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Introduction
Who are we?
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RCS Activities

What do we work on?
System-level design of real-time and embedded systems
Embedded control systems (cyber-physical systems)
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RCS Activities

Some application domains:
Sensor systems: Body-area sensor networks, indoor navigation
Power management of portable devices (e.g., projects with
Intel, Google)
Automotive electronics and software
Electric vehicles
Battery management systems
Drone platforms
Timing analysis of embedded systems
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What will we study in this course?

Programming Intelligent Physical Systems?
What is the difference between programming computers and
programming physical systems?
Connections to control theory?
Extensions of control theory.

Connections with Cyber-Physical Systems (CPS)
Computer + Physical System = CPS
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Role of control theory in this course

What does control theory deal with?
We will look at how to systematically implement controllers
on distributed information technology platforms
While control theory is concerned with designing control
algorithms or control strategies, we will be concerned with the
science of implementing control algorithms
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Difference between programming computers and programming
physical systems

Computers as data processing machines
Computer program specifies how the input data is to be
processed to generate output data
But increasingly, we want to program a computer to make a
robot do certain things, or a drone to fly in a certain manner,
or a car to drive without colliding

In these cases, we need a model of the physical system
Then we need to actuate the system to enable it to behave in
the desired fashion
Control theory provides us the tools for the above two steps
Techniques from cyber-physical systems (CPS) allow us to
implement such controllers on computers or distributed
embedded systems
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What is a cyber-physical system?

E. Lee and S. Seshia, Introduction to Embedded Systems – A
Cyber-Physical Systems Approach, 2014. Online available
at www.leeseshia.org.

“A cyber-physical system (CPS)
is an integration of computation
with physical processes.
Embedded computers and
networks monitor and control the
physical processes, usually with
feedback loops where physical
processes affect computations
and vice versa.”
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E. Lee, Computing foundations and practice for cyber-physical
systems: A preliminary report. 2007

“..., we may think of cyber-physical systems to comprise embedded
systems (the information processing part) and the physical
environment.”

1. INTRODUCTION

Figure 1.1: Example structure of a cyber-physical system.

bridges that monitor their own state of health. The impact of such improvements on safety,
energy consumption, and the economy is potentially enormous.

Many of the above examples will be deployed using a structure like that sketched in
Figure 1.1. There are three main parts in this sketch. First, the physical plant is the
“physical” part of a cyber-physical system. It is simply that part of the system that is not
realized with computers or digital networks. It can include mechanical parts, biological
or chemical processes, or human operators. Second, there are one or more computational
platforms, which consist of sensors, actuators, one or more computers, and (possibly)
one or more operating systems. Third, there is a network fabric, which provides the
mechanisms for the computers to communicate. Together, the platforms and the network
fabric form the “cyber” part of the cyber-physical system.

Figure 1.1 shows two networked platforms each with its own sensors and/or actuators.
The action taken by the actuators affects the data provided by the sensors through the
physical plant. In the figure, Platform 2 controls the physical plant via Actuator 1. It mea-
sures the processes in the physical plant using Sensor 2. The box labeled Computation 2
implements a control law, which determines based on the sensor data what commands to
issue to the actuator. Such a loop is called a feedback control loop. Platform 1 makes
additional measurements using Sensor 1, and sends messages to Platform 2 via the net-

Lee & Seshia, Introduction to Embedded Systems 5

Figure: Common structure of an embedded/cyber-physical system.
Source: LeeSeshia14
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Components of an embedded/cyber-physical system
Physical plant is the physical part of the cyber-physical system
consisting e.g. mechanical/electrical parts;
biological/chemical processes.
Cyber part consists of sensors, actuators, embedded
computers, software and communication infrastructure.1. INTRODUCTION

Figure 1.1: Example structure of a cyber-physical system.

bridges that monitor their own state of health. The impact of such improvements on safety,
energy consumption, and the economy is potentially enormous.

Many of the above examples will be deployed using a structure like that sketched in
Figure 1.1. There are three main parts in this sketch. First, the physical plant is the
“physical” part of a cyber-physical system. It is simply that part of the system that is not
realized with computers or digital networks. It can include mechanical parts, biological
or chemical processes, or human operators. Second, there are one or more computational
platforms, which consist of sensors, actuators, one or more computers, and (possibly)
one or more operating systems. Third, there is a network fabric, which provides the
mechanisms for the computers to communicate. Together, the platforms and the network
fabric form the “cyber” part of the cyber-physical system.

Figure 1.1 shows two networked platforms each with its own sensors and/or actuators.
The action taken by the actuators affects the data provided by the sensors through the
physical plant. In the figure, Platform 2 controls the physical plant via Actuator 1. It mea-
sures the processes in the physical plant using Sensor 2. The box labeled Computation 2
implements a control law, which determines based on the sensor data what commands to
issue to the actuator. Such a loop is called a feedback control loop. Platform 1 makes
additional measurements using Sensor 1, and sends messages to Platform 2 via the net-

Lee & Seshia, Introduction to Embedded Systems 5

Figure: Common structure of an embedded/cyber-physical system.
Source: LeeSeshia14
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Example: Adaptive Cruise Control

Image: http://blog.oakridgeford.com/

Different modeling concepts
Ordinary differential equations are used to describe the vehicle
dynamics.
Finite state machines are used to model the different modes
of the system, such as “vehicle ahead” or “no vehicle ahead”.
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Example: Production Lines
Baking line from the High-level Design Lab (RCS)

B Project

The main task in the HLD lab is about automatizing the baking line shown in Fig. 43.
For this purpose, we will continue using the tools that were introduced in the previous
exercises: Xilinx ISE and EDK (i.e., the tools XPS and SDK) and Matlab Simulink
and Stateflow. The design process is the same as we have been using to implement the
hardware and the software counter of the previous exercise. That is, we will use Matlab
Simulink and Stateflow and generate VHDL and C code respectively. Additionally, we
exploit the model-based approach by incorporating a simulation of the baking line, which
allows to test the high-level design before time-consuming synthesis and compilation take
place, which speeds up the initial design process.

