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Programming Intelligent Physical Systems
Integration of computational elements with physical processes.
CPS = Embedded Systems + Control Systems

Goals:
The system is intelligent
The system is adaptive
The system is certifiable
Example: If a camera in an industrial robot is replaced by a new
camera, the system can automatically adjust to this change and
exploit the better capabilities of the new camera
Example: If there is a change in the mechanical sub-system, the
control strategy is automatically adapted to fit this new system
Example: If there is increased wear and tear of certain com-
ponents (e.g., drill bits) or increased vibration, the production
strategy is automatically adapted
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Outline of this lecture

In today’s lecture we will discuss:
Controller implementation on an embedded platform
Controller Design for discrete-time systems with time delay
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Control applications

An embedded controller can be implemented using 3 tasks:
A sensor task (Tm) reads sensor data and process them to
extract state information. Typically, A/D conversion and sig-
nal/image processing are performed in this task.
A controller task (Tc) implements the control law and computes
the control input. The execution time of this task depends on
the complexity of the control algorithm.
An actuator task (Ta) writes the control input onto the actuator
to be applied to the plant. Typically, D/A conversion and post-
processing is done in this task.
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Controller implementation
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Controller implementation

Ideal design assumes τ = 0 or τ << h.
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Task triggering

In general, Tm and Ta consume negligible computational time
and are time-triggered.
Tc needs finite computation time and is event-triggered and
preemptive.
When multiple tasks are running on a processor, Tc can be
preempted by a higher priority task.

Sensor-to-actuator delay: τ
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Control task model – constant delay

Sensor-to-actuator delay τ ≈ Dc
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Control task model – constant delay

Tm is triggered periodically with a period equal to the sampling
period h. Schedule for Tm is assumed as {0, 0, h}, i.e., periodic
with zero offset, negligible execution time and period h.
Ta is also triggered periodically with the same period h. Sched-
ule for Ta is assumed as {Dc , 0, h}, i.e., periodic with constant
offset Dc , negligible execution time and period h.
Tc is executed in between Tm and Ta.
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Control task model – constant delay

Tc is preemptive.
Response time of Tc is Rc .
The time difference between Tm and Ta is the deadline Dc of
Tc .
Sensor-to-actuator delay is τ = Dc in all samples and the task
should be scheduled such that Rc < Dc .
The control task is characterized by Tc ∼ {h,Dc , ec} where
(i) h is the sampling period of the control application, (ii) Dc
is the deadline of Tc and (iii) ec is the WCET of Tc .
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System stability and control performance

Deadline Dc for a control task Tc are often firm rather than
hard.

Okay to miss a few deadlines, but not too many in a row.
And it depends on what happens if the deadline is missed.

Task is allowed to complete late.
Task is aborted at the deadline.
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Controller design for delayed discrete-time systems
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Controller design steps for Case A: Dc < h

ẋ = Ax + Bu
y = Cx

x [k + 1] =
f1(x [k], u[k])

y [k] = f2(x [k])

u[k] = f (x [.])
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Recall: Ideal discrete-time case

ẋ = Ax + Bu
y = Cx

x [k + 1] = φx [k] + Γu[k]
y [k] = Cx [k]

u[k] = Kx [k] + Fr
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Step I:
Derivation of sampled-data model with
constant sensor-to-actuator delay Dc
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Timing properties

Constant sensor-to-actuator delay

tr
k = tk + Dc

tr
k+1 = tk+1 + Dc

· · ·

Sampling period h

tk+1 = tk + h
tk+2 = tk+1 + h
· · ·
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Signals

Measurement is done in every sampling instant. Therefore, it is
essentially assumed that the states are constants between two
consecutive measurements , i.e.,

x(t) = x(tk) = x [k] for tk ≤ t ≤ tk+1

The input signal is hold constant for one sampling interval

u(t) = u(tk) = u[k] for tr
k ≤ t ≤ tr

k+1

u(t) = u(tk+1) = u[k + 1] for tr
k+1 ≤ t ≤ tr

k+2

...

