Programming Intelligent Physical Systems Examination

IIT Kharagpur, Tuesday, 13 August, 2019
[Open Book Exam, Calculator Allowed, Computer NOT Allowed]
[Time allowed: 60 mins [Maximum Marks: 200]

Question 1 [20 marks]

Consider a dynamical system with the following system equation:

$$
\ddot{x}+3 \dot{x}+2 x=5 u \text {. }
$$

The input and output of the system is respectively u and $y=x$. The initial conditions are $x(0)=0$, $\dot{x}(0)=0$. Is the system stable? Give reasons for your answer.

Solution 1

Using the Laplace transform,

$$
s^{2} \mathbf{X}(s)-s x(0)-\dot{x}(0)+3(s \mathbf{X}(s)-x(0))+2 \mathbf{X}(s)=5 \mathbf{U}(s) \text { [} \mathbf{5} \text { marks] }
$$

If $x(0)=0, \dot{x}(0)=0$, the system equation in frequency domain is simplified to

$$
\begin{gathered}
\left(s^{2}+3 s+2\right) \mathbf{X}(s)=5 \mathbf{U}(s) \\
G(s)=\frac{\mathbf{Y}(s)}{\mathbf{U}(s)}=\frac{\mathbf{X}(s)}{\mathbf{U}(s)}=\frac{5}{s^{2}+3 s+2}=\frac{1}{(s+1)(s+2)}
\end{gathered}
$$

Correct $G(s)$ [5 marks]
So the system has two poles $p_{1}=-1, p_{2}=-2$ and no zeros.
Correct system poles [5 marks]
All system poles negative \rightarrow the system is stable.
System is stable [5 marks]

Question 2 [20 marks]

Consider a dynamical system with the following state-space model

$$
\begin{gathered}
\dot{\mathbf{x}}=\left[\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x}
\end{gathered}
$$

Design the feedback and feedforward gains such that the closed-loop system has poles $p_{1}=-1$, $p_{2}=-1$.

Solution 2

Let the control law be: $u=\mathbf{K x}+F r$.
Close-loop system:

$$
\begin{gathered}
\dot{\mathbf{x}}=A \mathbf{x}+B(\mathbf{K x}+F r)=(A+B \mathbf{K}) \mathbf{x}+B F r \\
A_{c l}=A+B \mathbf{K}=\left[\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
k_{1}-6 & k_{2}+5
\end{array}\right]
\end{gathered}
$$

Correct $A_{c l}$ [5 marks]
Characteristic equation of the close-loop system:

$$
\begin{gathered}
\operatorname{det}\left(\lambda \mathbf{I}-A_{c l}\right)=0 \\
\operatorname{det}\left(\lambda \mathbf{I}-A_{c l}\right)=\operatorname{det}\left(\left[\begin{array}{cc}
\lambda & -1 \\
6-k_{1} & \lambda-k_{2}-5
\end{array}\right]\right)=\lambda^{2}-\left(k_{2}+5\right) \lambda+6-k_{1}
\end{gathered}
$$

Correct characteristic equation $A_{c l}$ [5 marks]
System has poles $p_{1}=-1, p_{2}=-1$, this implies that the characteristic equation: $\lambda^{2}+2 \lambda+1=0$. Hence, $-\left(k_{2}+5\right)=2,6-k_{1}=1$, and therefore, $k_{1}=5, k_{2}=-7$.

Correct k_{1} and k_{2}, i.e., the feedback gain K [5 marks]

$$
\begin{aligned}
F & =\frac{1}{C(-A-B \mathbf{K})^{-1} B} \\
& =\frac{1}{\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left(\left[\begin{array}{ll}
0 & -1 \\
6 & -5
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
5 & -7
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& =\frac{1}{\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& =1
\end{aligned}
$$

Hence, $\mathbf{K}=\left[\begin{array}{ll}5 & -7\end{array}\right]$ and $F=1$. Correct feedforward gain F [5 marks]

Question 3 [40 marks]

Consider the following task set running on a single processor.