During this project, you will develop a control algorithm for the baking line. The
algorithm will be first tested on simulator and then run on the baking line model. For
running on the baking line model, some parts of this control algorithm will be implemented
directly in hardware, whereas some other parts will have to be implemented in software.
Just as before, the hardware parts run on the FPGA while the software parts run on a
MicroBlaze softcore that needs to be properly instantiated.

Figure 43: Model of a baking line used in the HLD lab

B.1 Description

The baking line of Fig. 43 consists of a number of conveyor belts, rotary tables, etc. These
need to be controlled such that boxes are transported from the start station towards the

46

start

end

Components
Boxes, oven, mixer,
silos, conveyor belts,
rotatory tables,...

Description
Boxes are moved from
start position to end
position.
First stage: filling the
boxes with material.
Second stage: mixing
the granulate material.
Third stage: baking the
material at a certain
temperature in the
oven.

03 August, 2019 Samarjit Chakraborty: Programming Intelligent Physical Systems page 12 of 105



Baking line: schematic overview with sensors and actuator signals
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Figure 46: Scheme of the baking line: sensors and actors

B.3 Project Simulator

The simulator was designed to make full use of the model-based design flow that we are
using. The Simulink models that control the baking line can be tested on the simulator,
which saves a lot of time that otherwise would be needed for synthesis and compilation
for the target hardware.

The simulator is implemented in Simulink, providing an interface similar to the hard-
ware. The initial control algorithm development done in Simulink and Stateflow should

50
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Rotational sorter
Rotation sorter

p2

x1, y1
b1, p1

x0, y0
b0, p0

For every incoming belt, the input signals x and y encode the sensor information taken from the packets. The output
signal b is used to trigger the incoming packet belt, and p is used to trigger a “pusher”.

Encoding of the x/y bits:

Meaning x y
No packet 0 0

Forward by 120� 0 1
Forward by 240� 1 0
Forward by 360� 1 1

Example timing sequence for forwarding a packet by 240�:

x0 0 1 1 0 0
y0 0 0 0 0 0
p0 0 0 0 0 0
p1 0 0 0 0 0
p2 0 0 0 0 1
b0 0 0 1 0 0

Concluding remarks

A list of other synthesis tools can be found at: http://tinyurl.com/ilikesynthesis

2

x , y encode
destination
p activates the pusher
b activates the
incoming conveyor
belt
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Example: Mobile Robots in an Urban Environment

Road network with parking lots
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Embedded and cyber-physical systems are everywhere

Industrial production systems
Avionics
Railway systems
Automotive
Mobile communication
Medical devices
Robotics
Buildings and home applications
...

ACM Special Interest Group on Embedded Systems:
“..the potential for embedded computing quite literally everywhere
is becoming a reality.”
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Your background

Please introduce yourself
Name
Program - Bachelors/Masters/PhD?
Discipline - CS/EE/...?
Have you done a course on control theory?
Have you done a course on embedded systems?
What is your understanding of CPS?
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Coming up next ...

How to design a controller (based on classical control theory)?
Given a plant model, how to design a controller in the
continuous time case
How to design a controller in the discrete time case (since the
controller will be implemented in software that will run on a
digital platform)
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Controller Design for Continuous-Time Systems

03 August, 2019 Samarjit Chakraborty: Programming Intelligent Physical Systems page 19 of 105



What is the meaning of designing a controller?
Given a plant, we want to design a controller to enforce a
desired behavior on the plant (actually on the combination of
the plant and a controller)
What are examples of such desired behaviors? Some state of
the plant or its output approaches a specified reference with
time
For example, the temperature of a room approaches 22 deg C
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Embedded Control Systems

Physical System

ActuatorsSensors

Shared
Communication

Shared
Computation

Embedded platform: Control software

Continuous-time

Discrete-time

D/AA/D

Real-time applications

Multimedia applications
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System Dynamics
Given physical system: Position control using DC motor

Figure: Inverted Pendulum

In order to design the controller, we first need a mathematical
model of the dynamics of the system
θ = shaft angular position, τ = applied motor torque
System dynamics: θ̈ = 37θ + 7.5θ̇ + 6450τ
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Laplace Transform

The Laplace transform of a time-domain function f (t) is given by:

F (s) = L[f (t)] =
∫ ∞

0
f (t)e−stdt, t ≥ 0

You may read L as "Laplace transform of" and s is a complex
number given as s = a + ib
Some properties:

Ld
∫

(f )
dt = [sF (s)− f (0+)]

