$

Aerodynamic Drag

Larminie (2003), Electric Vehcile Technology Explained

Classification of Vehicle Dynamics



- Different vehicle models are used depending on the purpose
- Longitudinal vehicle dynamics
 - Driving resistances/perf
 - Driving performance
 - Acceleration and braking
 - Fuel consumption, emissions
 - Longitudinal tire slip
- Lateral vehicle dynamics
 - Steering system
 - Cornering, driving agility
 - Lateral tire behavior
- Vertical vehicle dynamics
 - Axle & suspension system
 - Comfort behavior

Simplified Models for Longitudinal Control Design

- 12-state complex model (Hendrick et al., 1993)
 - Front wheel drive with V-6 engine
 - Four states for the engine
 - Manifold intake pressure/exhaust gas recirculation rate/engine speed/fuel flow
 - Two for the transmission
 - Six for the drive train
 - Two time delays associated with the engine

D.H. McMahon, et al., "Vehicle Modeling and Control for Automated Highway Systems", American Control Conference, 1990

Simplified Models for Longitudinal Control Design

- Further simplified model (four state)
 - Assumptions
 - Time delays associated with power generation in the engine ar enegligible
 - The torque converter in the vehicle is locked
 - There is no torsion of the drive axle
 - Slip between the tires and the road is zero
 - State 1: vehicle speed v_x will be directly related to the engine speed w_e

$$\dot{x} = v_x = Rh\omega_e$$

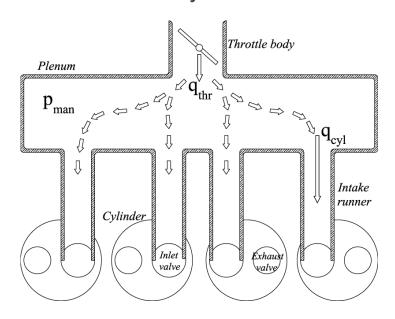
where R and h are gear ratio and tire radius

- State 2: mass of air in the intake manifold (m_a)
- State 3: Engine speed (ω_e)
- State 4: Brake torque (T_{br})

$$\dot{\boldsymbol{\omega}_e} = \frac{T_{net} - c_a R^2 h^2 \boldsymbol{\omega}_e^2 - R(hF_f + T_{br})}{J_e}$$

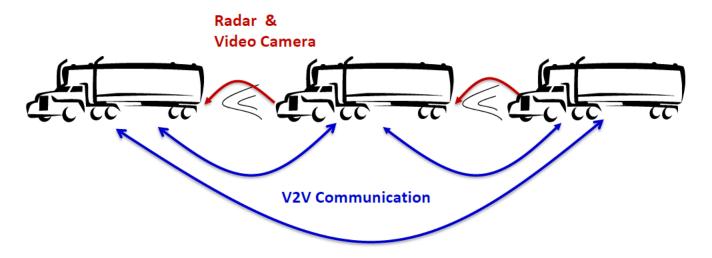
• Where c_a is the aerodynamic drag coefficient, F_f is the rolling resistance, and $J_e = I_e + (mh^2 + I_\omega)R^2$ is the effective inertia reflected on the engine side

Simplified Models for Longitudinal Control Design



Further simplified model (four state)

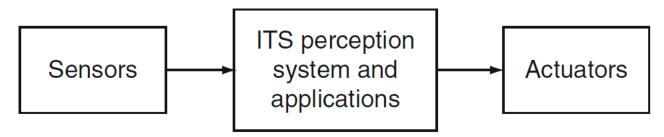
$$\dot{m}_a = \dot{m}_{ai} - \dot{m}_{ao}$$


where \dot{m}_{ai} and \dot{m}_{ao} are the flow rate into the intake manifold, and out from the manifold

- What is a manifold?
 - Part of engine that supplies the fuel/air mixture to the cylinders
 - $\dot{m}_{ai} = MAXTC(\alpha)PRI(m_a)$
 - $P_m V_m = m_a R_g T$