A control input is updated once in every sampling interval be-
cause,

tr
k+1 − tr

k = h
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Zero-order hold operation

The u(tk) is computed based on the latest measurement x(tk)

u(tk) = f (x(tk))

u(tk) is applied at t = (tk + Dc) = tr
k

In ideal implementation, u(tk) is applied at t = tr
k

Due to finite sensor-to-actuator delay, the input value is up-
dated after Dc time
Between tr

k−1 ≤ t ≤ tr
k , the previous control input is hold,

u(t) = u(tk−1) = u[k − 1]
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What is happening within one sampling period
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Recall

ẋ = Ax + Bu

y = Cx

⇓

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ

y(t) = Cx(t)
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Model derivation

x(t) = eAtx(0) +
∫ t

0 eA(t−τ)Bu(τ)dτ
y(t) = Cx(t)

=⇒ x(0) = x(tk)
x(t) = x(tk+1)
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x(tk+1) = eA(tk+1−tk)x(tk) +
∫ tk+1

tk
eA(tk+1−τ)Bu(τ)dτ

⇓

u(τ) = u[k − 1] for tk ≤ t ≤ tr
k

u(τ) = u[k] for tr
k ≤ t ≤ tk+1

tk+1 − tk = h
x(tk+1) = x [k + 1]
x(tk) = x [k]

⇓

x [k + 1] = eAhx [k] +
∫ tr

k
tk eA(tk+1−τ)Bdτ.u[k − 1]+

+
∫ tk+1

tr
k

eA(tk+1−τ)Bdτ.u[k]
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x [k + 1] = eAhx [k] +
∫ tr

k
tk eA(tk+1−τ)Bdτ.u[k − 1]+

+
∫ tk+1

tr
k

eA(tk+1−τ)Bdτ.u[k]

⇓

x [k + 1] = eAhx [k] +
∫ h

h−Dc
eAsBds.u[k − 1]+

+
∫ h−Dc

0 eAsBds.u[k]

⇓

x [k + 1] = φx [k] + Γ1(Dc)u[k − 1] + Γ0(Dc)u[k]

φ = eAh
Γ1(Dc) =

∫ h
h−Dc

eAsBds
Γ0(Dc) =

∫ h−Dc
0 eAsBds
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Sampled-data model

ẋ = Ax + Bu

y = Cx
=⇒ Continuous-time model

www� ZOH sampling with period h and
constant sensor to actuator delay Dc

x [k + 1] = φx [k] + Γ1(Dc)u[k − 1] + Γ0(Dc)u[k]

y [k] = Cx [k]

where,
φ = eAh
Γ1(Dc) =

∫ h
h−Dc

eAsBds
Γ0(Dc) =

∫ h−Dc
0 eAsBds

=⇒ Sampled-data
model

End of Step 1
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Example 1

Consider the following continuous-time system -

ẋ =
[
0 1
37 7.5

]
x +

[
0

6450

]
u, y =

[
1 0

]
x

(a) Compute the system model considering ZOH sampling with sampling
period h = 0.01 sec and a constant sensor-to-actuator delay
Dc = 0.005sec.

φ = eAh ≈ I + Ah =
[

1 0.01
0.37 1.075

]
Γ1(Dc) =

∫ h
h−Dc

eAsBds = A−1(eAh − eA(h−Dc ))B
≈ A−1(I + Ah − I − A(h − Dc))B

= DcB =
[

0
32.25

]
Γ0(Dc) = (h − Dc)B =

[
0

32.25

]
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Step II:
Controller design based on sampled-data model with constant

sensor-to-actuator delay Dc
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System model with Dc < h

x [k + 1] = φx [k] + Γ1(Dc)u[k − 1] + Γ0(Dc)u[k]
y [k] = Cx [k]

φ = eAh

Γ1(Dc) =
∫ h

h−Dc
eAsBds

Γ0(Dc) =
∫ h−Dc

0 eAsBds
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Augmented system

We define new system states:

z [k] =
[

x [k]
u[k − 1]