Ld
2 ∫

(f )
dt2 = [s2F (s)− sf (0+)− f ′(0+)]
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System Models

Input-output model (Transfer function) – suitable for
frequency domain analysis

The relation between input u(t) and output y(t) (observed
variable – e.g., position, temperature)
The analysis is done in frequency domain by taking Laplace
transform

G(s) = Y (s)
U(s)

where s is the complex frequency
State-space model – suitable for time domain analysis

Represent the system in terms of a number of internal states

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
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Computing state-space model – Example

1 System dynamics: θ̈ = 37θ + 7.5θ̇ + 6750τ
2 Input: u = τ , and output: y = θ = x1

3 States: x1 = θ; x2 = θ̇

4 State-space model:

ẋ1 = x2

ẋ2 = 37x1 + 7.5x1 + 6450u

ẋ =
[
0 1
37 7.5

]
x +

[
0

6450

]
u

y =
[
1 0

]
x

ẋ = Ax + Bu
y = Cx
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Exercises

1 Find a state-space model for the following system:

ẍ + 5ẋ + 6x = 8u

with output y = x and input u.
2 Consider the follwing DC motor model:

J θ̈ + bθ̇ = Ki
Li̇ + Ri = V − K θ̇

where θ is the shaft position, y the output, V is the terminal
voltage and system input. J , b,K , L,R are constant motor
parameters. Find a state-space model for this system.
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Computing transfer function – Example

1 System dynamics: θ̈ = 37θ + 7.5θ̇ + 6450τ
2 Input and Output: u = τ (input motor torque);

y = θ (position)
3 Take Laplace transform with zero initial condition:

s2θ(s) = 37θ(s) + 7.5sθ(s) + 6450τ(s)

4 Transfer Function:

θ(s)
τ(s) = 6450

s2 − 7.5s − 37
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Exercises

1 Find the transfer function between x and u:

ẍ + 5ẋ + 6x = 8u

2 Consider the following DC motor model:

J θ̈ + bθ̇ = Ki
Li̇ + Ri = V − K θ̇

where θ is the shaft position, y the output, V is the terminal
voltage and system input. J , b,K , L,R are constant motor
parameters. Find the transfer function between θ and V .
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State-space to Transfer Function

State-space
model

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

Laplace
transform and
x(0) = 0

sX (s) = AX (s) + BU(s)
Y (s) = CX (s)
X (s) = (sI − A)−1BU(s)
Y (s) = C(sI − A)−1BU(s)
Y (s)
U(s) = C(sI − A)−1B

G(s) = C(sI − A)−1B
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Poles and Zeros

Given transfer function G(s) = N(s)
D(s) , the system poles are

roots of the polynomial D(s) and the system zeros are roots
of polynomial N(s)
Example:

G(s) = (s + 0.2)(s + 1)
(s − 1)(s − 2)(s − 3)

Zeros: −0.2,−1; Poles: 1, 2, 3
Example: Double Integrator:

G(s) = 1
s2

Zeros: none; Poles: 0, 0
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Eigenvalues of a matrix

A number λ is an eigenvalue of an n × n matrix A if there is a
nonzero n vector x such that

Ax = λx

The corresponding vector x is the eigenvector of the matrix A.
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Eigenvalues of a matrix

For a given λ, the eigenvector equation

Ax = λx

is equivalent to the linear homogeneous equation

[A− λI]x = 0

Such an equation possesses a nonzero solution if and only if the
determinant of the coefficient matrix vanishes.
Hence, for λ to be an eigenvalue of the matrix A, the following
should hold:

det[A− λI] = 0
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Characteristic equation
Alternatively, system poles can also be computed from the
state-space model by computing the Characteristic Equation
which is given by:

det(λI − A) = 0
System poles are the roots of the characteristic polynomial

det(λI − A)
System poles are the eigenvalues of A
Example: Double Integrator

A =
[
0 1
0 0

]

λI − A =
[
λ −1
0 λ

]
det(λI − A) = λ2

⇒ Poles at 0, 0
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Stability

There are various notions
Bounded-Input Bounded-Output (BIBO) stability
Stability in the sense of Lyapunov
Asymptotic stability
Exponential stability
etc.

Our lecture is mainly confined to the following aspects:
1 |x(t)|, |y(t)|, |u(t)| <∞ (all signals are bounded),
2 y(t)→ 0; t →∞ (asymptotic stability)
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Stability condition: continuous-time case
Stable system: All poles should have negative real part
Marginally stable system: One or multiple poles are on
imaginary axis and all other poles have negative real parts
Unstable system: One or more poles with positive real part.