- California PATH program example
 - Truck platooning project
 - Coordinatining driving of clusters of heavy trucks using automatic control of their speed and separation
 - Wireless vehicle-2-vehicle communication to enable close coordination
 - Loose coupling by cooperative ACC or tighter coupling with constant clearance gap

S.E. Shladover, "Introduction to Truck Platooning", ITS World Congress, 2017

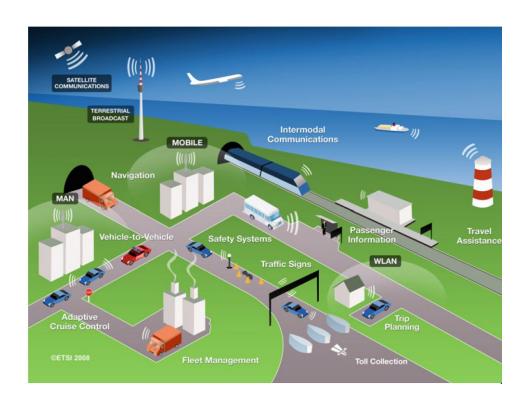

- Why platooning?
 - Aerodynamic drag reduction
 - Three heavy trucks at a gap of 6 m, resulting in the improvement of fuel consumption by 10% on the average
 - Simulation on urban traffic
 - I-710 from Long Beach to LA
 - 2.5% Fuel savings from traffic smoothing
 - 0.5% from aerodynamic drag reductions

Sensing and Actuation in Intelligent Vehicles

- Vehicles today can sense the environment and act using electronic systems
 - Engine control and ABS (Anti-lock brakinig system) are now industry standards
- Electronic systems offers
 - Miniaturization
 - Cost reduction
 - Increased functionality
 - Quality of the componnet

Source : Hand book of Intelligent Vehicles

Types of Sensors



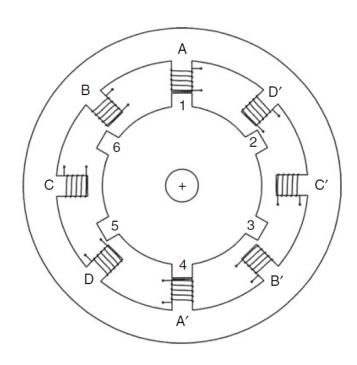
- General in-vehicle sensors
 - Yaw rate sensor
 - Accelerometer
 - Wheel speed sensor
 - Steering angle sensor
- Perception sensors
 - Radar
 - Long-range
 - Laser scanners
 - Equipped only in expensive vehicles
- Vision systems
 - CCD and CMOS camera
 - IR vision
 - Stereo vision

Types of Sensors

- Ultrasonic sensors
- Wireless communication
 - DSRC (dedicated short range communcations): short to medium (1000 m)
 V2V, V2I

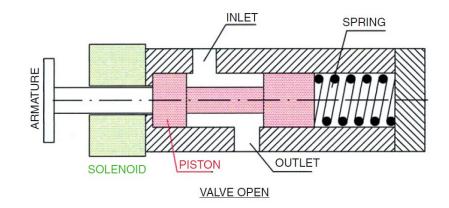
Types of Sensors

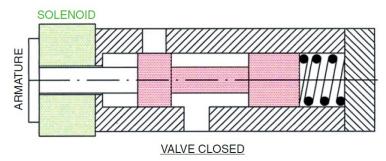
- Wireless communication
 - WAVE (Wireless Access in Vehicular Environments): IEEE 1609
 - Continuous Air Interface Long and Medium Range (CALM): ISO 2007; ISOTC204 WG16)
 - CAR 2 CAR Communication Consortium (C2C2CC)


Types of Actuators

- Electric Motors
 - DC motors
 - Stepper motors

Smart coolant pump by Continental using a DC motor



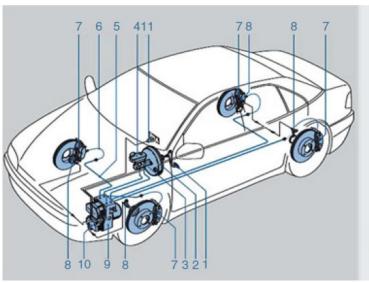

Stepper motor

Types of Actuators

- Solenoid valves
 - Electric current through coil determines the position of the valve