]
With the new definition of states, the state-space becomes

z [k + 1] = φaugz [k] + Γaugu[k]
y [k] = Caugz [k]

where the augmented matrices are defined as follows

φaug =
[
φ Γ1(Dc)
0 0

]
, Γaug =

[
Γ0(Dc)

I

]

Cavg =
[
C 0

]
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Example 2
Consider the continuous-time system (voltage stabilizer)

ẋ =
[
0 1
−1 −1

]
x +

[
0
1

]
u, y =

[
1 0

]
x

(a) Compute the system model considering ZOH sampling with
sampling period h = 0.01 sec and a constant sensor-to-actuator
delay Dc = 0.005sec.

φ = eAh ≈ I + Ah =
[

1 0.001
−0.001 0.999

]

Γ1(Dc) ≈ DcB =
[

0
0.0005

]

Γ0(Dc) ≈ (h − Dc)B =
[

0
0.0005

]
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Augmented system has the following

φaug =
[
φ Γ1(Dc)
0 0

]
=

 1 0.001 0
−0.001 0.999 0.0005

0 0 0



Γaug =
[
Γ0(Dc)

I

]
=

 0
0.0005

1


Caug =

[
C 0

]
=
[
1 0 0

]
We could see that the augmented system has a higher dimen-
sion compared to the original system
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Controller design for Dc < h

Given system:
z [k + 1] = φaugz [k] + Γaugu[k]
y [k] = Caugz [k]

Control law: u[k] = Kz [k] + Fr

Objectives:
(i) Place system poles
(ii) Design K and F
(iii) Achieve y → r as t →∞

w�
1 Check controllability of the augmented system (φaug , Γaug ). To be

controllable, γaug must be invertible where

γaug =
[
Γaug φaugΓaug φ2

augΓaug · · · φn−1
aug Γaug

]
2 Apply Ackermann’s formula K = −

[
0 0 · · · 1

]
γ−1

augH(φaug )
where
H(φaug ) = (φaug − α1I)(φaug − α2I) · · · (φaug − αnI)
and α1, α2, · · · , αn are the poles of the augmented system.

3 Feedforward gain F = 1
Caug (I−φaug −Γaug K)−1Γaug

End of Step II
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Summary: Overall design for Dc < h

Continuous-time
model

ẋ = Ax + Bu
y = Cx

⇓

Sampled-data
model

x [k + 1] = φx [k] + Γ1(Dc)u[k − 1] + Γ0(Dc)u[k]
y [k] = Cx [k]

⇓

Augmented
system

z [k + 1] = φaugz [k] + Γaugu[k]
y [k] = Caugz [k]

⇓

Controller
gains

u[k] = Kz [k] + Fr
K = −

[
0 0 · · · 1

]
γ−1

augH(φaug )
F = 1

Caug (I−φaug −Γaug K)−1Γaug
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Example 3
Consider the following continuous-time system:

ẋ =
[
0 1
−1 −1

]
x +

[
0
1

]
u, y =

[
1 0

]
x .

(a) Compute the system model considering ZOH with sampling period
h = 0.001s and a constant sensor-to-actuator delay Dc = 0.0005s.

Solution: The sampled-data model is given by

x [k + 1] = φx [k] + Γ1(Dc)u[k − 1] + Γ0(Dc)u[k]

where,
φ = eAh ≈ I + Ah =

[
1 0.001

−0.001 0.999

]
Γ1(Dc) ≈ DcB =

[
0

0.0005

]
Γ0(Dc) ≈ (h − Dc)B =

[
0

0.0005

]
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Example 3
(b) Using x1(0) = 45 and x2(0) = 0, design u such that y → 90 as
t →∞.