Stable Unstable

Marginally Stable
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Stability

Example:
G(s) = (s + 0.2)(s + 1)

(s − 1)(s − 2)(s − 3)
Poles at 1, 2, 3⇒ Unstable!
Example:

G(s) = 1
s2

Poles at 0, 0⇒ Marginally stable
Example:

G(s) = 1
s2 + 4

Poles at ±2i ⇒ Marginally stable
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Summary
System dynamics: θ̈ = 37θ + 7.5θ̇ + 6450τ

State Space Transfer Function

ẍ =
[
0 1
37 7.5

]
x +

[
0

6450

]
u

y =
[
1 0

]
x

A =
[
0 1
37 7.5

]

λI − A =
[
λ1
−37 λ− 7.5

]
det(λI − A) = λ2 − 7.5λ− 37

⇒ Poles at 10.9,−3.4

θ(s)
τ(s) = 6450

s2 − 7.5s − 37

⇒ Roots of s2 − 7.5s − 37
⇒ Poles at 10.9,−3.4

⇒ Unstable!
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Summary

How to compute system poles?
1 Roots of det(λI − A)
2 Eigenvalues of system matrix A
3 Solution of system characteristics equation det(λI − A) = 0
4 Roots of D(s) for the transfer function G(s) = N(s)

D(s)

Stable system: All poles with negative real part
Marginally stable system: One or multiple poles are on
imaginary axis and all other poles have negative real parts
Unstable system: One or more poles with positive real part.
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Summary

What have we learnt?
1 What are system dynamics, input-output model and transfer

function
2 Stability is governed by system poles
3 Depending on the location of the poles, the system can be

stable, unstable or marginally stable
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Controller Design Problem

We have a linear system given by the state-space model

ẋ = Ax + Bu
y = Cx

For n-dimensional system Single-Input-Single-Output (SISO)
systems

x =
[
x1 x2 · · · xn

]′
A ∈ Rn × Rn,B ∈ Rn × 1,C ∈ 1× Rn

Objective
y → r ; t →∞

u = ?
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State feedback

Open-loop
system, i.e. with u = 0⇒ ẋ = Ax
Closed-loop system with state-feedback control: u = Kx + Fr

ẋ = (A + BK )x + BFr
y = Cx
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Controller Design

Control law
u = Kx + Fr

r : reference, K : feedback gain, F : static feedforward gain
How to design K?
How to design F?
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Feedback Gain: Ackermann’s Formula

Choose the desired closed-loop poles at[
α1 α2 α3 · · · αn

]
Using Ackermann’s formula we get:

K = −
[
0 0 · · · 1

]
γ−1H(A)

γ =
[
B AB A2B · · · An−1B

]
H(A) = (A− α1I)(A− α2I)(A− α3I) · · · (A− αnI)

Poles of (A + BL) are at
[
α1 α2 α3 · · · αn

]
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Static Feedforward Gain

u = Kx + Fr

K : pole placement; F : static feedforward gains are calculated as
follows

ẋ = (A + BK )x + BFr
y = Cx

→ X (s) = (sI − A− BK )−1BFR(S)
→ Y (s) = CX (s) = C(sI − A− BK )−1BFR(S)

→ Gcl = Y (s)
R(s) = C(sI − A− BK )−1BF

F should be chosen such that y(t)→ r ; t →∞
Using final value theorem: lims→0sY (s) = r ;F = 1

C(−A−BK)−1B
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Summary of Overall Design

Given System:

ẋ = Ax + Bu
y = Cx

Control Law : u = Kx + Fr

Objectives:
1 Place system poles
2 Achieve y → r ; t →∞
3 Design K and F

1 Check controllability of (A, B). γ must be invertible.

γ =
[
B AB A2B · · · An−1B

]
2 Apply Ackermann’s formula

K = −
[
0 0 · · · 1

]
γ−1H(A)

3 Feedforward gain: F = 1
C(−A−BK)−1B
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Summary: Pole Placement

It is reasonable to represent system performance by its poles.
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Controller Design for Discrete-Time Systems
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Digital Platform:Sample and Hold
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ZOH Sampling

piecewise constant

u(t) = u(tk); tk ≤ t ≤ tk+1
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Continuous to Discrete Case

The solution to the matrix equation

dφ
dt = Aφ

where φ is an n × n matrix, given by

φ(t) = eAt , if φ(0) = I

eAt = I + At + A2t2

2! + A3t3

3! + ...
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Discretization

Continuous-time state-space model

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

Taking Laplace transform

sX (s)− x(0) = AX (s) + BU(s)(sI − A)X (s) = x(0) + BU(s)X (s) = (sI − A)−1x(0) + (sI − A)−1BU(s)

Taking inverse Laplace transform

L−1[X (s)] =L−1[(sI − A)−1]x(0) + L−1[(sI − A)−1BU(s)]

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ
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Discretization: Basic Maths
Periodic sampling: tk+1− tk = h (sampling period is constant)

We have

x(tk+1) = eA(tk+1−tk)x(tk) +
∫ tk+1−tk

0
eAsBds.u(tk)

Replacing (tk+1 − tk) with sampling period h in

x(tk+1) = eAhx(tk) +
∫ h

0
eAsBds.u(tk)

We obtain x(tk+1) = φx(tk) + Γu(tk)
where

φ = eAh

Γ =
∫ h

0
eAsBds
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Discrete-time System Stability
Stable system
⇒ Absolute values of all poles lesser than unity
Marginally stable system
⇒ Absolute values of one or multiple poles are unity
Unstable system
⇒ Absolute values of one or more poles are greater than unity
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Design: Step 1 (Discretization)

ẋ = Ax + Bu
y = Cx

ZOH periodic sampling with period = h

x [k + 1] = φx [k] + Γu[k]
y [k] = Cx [k]

where:
φ = eAh

Γ =
∫ h

0
eAsBds

eAh = I + Ah + A2h2

2! + A3h3

3! + ...
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Design: Step 2 (Controller Design)
Given System:

x [k + 1] = φx [k] + Γu[k]
y [k] = Cx [k]