Solenoid valve example

Types of Actuators



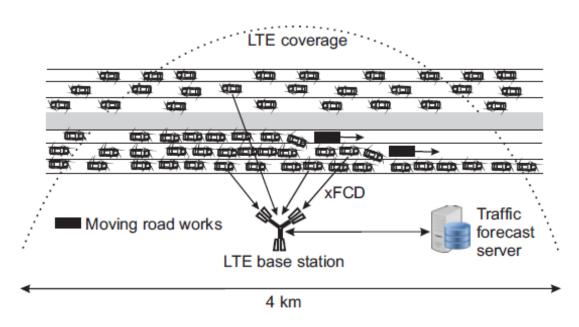
- Pneumatic and hydraulic actuators
 - Compressed air or pressurized fluid into rotary or linear motion
- Piezoelectric actuators
 - Piezoelectric effect: pressure -> electricity
 - Reverse piezoelectric effect: electricity -> mechanical motion
 - High precision fuel injection systems

Sensor-Actuator Systems

- Antilock braking systems (ABS)
 - Prevents wheel skidding during braking
 - Use of ECUs (electronic control unit)
 - Wheel speed sensor, hydraulic brake valves

- 1 Brake pedal
- 2 Brake servo unit
- 3 Master cylinder
- 4 Brake fluid reservoir
- 5 Brake pipe
- 6 Brake hose
- 7 Disc brake with wheel cylinder
- 8 Wheel speed sensor
- 9 Hydraulic modulator
- 10 ABS control unit
- 11 ABS warning lamp

Sensor-Actuator Systems



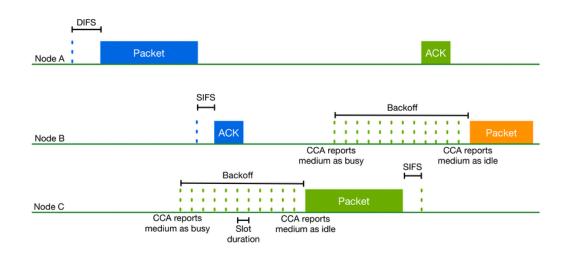
- Electronc Stability Systems (ESC)
 - Uses the same or similar components to ABS
 - Ensures the stability of the vehicle by comparing the steering wheel angle and the gyroscopic sensor readings
- Adaptive Cruise Control (ACC)
 - Uses radar or other sensor to detect a slower moving lead vehicle and decelerate
- Assisted steering and steer-by-wire systems
- Brake-by-wire systems
- And.. autonomous vehicles?

Architectures for Communication Systems

- Vehicle-to-infrastructure (V2I) communications
 - Traffic prediction, management
 - Safety systems: latency of 100 ms? LTE?
 - Content dissemination
 - Wi-Fi based vs cellular-based systems?

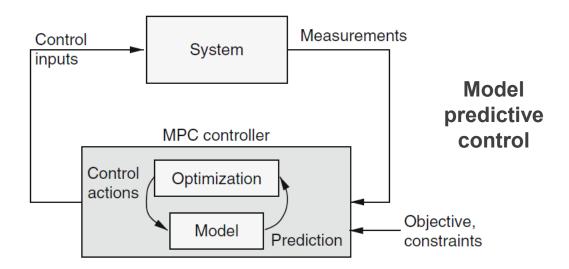
Source: C. Ide, et al., "Interaction between Machine-Type Communcation and H2H LTE Traffic in Vehicular Environments, IEEE VTC19

Architectures for Communication Systems



- Vehicular ad hoc networks (VANETs)
 - Real-time communication among vehicles
 - Little or no permanent infrastructure
 - Safety
 - https://www.youtube.com/watch?v=14fOqMBn9aw