Solution: We choose the new augmented states

z [k] =
[

x [k]
u[k − 1]

]
The augmented system with new system states is

z [k + 1] = φaugz [k] + Γaugu[k], y [k] = Caugz [k].
where,

φaug =
[
φ Γ1(Dc)
0 0

]
=

 1 0.001 0
−0.001 0.999 0.0005

0 0 0


Γaug =

[
Γ0(Dc)

I

]
=

 0
0.0005

1


Caug =

[
C 0

]
=
[
1 0 0

]
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Example 3

The controllability matrix of the augmented system is given by

γaug =
[
Γaug φaugΓaug φ2

augΓaug
]

=

0.000000124979167 0.000000999458333 0.000001997958334
0.000499875000003 0.0009990 0.000998000001416

1 0 0


And since det(γaug 6= 0), the augmented system is controllable.
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Example 3

We apply a control input

u[k] = Kz [k] + Fr

The feedback gain is designed using Ackermann’s formula. Towards this,
we first choose the closed loop system poles[

0.9 0.9 0.9
]
.

H(φaug ) = (φaug − 0.9I)3 =

 0.0010 0.0000 −0.0000
−0.0000 0.0010 0.0004

0 0 −0.7290


K = −

[
0 0 · · · 1

]
γ−1

augH(φaug ) =
[
−1000.2 −28.7 0.7

]
F = 1

Caug (I− φaug − ΓaugK )−1Γaug
= 1000.5
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Example 3

We apply the above designed feedback and feedforward gains and obtain
the following response

Settling time is arround 0.1 seconds.
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Example 3
Plot of input signal

The input signal requirement is given by max u[k] = 102380.
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Example 3

(c) Repeat part (b) assuming that the designer does not know about Dc
and assumes Dc = 0. Plot the system response.

Solution: The discrete-time system is given by

x [k + 1] = φx [k] + Γu[k], y [k] = Cx [k].

where,
φ =

[
1.0 0.001
−0.001 0.999

]
, Γ =

[
0

0.001

]
For, u[k] = Kx [k] + Fr and α =

[
0.9 0.9

]
we get, K =

[
−10004 −194

]
, F = 10005.
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Example 3

We apply the above designed feedback and feedforward gains and obtain
the following response
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Example 3
(d) Redesign the controller assuming a period h = 0.5s and a constant
sensor-to-actuator delay Dc = 0.4s. And plot the system response.

Solution: We first obtain the augmented system dynamics as follows:

z [k + 1] = φaugz [k] + Γaugu[k], y [k] = Caugz [k].

Subsequently, we follow the design similar to part (b).
For, α =

[
0.2 0.2 0.2

]
H(φaug ) = (φaug − 0.2I)3 =

 0.0932 0.2506 0.1108
−0.2506 −0.1574 −0.0489

0 0 −0.0080


K = −

[
0 0 · · · 1

]
γ−1

augH(φaug ) =
[
−0.9993 −1.5905 −0.6579

]
F = 1

Caug (I− φaug − ΓaugK )−1Γaug
= 2.65

u[k] = Kz [k] + Fr
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Example 3

We obtain the following system response

Settling time is around 20s.
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Example 3

Plot of input signal

Maximum input signal max u[k] = 195.60.
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Example 3

(e) Repeat part (d) assuming that the designer does not know about Dc
and assumes Dc = 0. Plot the system response.

Solution: The discrete-time system can be obtained as

x [k + 1] = φx [k] + Γu[k], y [k] = Cx [k].

where,
φ =

[
0.8956 0.3773
−0.3773 0.5182

]
, Γ =

[
0.1044
0.3773

]
For, u[k] = Kx [k] + Fr and α =

[
0.2 0.2

]
we get, K =

[
−2.3215 −2.0445

]
, F = 3.3215.
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Example 3

We obtain the following system response by ignoring the effect of delay

Clearly, the system is unstable if the design ignores the effect of delay.
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Example 3: Conclusion

The effect of sensor-to-actuator delay is prominent when the
sampling period is longer. Since the sampling period is very
short in part (a) and (b), part (c) shows that the effect of
sensor-to-actuator delay can be ignored. However, since the
sampling period is longer in part (d) and (e), the system gets
unstable when the effect of delay is ignored.
The important design parameters are the following

Sampling period (h)
System poles (α)
Maximum input signal requirement max u[k]
System settling time
Sensor-to-actuator delay (Dc)
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. . . coming back to implementation onto single-processor
platform. . .
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Recall: single processor setting