Control Law :
u[k] = Kx [k] + Fr

Objectives:
1 Place system poles
2 Achieve y → r as t → ∞
3 Design K and F

1 Check controllability of (φ,Γ ) → must be controllable. γ must
be invertible.

γ =
[
Γ φΓ φ2Γ · · · φn−1Γ

]
2 Apply Ackermann’s formula

K = −
[
0 0 · · · 1

]
γ−1H(φ)

3 Feedforward gain: F = 1
C(I−φ−ΓK)−1Γ

03 August, 2019 Samarjit Chakraborty: Programming Intelligent Physical Systems page 53 of 105



Step 2
Given:

x [k + 1] = φx [k] + Γu[k]
y [k] = Cx [k]

φ ∈ Rn × Rn, Γ ∈ Rn × 1,C ∈ 1× Rn

The control input u[k] = Kx [k] such that closed-loop poles
are at [

α1 α2 α3 · · · αn
]

Using Ackermann’s formula:

K = −
[
0 0 · · · 1

]
γ−1H(φ)

where

γ =
[
Γ φΓ φ2Γ · · · φn−1Γ

]
H(φ) = (φ− α1I)(φ− α2I)(φ− α3I) · · · (φ− αnI)
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Continuous Vs Discrete Time

Continuous-time
ẋ = Ax + Bu

y = Cx

ZOH periodic sampled
x [k + 1] = φx [k] + Γu[k]

y [k] = Cx [k]

Input: u = Kx + Fr Input: u[k] = Kx [k] + Fr
Controllability matrix: γ =[
B AB A2B · · · An−1B

] Controllability matrix: γ =[
Γ φΓ φ2Γ · · · φn−1Γ

]
K = −

[
0 0 · · · 1

]
γ−1H(A) K = −

[
0 0 · · · 1

]
γ−1H(φ)

F = 1
C(−A−BK)−1B F = 1

C(I−φ−ΓK)−1Γ
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What’s Next?

Although we have assumed discrete sampling with ZOH, we
have also assumed that the control input is available exactly
at the same time when the system state has been sampled.
In many real systems, it might take non-negligible time to
compute the control input and also to communicate the
control signal.
As a result, the system dynamics will be different from what
we have considered.
How should the controller be designed in such a case?
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We will next discuss how to perform timing analysis of distributed
embedded platforms. In particular, we will look at:

Worst-Case Execution Time Analysis
Schedulability Analysis
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Basics of timing analysis: Worst Case Execution
Time (WCET) analysis of programs running on a
single processor
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WCET estimation

Estimated bounds should enclose the actual bounds (be safe)
The goal is to obtain bounds that are as tight as possible, i.e.,
tmin is almost equal to Tmin and tmax is almost equal to Tmax
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WCET estimation: constrained optimization problem

Execution time of a program stems from the time it takes to
execute the various instructions in the program
Hence, total execution time of a program E =

∑N
i=1 cixi , where

ci is the execution time of instruction i and xi is the number of
times the instruction i is executed. N is the number of different
instructions in the program
WCET = max E subject to certain constraints on how many
times the different instructions can be executed
Because of the constraints, not all possible values of xis are
feasible (because not all program paths might be feasible)
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What are the constraints?

xi is the number of times the basic block i is executed
di is the number of times a particular edge is followed
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What is a basic block?

It is a block of code with only one entry and one exit point
Once a code enters a basic block then all the instructions in
the basic block are executed
There are no conditional branches inside a basic block
The execution counts of all instructions in a basic block are the
same
Hence, total execution time of a program E =

∑N
i=1 cixi , where

ci is the execution time of basic block i and xi is the number
of times the basic block i is executed. N is the number of
different basic blocks in the program. By using basic blocks
instead of instructions, we reduce the number of variables in
the optimization problem WCET = max E
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Structural constraints

The structural constraints stem from the control flow in the
program
These constraints can be automatically derived by analyzing
the control flow graph of the program
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Logical constraints

Logical constraints arise from the logical flow in the program
Examples: x5 ≤ 1 and x4 ≥ 99 (do you understand why?)
These constraints might not always be automatically derivable
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WCET as constrained optimization

WCET = max E , where E =
∑N

i=1 cixi , and ci is the execution
time of basic block i , xi is the number of times the basic block
i is executed, and N is the number of different basic blocks in
the program, subject to the structural and logical constraints
Since the objective function is linear, all the constraints are lin-
ear, and we are only interested in integer valuations of the xis,
this is an integer linear programming problem (ILP) and can
be solved by an ILP solver (see: http://www.gurobi.com/
resources/switching-to-gurobi/open-source-solvers)
Examples of WCET analyzers: www.absint.com
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Microarchitecture modeling for WCET estimation
So far we assumed that the execution time of an instruction (or
a basic block) is constant
But this is not true. For example, the execution time of an
instruction will be different depending on whether or not it is
in the cache
The ILP formulation we saw can be extended to incorporate
the effects of caches, pipelines, and speculative execution (like
branch prediction)
Current WCET analyzers use a combination of ILP, abstract
interpretation, and model checking
See: Ravindra Metta, Martin Becker, Prasad Bokil, Samarjit
Chakraborty, R. Venkatesh: TIC: a scalable model checking based
approach to WCET estimation. 17th ACM SIGPLAN/SIGBED Con-
ference on Languages, Compilers, Tools, and Theory for Embedded
Systems (LCTES), extended version to appear in Software Tools
for Technology Transfer, https://arxiv.org/abs/1802.09239
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Schedulability analysis for a single processor
platform
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Implementation on a shared processor

