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Course Organization

Topic Week Hours
Review of basic COA w.r.t. performance 1 2
Intro to GPU architectures 2 3
Intro to CUDA programming 3 2
Multi-dimensional data and synchronization 4 2
Warp Scheduling and Divergence 5 2
Memory Access Coalescing 6 2
Optimizing Reduction Kernels 7 3
Kernel Fusion, Thread and Block Coarsening 8 3
OpenCL - runtime system 9 3
OpenCL - heterogeneous computing 10 2
Efficient Neural Network Training/Inferencing 11-12 6
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Recap

I The Host-Kernel Model for CPU-GPU Systems
I The CUDA programming language
I Mapping multi-dimensional kernels to multi-dimensional data
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Recap

I Querying device properties
I The concept of scheduling warps
I Performance bottlenecks

I Branch Divergence
I Global memory accesses
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Parallel Patterns

I Matrix Multiplication (Gather Operation)
I Convolution (Stencil Operation)
I Reduction
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Reduction Algorithm

I Reduce vector to a single value via an associative operator
I Example: sum, min, max, average, AND, OR etc.
I Visits every element in the array
I Large arrays motivate parallel execution of the reduction
I Not compute bound but memory bound
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Serial and Parallel Implementation

A sequential version
I O(n)
I for(int i = 0, i < n, ++i) ...

+

+

+

Thread1

Total 
Sum

Array

A parallel version
I O(log2 n)

I “tree”-based implementation

+ +

+

Thread1

Total 
Sum

Array

Thread2
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Parallel Reduction Algorithm

To process very large arrays:
I Multiple thread blocks required
I Each block reduces a portion of the array
I Need to communicate partial results between blocks
I Need global synchronization

Problem:
I CUDA does not support global synchronization

Solution:
I Kernel decomposition
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Kernel Decomposition

I Decompose computation
into multiple kernel
invocations

I Kernel launch serves as a
global synchronization
point

I Negligible HW overhead,
low SW overhead

Figure from ’Optimizing Parallel
Reduction in CUDA’ by Mark
Harris Figure: Multiple Kernel Invocations
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Optimization In Reduction

I Metrics for GPU performance:
I GFLOP/s for compute-bound kernels

I One billion floating-point operations per second
I Bandwidth for memory-bound kernels

I Rate at which data can be read from or stored into memory by a processor
I Reduction has very low arithmetic intensity

I Take 1 flop per element loaded

I Strive for peak bandwidth

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Reduction 1: Interleaved Addressing

I Each thread loads one
element from global memory
to shared memory

I A thread adds two elements
I Half of the threads is

deactivated at the end of each
step overhead

Figure: Reduction with Interleaved Addressing and
Divergent Branch
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Reduction 1: Kernel

__global__ void reduce1(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
__syncthreads ();
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2)
{ // modulo arithmetic is slow!

if ((tid % (2*s)) == 0)
sdata[tid] += sdata[tid + s];

__syncthreads ();
}
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}
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Reduction 1: Host

I The GPU kernel calculates data per block
I Partial sums computed by individual blocks
I Results will be stored in the first block elements of the global memory
I Final addition need to be done on this reduced data set
I By launching the same kernel again
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Reduction 1: Host Code for Multiple Kernel Launch

...// cudaMemcpyHostToDevice ...
int threadsPerBlock = 64;
int old_blocks , blocks = (N / threadsPerBlock) / 2;
blocks = (blocks == 0) ? 1 : blocks;
old_blocks = blocks;
while (blocks > 0) // call compute kernel
{

sum <<<blocks , threadsPerBlock , threadsPerBlock*sizeof(int)>>>(devPtrA);
old_blocks = blocks;
blocks = (blocks / threadsPerBlock) / 2;

};
if (blocks == 0 && old_blocks != 1) // final kernel call , if still needed

sum <<<1, old_blocks /2, (old_blocks /2) * sizeof(int)>>>(devPtrA);
...// cudaMemcpyDeviceToHost ...
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Reduction 1: Analysis

Interleaved addressing with divergent branching

Problems:
I highly divergent
I warps are very inefficient
I half of the threads does nothing!
I % operator is very slow
I loop is expensive

Array Size: 226

Threads/Block: 1024
GPU used: Tesla K40m

Reduction Time Bandwidth
Unit Second GB/Second
Reduce 1 0.03276 8.1951
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Reduction 2: Interleaved Addressing

I Replace divergent branch in
inner loop

I With strided index and
non-divergent branch

I New Problem: Shared
Memory Bank Conflicts

Figure: Interleaved Addressing Replacing Divergent
Branch
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Reduction 1: Kernel
__global__ void reduce1(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
__syncthreads ();
// do reduction in shared mem

for(unsigned int s=1; s < blockDim.x; s *= 2)