Control Task: CiTasks:

Task scheduler: e.g., Fixed priority preemptive

Processor

Real-time Tasks: Ti

Physical System

ActuatorsSensors

D/AA/D

- Shared processor
- Control tasks
- Real-time tasks
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Recall: controller design

Continuous-time
model

ẋ = Ax + Bu
y = Cx

⇓

Sampled-data
model

x [k + 1] = φx [k] + Γ1(Dc)u[k − 1] + Γ0(Dc)u[k]
y [k] = Cx [k]

⇓

Augmented
system

z [k + 1] = φaugz [k] + Γaugu[k]
y [k] = Caugz [k]

⇓

Controller
gains

u[k] = Kz [k] + Fr
K = −

[
0 0 · · · 1

]
γ−1

augH(φaug )
F = 1

Caug (I−φaug −Γaug K)−1Γaug
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Recall: schedulability analysis for single processor

Response time with fixed priority preemptive scheduling for the
given task set is given by:

Ri = ei +
∑

∀j∈hp(i)

⌈
Ri
pj

⌉
ej

Recurrence relation can be solved iteratively

Rn+1
i = ei +

∑
∀j∈hp(i)

⌈
Rn

i
pj

⌉
ej

starting with R0
i = 0

Schedulability test implies worst-case response time must be
smaller than the deadline, i.e., Ri = Di
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Overall design steps

Ti: {pi, Di, ei} + Tc: {h, Dc, ec}

Response time analysis

Task models

Controller design for Dc < h

(i) Ri < Di (ii) Rc < Dc

No

Partial
redesign

Yes

Rc and Ri
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Illustrative design example from automotive: Implementation of
cruise control system onto an ECU
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Problem Description
Consider the following dynamics of cruise control system

v̇(t) = Av(t) + Bu(t), y(t) = Cv(t),

v(t) =

v1(t)
v2(t)
v3(t)

 ,A =

 0 1.0 0
0 0 1.0

−6.05 −5.29 −0.24

 ,
B =

 0
0

2.48

 ,C =
[
1 0 0

]
It receives the reference or the commanded vehicle’s speed from the
driver and regulates the speed following the driver’s command. Based
on the reference speed and the feedback signals, the cruise control
system regulates the vehicle’s speed by adjusting the engine throttle
angle to increase or decrease the engine drive force.
The state v1(t) captures the speed of the vehicle and u(t) is the
engine throttle angle. The objective is to choose u(t) such that
v1(t) = r , i.e., a constant desired speed.
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The cruise controller has to be implemented on an Electronic Control
Unit (ECU) where a number of other period real-time tasks are also
running. The real-time tasks are characterized as follows:

Tasks pi(ms) Di(ms) ei(ms) Remark
T1 10 10 3 Real-time Task
T2 15 15 4 Real-time Task
T3 25 25 4 Real-time Task

Due to thermal constraint, the maximum processor utilization is Umax
= 0.8.

The sensor-to-actuator delay of the control application must be con-
stant and must not exceed 50% of the chosen sampling period.

Assume that the measurement operation by the sensor task takes
negligible time. Also, the actuation takes negligible time.

The controller task of the control application has a WCET ec = 2ms.
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Design

1 sampling period h of the controller such that the utilization
limit is not violated

2 the scheduling policy on the control and real-time tasks such
that real-time tasks meet theirs deadline and controller task
meets its sensor-to-actuator delay constraint

3 the controller such that the cruise controller is able to track the
speed
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Choice of sampling period

The utilization by all the real-time tasks is given by

URT = 3
10 + 4

15 + 4
25 = 0.7267

The utilization available for the control application

UC = Umax − URT = 0.8− 0.7267 = 0.0732

With the sampling period h,

UC ≥
ec
h → h ≥ 27.32ms

We choose h = 30ms. Since the sensor-to-actuator delay must not
exceed 50% of the length of sampling period h, the deadline Dc for
the control task Tc is 15ms. Therefore, h = 30ms and Dc = 15ms.
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The resulting task set including the control task becomes:

Tasks pi(ms) Di(ms) ei(ms) Remark
T1 10 10 3 Real-time Task
T2 15 15 4 Real-time Task
T3 25 25 4 Real-time Task
Tc 30 15 2 Control Task
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Scheduling policy

First, we try fixed priority with rate-monotonic scheme. The task
priorities as follows

Tasks pi(ms) Di(ms) ei(ms) priority Remark
T1 10 10 3 1 Real-time Task
T2 15 15 4 2 Real-time Task
T3 25 25 4 3 Real-time Task
Tc h = 30 Dc = 15 2 4 Control Task

With rate-monotonic scheme, we obtain the response times

R1 = 3ms,R2 = 7ms,R3 = 14ms,Rc = 20ms

Clearly, Rc > Dc is violating the timing requirement. Therefore,
timing requirements are not met with rate-monotonic scheme.
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Next, we try fixed priority with deadline-monotonic scheme. The
task priorities as follows

Tasks pi(ms) Di(ms) ei(ms) priority Remark
T1 10 10 3 1 Real-time Task
T2 15 15 4 2 Real-time Task
T3 25 25 4 4 Real-time Task
Tc h = 30 Dc = 15 2 3 Control Task

With deadline-monotonic scheme, we obtain the response times

R1 = 3ms,R2 = 7ms,R3 = 20ms,Rc = 9ms

Clearly, the timing requirements are met. The deadline monotonic
scheme meets the timing requirements and we assign priorities as
per deadline monotonic scheme.
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Controller Design
We have sampling period h = 30ms. With deadline monotonic
scheme, the worst-case response time is Rc = 9ms. Therefore, we
design the controller with sensor-to-actuator delay 9ms, i.e.,
Dc = 9ms.

x [k + 1] = φx [k] + γ1(Dc)u[k − 1] + γ0(Dc)u[k]
y [k] = Cx [k]

φ =

 1.0000 0.0300 0.0004
−0.0027 0.9976 0.0299
−0.1806 −0.1606 0.9905


γ1(Dc) =

0.00000.0005
0.0519

 , γ0(Dc) =

0.00000.0006
0.0221


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We choose new system states: z [k] =
[

x [k]
u[k − 1]

]
The resulting augmented system is:

z [k + 1] = φaugz [k] + γaugu[k]
y [k] = Caugz [k]

φaug =
[
φ γ1(Dc)
0 0

]
=


1.0000 0.0300 0.0004 0.0000
−0.0027 0.9976 0.0299 0.0006
−0.1806 −0.1606 0.9905 0.0221
0.0000 0.0000 0.0000 0.0000



γaug =
[
γ0(Dc)

I

]
=


0.0000
0.0005
0.0519
1.0000

 ,Caug =
[
C 0

]
=
[
1 0 0 0

]
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The controllability matrix

γaug =
[
γaug φaugγaug φ2

augγaug φ3
augγaug

]

=


0.0000 0.0001 0.0002 0.0003
0.0005 0.0027 0.0048 0.0070
0.0519 0.0734 0.0723 0.0708
1.0000 0 0 0


det(γaug) 6= 0 indicates the augmented system with sensor-to-
actuator delay Dc is controllable.
With α =

[
0.9 0.9 0.98 0.98

]
, the feedback gain is:

K = −
[
0 0 ... 1

]
γ−1

augH(φaug)

=
[
0.4773 0.3265 −0.1579 0.7799

]
The feedforward gain is F = 0.0601
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The system response is the following with initial condition
v1[0] = 30m/s, v2[0] = 10m/s2, v3[0] = 5m/s3. It takes 20 sec to
reach a velocity of v1[0] = 50m/s
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The maximum throttle angle is: u[k] = 122.08◦
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Tools for Timing Analysis
There are various commercial timing analysis tools that are used in
the industry.
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Tools for Design Space Exploration
1 We have seen that the architecture and the implementation of

the system impacts control performance.
2 There are also several tools for automated architecture synthesis

and design space exploration.
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