T_{i}	$p_{i}[\mathrm{~ms}]$	$D_{i}[\mathrm{~ms}]$	$e_{i}[\mathrm{~ms}]$
T_{1}	10	5	3
T_{2}	15	8	3
T_{3}	20	10	5

What is the processor's utilization? What is the demand bound function for this processor over the interval $[0,30] \mathrm{ms}$? What is the processor's load in this interval? Is the task set schedulable?

Solution 3

Utilization $U=\sum_{i=1}^{n} \frac{e_{i}}{p_{i}}=\frac{e_{1}}{p_{1}}+\frac{e_{2}}{p_{2}}+\frac{e_{3}}{p_{3}}=\frac{3}{10}+\frac{3}{15}+\frac{5}{20}=0.75$.
Correct utilization [5 marks]
The demand bound function: $h(t)=\sum_{i=1}^{n} \max \left(0,\left\lfloor\frac{t-D_{i}}{p_{i}}+1\right\rfloor\right) e_{i}$.
$\forall i, D_{i}<p_{i} \rightarrow h(t)=\left\lfloor\frac{t-D_{1}}{p_{1}}+1\right\rfloor e_{1}+\left\lfloor\frac{t-D_{2}}{p_{2}}+1\right\rfloor e_{2}+\left\lfloor\frac{t-D_{3}}{p_{3}}+1\right\rfloor e_{3}=\left\lfloor\frac{t-5}{10}+1\right\rfloor 3+\left\lfloor\frac{t-8}{15}+1\right\rfloor 3+\left\lfloor\frac{t-10}{20}+1\right\rfloor 5$.
Events at: $t=5,8,10,15,23,25,30$.
Identifying the correct times at which the demand bound function changes [10 marks]

$$
h(0)=0, h(5)=3, h(8)=6, h(10)=11, h(13)=14, h(23)=17, h(25)=20, h(30)=25 .
$$

All correct values of the function $h()$ [10 marks]. Each incorrect h results in -2 marks. Minimum possible marks is 0 .

Processor load in $[0,30] \mathrm{ms}$: load $=\max \left(\frac{h(t)}{t}\right)=\frac{h(10)}{10}=1.1>1.0$.
Identifying $t=10$ [$\mathbf{5}$ marks]. Correct value of load at $t=10$ [$\mathbf{5}$ marks].
Hence, the task set is not schedulable.

Not schedulable [5 marks]

Question 4

Consider a control plant with the following continuous-time dynamics:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

Assume that the above system is sampled using a ZOH with constant sampling period h and the sensor-to-actuator delay is represented with τ, where $\tau \leq h$.

The control objective for the system is to achieve $y[k] \rightarrow 0$ as $k \rightarrow \infty$ from any initial condition $x[0]$. Towards implementing a controller to achieve the above objective, the control software is implemented onto a processor. The processor is running a real-time operating system which follows a fixed priority preemptive scheduler. Moreover, the processor also runs three other periodic hard real-time tasks which are represented as follows,

Tasks	$p_{i}[\mathrm{~ms}]$	$D_{i}[\mathrm{~ms}]$	$e_{i}[\mathrm{~ms}]$
T_{1}	5	5	1
T_{2}	25	25	4
T_{3}	15	12	2

where p_{i}, D_{i} and e_{i} are respectively period, relative deadline and WCET of task T_{i}. The control software for the system is partitioned in the following way: three tasks T_{a} (actuator task), T_{c} (compute task) and T_{s} (sensor task).

- Clearly, implementation of a controller needs to map three additional tasks T_{a}, T_{c} and T_{s} onto the processor.
- T_{s} and T_{a} have WCET times 0.2 ms and T_{c} has WCET 2 ms .
- For a given sampling period h of the controller, $T_{a}:\left\{p_{i}, D_{i}, e_{i}\right\}=\{h, 0.05 h, 0.2 m s\}, T_{s}$: $\left\{p_{i}, D_{i}, e_{i}\right\}=\{h, 0.05 h, 0.2 m s\}, T_{c}:\left\{p_{i}, D_{i}, e_{i}\right\}=\{h, 0.4 h, 2 m s\}$.
- Because of thermal constraints, the maximum utilization $U_{\max }$ of the processor can be no more than 60%.
- In order to facilitate easier implementation of the current and also future applications, all the tasks running on the processor should have periods that are multiples of 5 ms .