{ // modulo arithmetic is slow!

if((tid % (2*s)) == 0)
sdata[tid] += sdata[tid + s];

__syncthreads ();
}
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}
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Reduction 2: Kernel
__global__ void reduce2(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
__syncthreads ();
// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2){

int index = 2 * s * tid;

if (index < blockDim.x)
sdata[index] += sdata[index + s];

__syncthreads ();
}
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}
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Reduction 2: Analysis
Interleaved addressing with divergent branching

Problems:
I highly divergent
I warps are very

inefficient
I % operator is very

slow
I half of the threads

does nothing!
I loop is expensive
I shared memory
bank conflicts

Array Size: 226

Threads/Block: 1024
GPU used: Tesla K40m

Reduction Time Bandwidth
Unit Second GB/Second
Reduce 1 0.03276 8.1951
Reduce 2 0.02312 11.6117
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Shared Memory Bank Conflict

I Shared Memory is divided into banks and each
bank has serial read/write access

I If more than one thread attempts to access
same bank at same time, the accesses are
serialized (Bank Conflict)

I The hardware splits a memory request
decreasing the effective bandwidth
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Reduction 3: Sequential Addressing

I Replace strided indexing in
inner loop

I With reversed loop and
threadID-based indexing

I New Problem: Idle Threads
on first loop iteration

Figure: Reduction with Sequential Addressing
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Reduction 2: Kernel
__global__ void reduce2(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
__syncthreads ();
// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2){

int index = 2 * s * tid;

if (index < blockDim.x)
sdata[index] += sdata[index + s];

__syncthreads ();
}
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}
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Reduction 3: Kernel
__global__ void reduce3(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
__syncthreads ();
// do reduction in shared mem

for (unsigned int s=blockDim.x/2; s>0; s»=1)

{

if (tid < s)
sdata[tid] += sdata[tid + s];

__syncthreads ();
}
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur
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Reduction 3: Analysis
Interleaved addressing with divergent branching

Problems:
I loop is expensive
I shared memory bank

conflicts
I Half of the threads
are idle on first
loop iteration

Array Size: 226

Threads/Block: 1024
GPU used: Tesla K40m

Reduction Time Bandwidth
Unit Second GB/Second
Reduce 1 0.03276 8.1951
Reduce 2 0.02312 11.6117
Reduce 3 0.01939 13.839
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Reduction 4: First Add During Load

I Make busy all threads in the
first step

I Halve the number of blocks
I Replace single load with two

loads
I Allocation process performs

the first reduction

Figure: Reduction with First Add During Load
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Reduction 3: Kernel
__global__ void reduce3(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = (i < n) ? g_idata[i] : 0;

__syncthreads ();
// do reduction in shared mem
for (unsigned int s=blockDim.x/2; s>0; s>>=1)
{

if (tid < s)
sdata[tid] += sdata[tid + s];

__syncthreads ();
}
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur
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Reduction 4: Kernel

__global__ void reduce4(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// reading from global memory , writing to shared memory
unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];

__syncthreads ();
// do reduction in shared mem
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {

if (tid < s)
sdata[tid] += sdata[tid + s];

__syncthreads ();
}
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur
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Reduction 4: Analysis
Memory bandwidth is still underutilized

Problems:
I Half of the threads

are idle on first loop
iteration

I loop overhead
I Another likely

bottleneck is
instruction overhead

Array Size: 226

Threads/Block: 1024
GPU used: Tesla K40m

Reduction Time Bandwidth
Unit Second GB/Second
Reduce 1 0.03276 8.1951
Reduce 2 0.02312 11.6117
Reduce 3 0.01939 13.839
Reduce 4 0.01104 24.3098
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Reduction 5: Unrolling the Last Warp

I Number of active threads decreases with the number of iteration
I When s <= 32, only one warp is left
I Warp runs the same instruction (SIMD)
I That means when s <= 32:

I "__syncthreads()" is not needed
I "if (tid < s)" is not needed

I Unroll last 6 iterations

Without unrolling, all warps execute every iteration of the for loop and if statement

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur
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Reduction 4: Kernel

__global__ void reduce4(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// reading from global memory , writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x;
sdata[tid] = g\_idata[i] + g\_idata[i+blockDim.x];
__syncthreads ();
// do reduction in shared mem
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {

if (tid < s)
sdata[tid] += sdata[tid + s];