Shared processor
Control tasks
Real-time tasks

03 August, 2019 Samarjit Chakraborty: Programming Intelligent Physical Systems page 66 of 105



Problem description

Multiple real-time tasks are running on the processor. The real-
time tasks are denoted by Ti .
There are one or more control applications (control tasks) run-
ning on the same processor. These tasks are denoted by Ci .
All tasks are executed on a single processor. The processor is
the shared computational resource.
A task scheduler chooses which task to execute at a given time.
This is a very common setup where a control application has
to share the computational resource with other real-time tasks.
The problem is that the control applications and real-time appli-
cations have different types of requirements (will be explained
in the coming slides). This need to be taken into account in
the design process.
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Processor

A task Ti is a piece of code (e.g., c, Java language code) which
implements a specific functionality.
Usually, multiple tasks run on a processor.
A processor runs a real-time operating system (RTOS) that
manages the execution of the tasks according to their schedules
(task schedulers).
Scheduling

Choice of which task to execute at a given time.
The tasks can be scheduled either in time-triggered or in event-
triggered fashion depending on the RTOS and the scheduler.
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Time-triggered tasks

The time-trigged tasks are often periodic.

Schedule for a task Ti : {oi , ei , pi}
oi : the task offset
ei : the worst-case execution time
pi : the task period

An instance of the task is called a job.
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Time-triggered tasks

A periodic dispatcher is used to trigger the tasks.
The start time of the k-th job of a periodic time-triggered task
Ti is given by:

ti(k) = oi + k × pi .

The finish time of the k-th job of a periodic time-triggered task
Ti is given by:

t̂i(k) = oi + k × pi + ei .

Time-predictable.
Inflexible since the task schedules are pre-defined. This results
in poor resource utilization.
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Event-triggered tasks
The task is triggered in an event-driven fashion.
Event can be a processor interrupt or an external signal (e.g.,
voltage pulse, switch).

Ti : ei .
Better resource utilization and flexible.
Not time-predictable – real-time properties need to be verified
and guaranteed by the designer.
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Preemptions and response time
The worst-case execution time is the sum of all execution seg-
ments

ei = ea + eb + ec + · · · .
The worst-case response time is the longest time taken by the
processor to allow ei time of execution for the task Ti .
When preempted: the processor either runs another higher pri-
ority task or be idle (for some other reason such as heating and
thermal problems).
A scheduler can either be preemptive or non-preemptive.

03 August, 2019 Samarjit Chakraborty: Programming Intelligent Physical Systems page 72 of 105



Preemptive tasks
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Non-preemptive tasks
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Real-time task model

Period pi

Relative Deadline Di

WCET ei

Ti Ti

Di

ei

pi
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Schedulability

A task set is schedulable if and only if all jobs of all tasks meet
their relative deadline Di , i.e.

Ri ≤ Di ,∀i

Response time Ri

period = pi

Relative deadline Di
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Real-time tasks – schedulability

For hard real-time tasks, the deadlines must always be met.
A system is not schedulable if the scheduler cannot find a way
to switch between the tasks such that the deadlines are met.
The test is sufficient if, when it answers "Yes", all deadlines will
be met.
The test is necessary if, when it answers "No", there really is a
situation where deadlines could be missed.
The test is exact if it is both sufficient and necessary.
A sufficient test is an absolute requirement and one likes it to
be as close to necessary as possible (known as tightness of an
analysis).
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Processor utilization

Task period deadline WCET
T1 p1 D1 e1
T2 p2 D2 e2
T3 p3 D3 e3
· · · · · · · · · · · ·

Total processor utilization: U =
∑

i
ei
pi

The worst-case utilization is very important performance metric
for schedulability
Often, a design criteria is U ≤ Ulimit

For 100% processor utilization U = 1.0
For 100% processor utilization implies that the processor has
no idle time
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Processor Load

Tasks period deadline WCET
T1 p1 D1 e1
T2 p2 D2 e2
T3 p3 D3 e3
· · · · · · · · · · · ·

Demand bound function: h(t) =
∑n

i max(0, b t−Di
pi

+ 1c)× ei

Processor Load: max
∀t

(h(t)
t )

For schedulability in the uni-processor case: Load ≤ 1,∀t
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The critical instant

It can be shown that, in the single processor case, the worst
situation, from a schedulability perspective, occurs when all
tasks want to start their execution at the same time instant
This is known as the critical instant.
If we can show that the task set is schedulable in this situation,
it will also be schedulable in other situations.
If we can show that the task set is schedulable for the worst
case execution times, then the task set will also be schedulable
if the actual execution times are shorter.
Hence, all single processor (uni-processor) scheduling analysis
only needs to check for this case.
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Tasks period deadline WCET
T1 p1 D1 e1
T2 p2 D2 e2
T3 p3 D3 e3
· · · · · · · · · · · ·

T1,T2,T3…

D1
D2

D3

T1 T2 T3
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Scheduling the tasks onto a processor

Fixed priority
Deadline monotonic (DM)
Rate monotonic (RM)
...