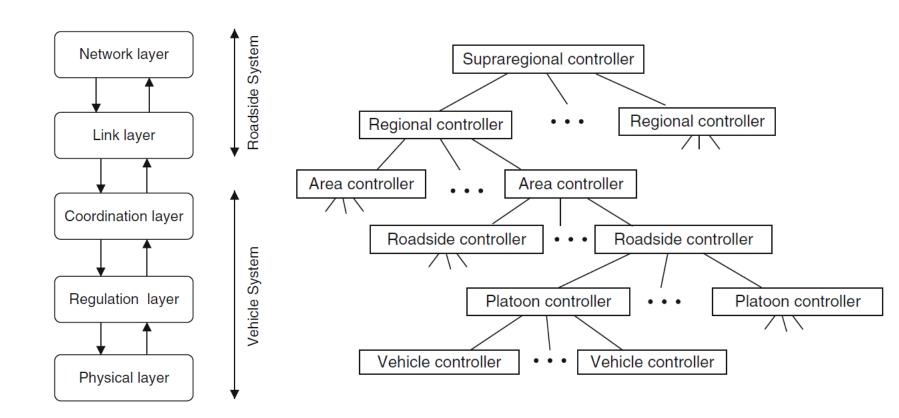
Architectures for Communication Systems


- Protocols, algorithms, routing and information dissemination
 - IEEE standards for DSRC MAC
 - IEEE 802.11p (WiFi-p)
 - IEEE 1609.4
 - MAC for multichannel
 - Multichannel coordination
 - TDMA-based VANET MAC protocols vs CSMA/CA
 - For vehicles, latency and reliability might be more important that throughput

Hierarchical, Intelligent, and Automatic Controls

- Positioning, navigation, and trajectory control
- Methods
 - Static feedback control
 - PID controllers
 - Optimal control and model predictive control
 - Optimizes a performance function: fuel consumption, safety distance, etc.
 - Online optimization using rolling horizons approach

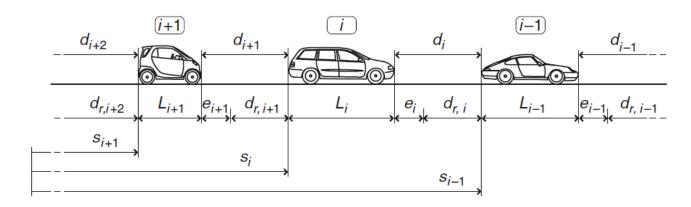
Hierarchical, Intelligent, and Automatic Controls



- Methods
 - Artificial intelligence (AI) techniques
 - Mimics how humans solve problems
 - Case-based reasoning
 - Fuzzy logic
 - Rule-based systems
 - Artificial neural networks
 - Multi-agent systems

Hierarchical Control

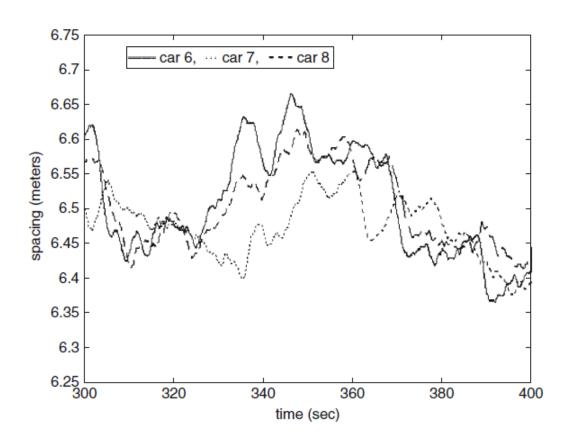
PATH example



Path architecture

Vehicle Following Control

- Distance error for i-th vehicle:
- $e_i(t) = d_i(t) d_{r,i}(t)$
- Where $d_{r,i}(t)$ is the desired headway of vehicle i that follows from the so-called spacing policy
- The control objective would be to $\lim_{t\to\infty}e_i(t)=0$ under the presence of disturbances
 - Changes in the velocity of other vehicles, initial velocity differences, etc.