__syncthreads ();
}
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}
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Reduction 5: Kernel
__global__ void reduce5(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// reading from global memory , writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads ();
// do reduction in shared mem
for (unsigned int s=blockDim.x/2; s>32; s>>=1) {

if (tid < s)
sdata[tid] += sdata[tid + s];

__syncthreads ();
}

if (tid < 32)

warpReduce(sdata, tid);

// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}
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Reduction 5: warpReduce

_device__ void warpReduce(int* sdata , int tid) {
sdata[tid] += sdata[tid + 32];
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];
sdata[tid] += sdata[tid + 1];

}
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Reduction 5: Analysis

Problems:
I Still have iterations
I loop overhead

Array Size: 226

Threads/Block: 1024
GPU used: Tesla K40m

Reduction Time Bandwidth
Unit Second GB/Second
Reduce 1 0.03276 8.1951
Reduce 2 0.02312 11.6117
Reduce 3 0.01939 13.839
Reduce 4 0.01104 24.3098
Reduce 5 0.00836 32.1053
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Reduction 6: Complete Unrolling

If number of iterations is known at compile time, could completely unroll the reduction.
I Block size is limited to 512 or 1024 threads
I Block size should be of power-of-2
I For a fixed block size, complete unrolling is easy
I For generic implementation, solution is-

I CUDA supports C++ template parameters on device and host functions
I Block size can be specified as a function template parameter

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur
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Reduction 5: Kernel
__global__ void reduce5(int *g_idata , int *g_odata , unsigned int n){

extern __shared__ int sdata [];
// reading from global memory , writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads ();
// do reduction in shared mem

for (unsigned int s=blockDim.x/2; s>32; s»=1) {

if(tid < s)
sdata[tid] += sdata[tid + s];

__syncthreads ();
}
if (tid < 32)

warpReduce(sdata , tid);
// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}
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Reduction 6: Kernel
Specify block size as a function template parameter and all code highlighted in
yellow will be evaluated at compile time.

template < unsigned int blockSize >

__global__ void reduce6(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// reading from global memory , writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads ();

// do reduction in shared memory

if (blockSize >= 512) {
if (tid < 256)

sdata[tid] += sdata[tid + 256];
__syncthreads ();

}

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur
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Reduction 6: Kernel
if (blockSize >= 256) {
if (tid < 128)

sdata[tid] += sdata[tid + 128];
__syncthreads ();

}

if (blockSize >= 128) {
if (tid < 64)

sdata[tid] += sdata[tid + 64];
__syncthreads ();

}
if (tid < 32)

warpReduce < blockSize >(sdata , tid);

// write result for this block to global mem
if (tid == 0)

g_odata[blockIdx.x] = sdata [0];
}
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Reduction 6: Kernel

Modified warpReduce function:
Template <unsigned int blockSize >
__device__ void warpReduce(volatile int* sdata , int tid)
{

if (blockSize >= 64) sdata[tid] += sdata[tid + 32];

if (blockSize >= 32) sdata[tid] += sdata[tid + 16];

if (blockSize >= 16) sdata[tid] += sdata[tid + 8];

if (blockSize >= 8) sdata[tid] += sdata[tid + 4];

if (blockSize >= 4) sdata[tid] += sdata[tid + 2];

if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
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Reduction 6: Invoking Template Kernels
Use a switch statement for possible block sizes while invoking template kernels
switch (threadsPerBlock) {
case 512: reduce5 <512><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata);
break;
case 256: reduce5 <256><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata);
break;
case 128: reduce5 <128><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata);
break;
case 64: reduce5 <64><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata);
break;
case 32: reduce5 <32><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata);
break;
case 16: reduce5 <16><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata);
break;
case 8: reduce5 <8><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata);
break;
case 4:reduce5 <4><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata); break;
case 2:reduce5 <2><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata); break;
case 1:reduce5 <1><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata); break;
}
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Reduction 6: Analysis

I Algorithm
Cascading can lead
to significant
speedups in practice

Array Size: 226

Threads/Block: 1024
GPU used: Tesla K40m

Reduction Time Bandwidth
Unit Second GB/Second
Reduce 1 0.03276 8.1951
Reduce 2 0.02312 11.6117
Reduce 3 0.01939 13.839
Reduce 4 0.01104 24.3098
Reduce 5 0.00836 32.1053
Reduce 6 0.00769 34.9014

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Reduction 7: Multiple Adds / Thread

Algorithm Cascading:
I Combine sequential and parallel reduction

I Each thread loads and sums multiple elements into shared memory
I Tree-based reduction in shared memory

I Replace load and add two elements
I With a loop to add as many as necessary
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Reduction 6: Kernel

__global__ void reduce6(int *g_idata , int *g_odata , unsigned int n){
extern __shared__ int sdata [];
// reading from global memory , writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];

__syncthreads ();

// do reduction in shared mem
...
// write result for this block to global mem
...