Dynamic priority
Earliest Deadline First (EDF)
...
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Fixed priority preemptive

Each task has a fixed priority
The task dispatcher selects the task with the highest priority
All tasks are preemptive: if a higher priority task arrives while
a lower priority task is running, the lower priority task will be
stopped and higher priority task will be executed
There are different ways to assign priority to the tasks (priority
assignment problems). Well-known schemes are:

Deadline monotonic
Rate monotonic
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Rate monotonic (fixed priority)

n periodic tasks Ti : pi ,Di , ei

Priorities are set monotonically to the periods – a task with a
shorter period is assigned higher priority and preemptive

Processor utilization: U =
n∑

i=1
ei
pi

Di = pi , i.e. Deadline = period
Schedulability test (sufficient condition):

U =
n∑

i=1

ei
pi
≤ n(21/n − 1)

where n is the number of scheduled tasks. The above test is
conservative compared to response time analysis.
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Example 1

Consider the given fixed priority and preemptive task set running
on a processor. The priorities are assigned using a rate monotonic
scheme. Perform a schedulability test if all the tasks are going to
meet their deadline under a rate monotonic scheme.

Tasks pi (ms) Di (ms) ei (ms) priority
T1 15 15 3 1 (highest)
T2 20 20 8 2
T3 30 30 12 3

U =
n∑

i=1

ei
pi

= 3
15+ 8

20+12
30 = 1 > n(21/n−1) = 3×(21/3−1) = 0.78

⇒ Not schedulable!
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Example 1

Tasks pi (ms) Di (ms) ei (ms) priority
T1 15 15 3 1 (highest)
T2 20 20 8 2
T3 30 30 12 3

Timing at the critical instant
T1,T2,T3

T2

3 8 4 2 8

T1

3 2 Task 3 not finished

⇒ Not schedulable!
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Example 2

Consider the given fixed priority and preemptive task set running
on a processor. The priorities are assigned using rate monotonic
scheme. Perform a schedulability test if all the tasks are going to
meet their deadline under a rate monotonic scheme.

Tasks pi (ms) Di (ms) ei (ms) priority
T1 15 15 3 1 (highest)
T2 20 20 8 2
T3 30 30 4 3

U =
n∑

i=1

ei
pi

= 3
15+ 8

20+ 4
30 = 0.73 < n(21/n−1) = 3×(21/3−1) = 0.78

⇒ Schedulable!
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Example 2

Tasks pi (ms) Di (ms) ei (ms) priority
T1 15 15 3 1 (highest)
T2 20 20 8 2
T3 30 30 4 3

Timing at the critical instant
T1,T2,T3

3 8 4

⇒ Schedulable!
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Deadline monotonic (fixed priority)
n periodic tasks Ti : {pi ,Di , ei}
Priorities are set monotonically to the deadline – a task with a
shorter deadline is assigned a higher priority.
Preemptive.
Processor utilization

U =
i=n∑
i=1

ei
pi

Deadline Di < period pi

Schedulability test (sufficient condition)

i=n∑
i=1

ei
Di
≤ n(2

1
n − 1)

where n is the number of scheduled tasks. The above test is
conservative compared to response time analysis.
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Example 3
Consider the given fixed priority and preemptive task set run-
ning on a processor. The priorities are assigned using deadline
monotonic scheme. Perform a schedulability test if all the tasks
are going to meet their deadlines.

Tasks pi(ms) Di(ms) ei(ms) priority
T1 30 15 3 1
T2 20 20 8 2
T3 40 30 12 3

i=3∑
i=1

ei
Di

= 3
15 + 8

20 + 12
30

= 1.0 ⇒ Not schedulable!

> 3× (2 1
3 − 1) > 0.78
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Tasks pi(ms) Di(ms) ei(ms) priority
T1 30 15 3 1
T2 20 20 8 2
T3 40 30 12 3

Timing at the critical instant

Not schedulable
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Example 4
Consider the given fixed priority task and preemptive set run-
ning on a processor. The priorities are assigned using deadline
monotonic scheme. Perform a schedulability test if all the tasks
are going to meet deadline under deadline monotonic scheme.

Tasks pi(ms) Di(ms) ei(ms) priority
T1 30 15 3 1
T2 20 20 4 2
T3 40 30 4 3

i=3∑
i=1

ei
Di

= 3
15 + 4

20 + 4
30

= 0.5333 ⇒ Schedulable!

≤ 3× (2 1
3 − 1) ≤ 0.78
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Example 5
Consider the given fixed priority and preemptive task set run-
ning on a processor. The priorities are assigned using deadline
monotonic scheme. Perform a schedulability test if all the tasks
are going to meet deadline under deadline monotonic scheme.

Tasks pi(ms) Di(ms) ei(ms) priority
T1 30 15 3 1
T2 20 20 4 2
T3 40 30 4 3
T4 50 40 5 4

i=4∑
i=1

ei
Di

= 3
15 + 4

20 + 4
30 + 5

40 = 0.6583 ⇒ Schedulable!