Question 4(a) [45 marks]

What is the minimum sampling period h such that all real-time and control tasks are schedulable? The scheduling scheme to be used on the processor is the deadline monotonic scheduling. Assign priorities to the tasks and perform a response time analysis and show the results. Is the system schedulable?

Solution 4(a)

Processor utilization:

$$
U=\frac{1}{5}+\frac{4}{25}+\frac{2}{15}+\frac{0.2}{h}+\frac{0.2}{h}+\frac{2}{h} \leq 0.6
$$

Hence, since $h \geq 22.5 \mathrm{~ms}$, let us assign $h=25 \mathrm{~ms}$.

Correct sampling period h [10 marks]

Scheduling according to DM:

Tasks	$p_{i}[\mathrm{~ms}]$	$D_{i}[\mathrm{~ms}]$	$e_{i}[\mathrm{~ms}]$	prio
T_{a}	25	1.25	0.2	1
T_{s}	25	1.25	0.2	2
T_{1}	5	5	1	3
T_{c}	25	10	2	4
T_{3}	15	12	2	5
T_{2}	25	25	4	6

Response time analysis:

$$
\begin{aligned}
& R_{a}^{0}=0, R_{a}^{1}=0.2, R_{a}^{2}=0.2, R_{a}=0.2<1.25 \rightarrow \text { deadline met } \\
& R_{s}^{0}=0, R_{s}^{1}=0.2, R_{s}^{2}=0.4, R_{s}^{3}=0.4, R_{s}=0.4<1.25 \rightarrow \text { deadline met } \\
& R_{1}^{0}=0, R_{1}^{1}=1, R_{1}^{2}=1.4, R_{1}^{3}=1.4, R_{1}=1.4<5 \rightarrow \text { deadline met } \\
& R_{c}^{0}=0, R_{c}^{1}=2, R_{c}^{2}=3.4, R_{c}^{3}=3.4, R_{c}=3.4<10 \rightarrow \text { deadline met } \\
& R_{3}^{0}=0, R_{3}^{1}=2, R_{3}^{2}=5.4, R_{3}^{3}=6.4, R_{3}^{4}=6.4, R_{3}=6.4<12 \rightarrow \text { deadline met } \\
& R_{2}^{0}=0, R_{2}^{1}=4, R_{2}^{2}=9.4, R_{2}^{3}=10.4, R_{2}^{4}=11.4, R_{2}^{5}=11.4, R_{2}=11.4<25 \rightarrow \text { deadline met }
\end{aligned}
$$

Hence, the task set is schedulable with the chosen sampling period.
Correct response times of all tasks including R_{a}, R_{s} and R_{c} [30 marks, 5 marks for each correct answer]

All tasks are schedulable [5 marks]

Question 4(b) [75 marks]

Now consider the continuous-time dynamics described below.

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{aligned}
$$

With the previous choice of sampling period h, design a state-feedback controller to place the closed-loop poles at $p_{1}=0.9, p_{2}=0.9$ and $p_{3}=0.9$. Consider the case that in each sampling period, the tasks T_{s}, T_{c} and T_{a} are released respectively at $t=0 \mathrm{~ms}, t=1.25 \mathrm{~ms}$ and $t=9.8 \mathrm{~ms}$. Assume that the following assumption holds.

$$
\begin{aligned}
& x[k+1]=\phi x[k]+\Gamma_{1}\left(D_{c}\right) u[k-1]+\Gamma_{0}\left(D_{c}\right) u[k] \\
& \phi=e^{A h} \approx I+A h \\
& \Gamma_{1}\left(D_{c}\right) \approx D_{c} B \\
& \Gamma_{0}\left(D_{c}\right)=\left(h-D_{c}\right) B
\end{aligned}
$$

Note: For simplicity, only steps for the computation of the feedback gain K should be shown.
In particular,
(i) What is the value of $\gamma_{\text {aug }}$?
(ii) What is the value of $H\left(\phi_{a u g}\right)$?
(iii) What is K in terms of $\gamma_{\text {aug }}$ and $H\left(\phi_{\text {aug }}\right)$?