- Upper-level controller
 - Determines the desired acceleration of each car.
 - Maintain constant small spacing between the cars
 - Ensure string stability of the platoon
- Lower-level controller
 - Throttle and brake actuator inputs are determined
 - Tries to track the desired acceleration determined by the upper-level controller

Inter-vehicle spacing results

Source: Hanbook of Intelligent Vehicles

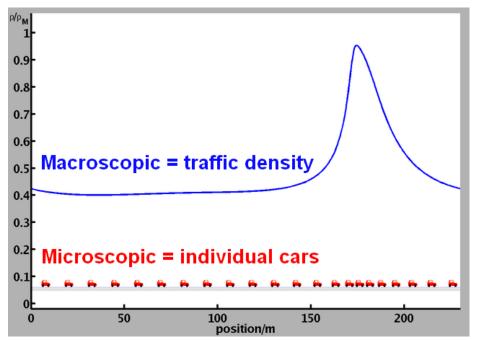
- What about string stability?
 - How do you define the stability of a platoon?
 - We should ensure that vehicles in a platoon do not crash into each other

Traffic Modeling/Driver Behavior Modeling

- Two extremes
- Empty lane (left): Vehicles move at desired speeds, no interaction among vehicles
- Fully congested lane (right): Queueing theory

Source: B. Seibold, "A mathematical introduction to traffic flow theory"

Traffic Modeling/Driver Behavior Modeling



- In reality, it is somewhere it between
 - Vehicles interact which each other and we have to consider flow
 - https://www.youtube.com/watch?v=Suugn-p5C1M

Traffic Modeling/Driver Behavior Modeling

- Macroscopic modeling
 - Concerned with average behavior, such as traffic density, average speed and module area
- Microscopic modeling
 - Car following model: driver adjusts his or her acceleration according to the conditions in front

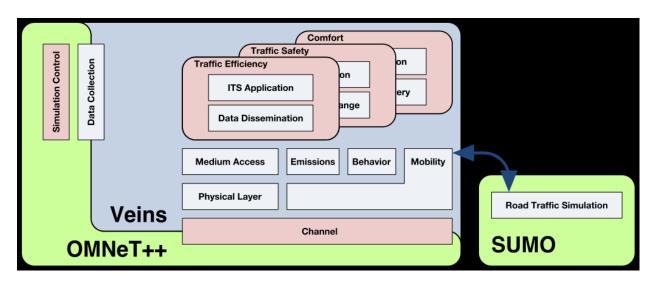
Source: B. Seibold, "A mathematical introduction to traffic flow theory"

Why Traffic/Driver Modeling?

- We can investigate various effects
 - Non-homogenous vehicles (trucks + passenger vehicles)
 - Aggressiveness of a driver
 - Can perform simulation studies!
 - What is the difference in traffic flow if we use autonomous driving??

Our goal of the course would be to investigate such effects

Roadside Control and Traffic Signal Control


- Traffic lights have a huge impact on traffic control
- Fixed time control
 - Fixed green-red timings and non-adjutable
- Coordinated control
 - "Green wave" for traveling vehicles
- Adaptive control
 - Use of cameras, motion sensors, RFID tags, etc., to monitor the traffic flow and adaptively control the timings

Tutorial Setup

- Veins simulator
 - Traffic simulator + network simulator
 - SUMO: Simulation of urban mobility
 - OMNet++
 - Discrete event simulator for networks
- What can we test?
 - To be elaborated at Tutorial parts

Source: Veins simulator website

Course Schedule

Weeks	Lecture	Tutorial
1	Introduction & Course Overview	Introduction to software setup
2	Vehicle dynamics and modeling	SUMO simulator tutorial
3	Microscopic Traffic Modelinig	SUMO simulator tutorial
4	Sensing and actuation in intelligent vehicles	OMNeT++ introduction
5	Architectures for vehicular communication systems (1)	Vehicle-2-Infrastructure example
6	Architectures for vehicular communication systems (2)	Veins simulator architecture: custom application
7	Longitudinal control of vehicles	Platooning example
8	Fuel-Economy and EV energy consumption	Traffic light control

References

- Azim Eskandarian, Handbook of Intelligent Vehicles, Springer, 2012
- Mario Hirz, "Automotive Engineering, Focus: Basics of Longitudinal Vehicle Dynamics"
- W. Chen, Vehicular Communications and Networks: Architectures, Protocols, and Networks