≤ 4× (2 1
4 − 1) ≤ 0.7568
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Earliest Deadline First (dynamic scheduling)

Dynamic dispatcher: all scheduling decisions are made online.
Optimal schedule and 100% utilization is possible when Di = pi

The task with the shortest relative deadline runs
Preemptive
Task model Ti : {pi ,Di , ei}
Deadline Di = period pi

Schedulability test (necessary and sufficient test):

U =
∑

i

ei
pi
≤ 1
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Example 6
Consider the given fixed priority and preemptive task set running
on a processor. The tasks are running under EDF scheme.
Perform a schedulability test if all the tasks are going to meet
deadline under EDF.

Tasks pi(ms) Di(ms) ei(ms)
T1 30 30 3
T2 20 20 8
T3 40 40 12

U =
i=3∑
i=1

ei
pi

= 3
30 + 8

20 + 12
40

= 0.8 ⇒ Schedulable!
≤ 1
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Example 7
Consider the given fixed priority and preemptive task set running
on a processor. The tasks are running under EDF scheme.
Perform a schedulability test if all the tasks are going to meet
deadline under EDF.

Tasks pi(ms) Di(ms) ei(ms)
T1 30 30 3
T2 20 20 4
T3 40 40 4
T4 50 50 5

U =
i=4∑
i=1

ei
pi

= 3
30 + 4

20 + 4
40 + 5

50

= 0.5 ⇒ Schedulable!
≤ 1
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Response time analysis

A task set {Ti}.
Each task is represented as Ti ∼ {pi ,Di , ei}.
Each task has a fixed unique priority (DM or RT or any other
scheme).
All tasks are preemptive.
For each task Ti : Di ≤ pi .
Response time of a task Ti is denoted as Ri .
Our objective is to make sure that for each task Ti : Ri ≤ Di .
Hence, we need to compute the response time Ri for each task.
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Response time analysis

Response time with fixed priority preemptive scheduling for the
given task set is given by,

Ri = ei +
∑

∀j∈hp(i)
dRi
pj
eej

where hp(i) is the set of tasks of higher priority than task Ti .
Ceiling function dxereturns the smallest integer greater than x .
Recurrence relation needs to be solved iteratively using

Rn+1
i = ei +

∑
∀j∈hp(i)

dR
n
i
pj
eej .

Start with R0
i = 0.
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Example 8
Consider the given fixed priority task set running on a processor.
Compute response time for all the tasks. Check if real-time
tasks meeting their deadlines and control task meets its design
constraint.

Tasks pi(ms) Di(ms) ei(ms) priority Remark
T1 30 15 3 2 Real-time task
T2 20 12 8 1(highest) Real-time task
Tc h = 30 Dc = 30 12 3 control task

Note that the control task Tc does not have a deadline. How-
ever, the design constraint is that Rc ≤ Dc .
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R0
2 = 0,R1

2 = 8,R2
2 = 8→ R2 = 8

Clearly, R2 < D2 → deadline meet

R0
1 = 0,R1

1 = 3,R2
1 = 3 + dR1

1
p2
ee2 = 11,

R3
1 = 3 + dR2

1
p2
ee2 = 11,→ R1 = 11

Clearly, R1 < D1 → deadline meet

R0
c = 0,R1

c = 12,
R2

c = 12 + dR1
c

p1
ee1 + dR1

c
p2
ee2 = 23,

R3
c = 12 + dR2

c
p1
ee1 + dR2

c
p2
ee2 = 31,

R4
c = 12 + dR3

c
p1
ee1 + dR3

c
p2
ee2 = 34,→ Rc = 34

Rc > Dc violation of design constraints

The task set is not schedulable under the given priority since
control task violates the design constraint Rc > Dc .
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Tasks pi(ms) Di(ms) ei(ms) priority Remark
T1 30 15 3 2 Real-time task
T2 20 12 8 1(highest) Real-time task
Tc h = 30 Dc = 30 12 3 control task

Timing at the critical instant

Not schedulable!
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Example 9
Consider the given fixed priority task set running on a processor.
Compute response time for all the tasks. Check if real-time
tasks meeting their deadlines and control task meets its design
constraint.

Tasks pi(ms) Di(ms) ei(ms) priority Remark
T1 30 15 3 2 Real-time task
T2 20 12 8 1(highest) Real-time task
Tc h = 50 Dc = 50 12 3 control task
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R2 = 8 < D2 → deadline meet

R1 = 11 < D1 → deadline meet

R0
c = 0,R1

c = 12,
R2

c = 12 + dR1
c

p1
ee1 + dR1

c
p2
ee2 = 23,

R3
c = 12 + dR2

c
p1
ee1 + dR2

c
p2
ee2 = 31,

R4
c = 12 + dR3

c
p1
ee1 + dR3

c
p2
ee2 = 34,→ Dc = 34

Rc < Dc meeting design constraints
The task set is schedulable under the given priority and control
task also meeting deadline. The control task with sampling
period h=30ms is not feasible on the processor (as we have
seen in Example 8). When we choose a longer sampling pe-
riod h=50ms, the design becomes feasible (as we could see in
Example 9).
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Tasks pi(ms) Di(ms) ei(ms) priority Remark
T1 30 15 3 2 Real-time task
T2 20 12 8 1(highest) Real-time task
Tc h = 50 Dc = 50 12 3 control task

Timing at the critical instant

Schedulable!
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Next lectures:
Accounting for platform timing properties in controller design
Timing analysis for communication architectures

03 August, 2019 Samarjit Chakraborty: Programming Intelligent Physical Systems page 105 of 105