Solution 4(b)

The response times of task T_{s}, T_{a} and T_{c} are $0.4 \mathrm{~ms}, 0.2 \mathrm{~ms}$ and 3.4 ms , so T_{s} can be finished before T_{c} starts and T_{c} finished before T_{a}. The sensor-to-actuator delay $D_{c}=10 \mathrm{~ms}$.

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

Correct A, B, C [$\mathbf{1 0}$ marks, $\mathbf{0}$ if any one of them is incorrect]

$$
\phi=e^{A h}=\left[\begin{array}{cc}
1 & h \\
h & h+1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.025 \\
0.025 & 1.025
\end{array}\right], \Gamma=\left[\begin{array}{l}
0 \\
h
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.025
\end{array}\right]
$$

Correct numerical value of ϕ [10 marks]

$$
\begin{gathered}
\Gamma_{1}\left(D_{c}\right)=D_{c} B=\left[\begin{array}{c}
0 \\
0.01
\end{array}\right] \\
\Gamma_{0}\left(D_{c}\right)=\left(h-D_{c}\right) B=\left[\begin{array}{c}
0 \\
0.015
\end{array}\right]
\end{gathered}
$$

Correct Γ_{1} and Γ_{0} [10 marks]

$$
\begin{gathered}
z[k]=\left[\begin{array}{c}
x[k] \\
u[k-1]
\end{array}\right] \\
z[k+1]=\phi_{\text {aug }} z[k]+\Gamma_{\text {aug }} u[k], y[k]=C_{a u g} z[k]
\end{gathered}
$$

Correct $z[k]$ and $z[k+1]$ [5 marks]

$$
\begin{gathered}
\phi_{\text {aug }}=\left[\begin{array}{cc}
\phi & \Gamma_{1}(\tau) \\
0 & 0
\end{array}\right], \Gamma_{\text {aug }}=\left[\begin{array}{c}
\Gamma_{0} \tau \\
I
\end{array}\right], C_{a u g}=\left[\begin{array}{ll}
C & 0
\end{array}\right] \\
\phi_{\text {aug }}=\left[\begin{array}{cc}
\phi & \Gamma_{1}\left(D_{c}\right) \\
0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0.025 & 0 \\
0.025 & 1.025 & 0.01 \\
0 & 0 & 0
\end{array}\right], \Gamma_{\text {aug }}=\left[\begin{array}{c}
\Gamma_{0}\left(D_{c}\right) \\
I
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.015 \\
1
\end{array}\right], C_{a u g}=\left[\begin{array}{ll}
C & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Correct $\phi_{\text {aug }}, \Gamma_{\text {aug }}$ and $C_{\text {aug }}$ [15 marks], 5 marks for each

$$
\gamma_{a u g}=\left[\begin{array}{lll}
\Gamma_{\text {aug }} & \phi_{a u g} \Gamma_{\text {aug }} & \phi_{\text {aug }}^{2} \Gamma_{a u g}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0.0004 & 0.001 \\
0.015 & 0.0254 & 0.026 \\
1 & 0 & 0
\end{array}\right]
$$

Correct numerical value of $\gamma_{a u g}$ [10 marks]

$$
K=-\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \gamma_{\text {aug }}^{-1} H\left(\phi_{a u g}\right)
$$

where

$$
H\left(\phi_{a u g}\right)=\left(\phi_{a u g}-0.9 I\right)^{3}
$$

Correct value of $H\left(\phi_{\text {aug }}\right)$ [10 marks]
Correct value of K [5 marks]