}
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Reduction 7: Kernel
__global__ void reduce7(int *g_idata , int *g_odata , unsigned int n)
{

extern __shared__ int sdata [];
// reading from global memory , writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;

sdata[tid] = 0;

while (i < n) {

sdata[tid] += g_idata[i] + g_idata[i+blockSize];

i += gridSize;

}
__syncthreads ();
// do reduction in shared mem
...
// write result for this block to global mem
...

}
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Reduction 7: Analysis
Array Size: 226

Threads/Block: 1024
GPU used: Tesla K40m

Reduction Time Bandwidth
Unit Second GB/Second
Reduce 1 0.03276 8.1951
Reduce 2 0.02312 11.6117
Reduce 3 0.01939 13.839
Reduce 4 0.01104 24.3098
Reduce 5 0.00836 32.1053
Reduce 6 0.00769 34.9014
Reduce 7 0.00277 96.8672
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Reduction Performance Comparison wrt time in Tesla K40m GPU
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Reduction Performance Comparison wrt bandwidth in Tesla K40m GPU
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Types of Optimization

I Algorithmic optimizations
I Changes to addressing, algorithm cascading (Reduction No. 1 to 4, 7)
I Approx 12x speedup

I Code optimizations
I Loop unrolling (Reduction No. 5, 6)
I Approx 3x speedup
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Summary

Kernel Optimization
Reduce1 Interleaved addressing (using modulo arithmetic) with divergent branching
Reduce2 Interleaved addressing (using contiguous threads) with bank conflicts
Reduce3 Sequential addressing, no divergence or bank conflicts
Reduce4 Uses n/2 threads, performs first level during global load
Reduce5 Unrolled loop for last warp, intra-warp synchronisation barriers removed

Reduce6
Completely unrolled, using template parameter to assert whether the number
of threads is a power of two

Reduce7
Multiple elements per thread, small constant number of thread blocks
launched. Requires very few synchronisation barriers
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Example of Applications on Reduction

I Bitonic Sort
I Prefix sum

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Problem: Sorting

I Sort any random permutation of numbers in ascending or descending order
I Basic introduction to sorting networks
I Focus on a comparison based sort - Bitonic Sort
I Discuss how operations can be parallelized using CUDA.
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Sorting Networks

A sorting network is composed of two elements
I Wires: Wires run from left to right, carrying values (one per wire) that traverse

the network all at the same time.
I Comparators: Comparators connect two wires. When a pair of values, traveling

through a pair of wires, encounter a comparator, the comparator may or may not
swap the values.
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Comparator

a

b b

amin(a,b)

max(a,b)

max(a,b)

min(a.b)

Ascending (TRUE) Descending (FALSE)

Figure: Comparator Function
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A Simple Sorting Network

Sort four numbers a, b, c , d in ascending order where a > b > c > d

�
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Figure: Sorting Four Numbers
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Bubble Sort

Any comparison based sort can be done using a sorting network.
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Bitonic Sort

Bitonic sort takes place using two fundamental steps:
I Step I: Convert an arbitrary sequence to a bitonic sequence.
I Step II: Convert a bitonic sequence to a sorted sequence.

A Bitonic Sequence is a sequence of numbers which is first strictly increasing then after
a point strictly decreasing. a1 < a2 < ... < am > b1 > b2 > ... > bn
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Bitonic Sort
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Recursive Structure

I If you look closely, Step I uses Step II recursively on smaller sequences.
I Step II can be used to sort in any order (ascending or descending). The order can

be controlled using the comparator.
I Step I uses Step II in a way to construct subseqences that are bitonic in nature.

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
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Recursive C Program

// Comparator
void compare(int i, int j, boolean dir){

if (dir ==(a[i]>a[j]))
exchange(i, j);

}

//Step II
void bitonicMerge(int lo, int n, boolean dir){

if (n>1){
int m=n/2;
for (int i=lo; i<lo+m; i++)

compare(i, i+m, dir);
bitonicMerge(lo , m, dir);
bitonicMerge(lo+m, m, dir);

}
}
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Recursive C Program

//Step I
void bitonicSort(int lo, int n, boolean dir){

if (n>1)
{

int m=n/2;
bitonicSort(lo, m, ASCENDING);
bitonicSort(lo+m, m, DESCENDING);
bitonicMerge(lo , n, dir);

}
}
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Scope for Parallelization
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Formulate Parallel Solution

I Associate every cuda thread block with a sorting subproblem.
I Merge results from each SM to solve the original sorting problem.
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Mapping Sorting Subproblem
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Thread Block

Shared Memory Size

=
2 * Number of Threads

4 threads for

eight elements
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Comparator

__device__ inline void Comparator(uint &keyA , uint &valA ,uint &keyB ,uint &valB
,uint dir){

uint t;
if ((keyA > keyB) == dir){

t = keyA;
keyA = keyB;
keyB = t;
t = valA;
valA = valB;
valB = t;

}
}

NVIDIA CUDA SDK Benchmark Suite
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Sort in Shared Memory

__global__ void bitonicSortShared1(uint *d_DstKey ,uint *d_DstVal , uint *
d_SrcKey ,uint *d_SrcVal){

// Shared memory storage for current subarray
__shared__ uint s_key[SHARED_SIZE ];
__shared__ uint s_val[SHARED_SIZE ];

// Offset to the beginning of subarray and load data
d_SrcKey += blockIdx.x*SHARED_SIZE+threadIdx.x;
d_SrcVal += blockIdx.x*SHARED_SIZE+threadIdx.x;
d_DstKey += blockIdx.x*SHARED_SIZE+threadIdx.x;
d_DstVal += blockIdx.x*SHARED_SIZE+threadIdx.x;
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s_key[threadIdx.x+0]= d_SrcKey [0];
s_val[threadIdx.x+0]= d_SrcVal [0];
s_key[threadIdx.x+SHARED_SIZE /2]= d_SrcKey [( SHARED_SIZE /2];
s_val[threadIdx.x+SHARED_SIZE /2]= d_SrcVal [( SHARED_SIZE /2];

// strided load by threads , each thread loads two elements
for(size =2;size <SHARED_SIZE;size <<=1){

// Bitonic merge
uint ddd=( threadIdx.x&(size /2))!=0;
for (stride=size /2;stride >0;stride >>=1){

__syncthreads ();
pos =2* threadIdx.x-threadIdx.x&(stride -1);
Comparator(s_key[pos+0],s_val[pos+0],
s_key[pos+stride],s_val[pos+stride],ddd);

}
}
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Important Variables

I Size denotes the length of bitonic sequences being generated.
I Pos denotes the position of the first item being processed by the thread and is

dependent on thread id and stride.
I Stride denotes the distance between the position of numbers being sorted by a

thread.
I ddd represents direction and is dependent on thread id and size.
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Bitonic Sequence Creation
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//sort in opposite directions odd/even block ids
uint ddd = (blockIdx.x + 1) & 1;
for(stride=SHARED_SIZE /2;stride >0;stride >>=1){

__syncthreads ();
pos =2* threadIdx.x-threadIdx.x&( stride - 1));
Comparator(s_key[pos+0],s_val[pos+0],
s_key[pos+stride],s_val[pos+stride],ddd);

}
__syncthreads ();
d_DstKey [0]= s_key[threadIdx.x+0];
d_DstVal [0]= s_val[threadIdx.x+0];
d_DstKey[SHARED_SIZE /2]= s_key[threadIdx.x+SHARED_SIZE /2];
d_DstVal[SHARED_SIZE /2]= s_val[threadIdx.x+SHARED_SIZE /2];

}
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Sorting Bitonic Sequence
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Example Applications of reduction

I Bitonic Sort
I Prefix Sum
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All-Prefix-Sums

The all-prefix-sums operation takes a binary associative operator ⊕ , and an array of n
elements.

[a0, a1, ..., an−1],
and returns the array

[a0, (a0 ⊕ a1), ..., (a0 ⊕ a1⊕, ...⊕ an−1)].

Example: If ⊕ is addition, then the all-prefix-sums operation on the array
[3 1 7 0 4 1 6 3],

would return
[3 4 11 11 15 16 22 25].
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Inclusive and Exclusive scan

All-prefix-sums on an array of data is commonly known as scan.

I Inclusive scan - a scan of an array generates a new array where each element j is
the sum of all elements up to and including j.

I Exclusive scan - a scan of an array generates a new array where each element j is
the sum of all elements excluding j.

The exclusive scan operation takes a binary associative operator ⊕ with identity I , and
an array of n elements

[a0, a1, ..., an−1],
and returns the array

[I , a0, (a0 ⊕ a1), ..., (a0 ⊕ a1⊕, ...⊕ an−2)].
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Example - Inclusive Scan

  

3 1 7 0 4 1 6 3

1 7 0 4 1 6 33

4 7 0 4 1 6 33

4 11 0 4 1 6 33

4 11 11 4 1 6 33

4 11 11 15 1 6 33

4 11 11 15 16 6 33

4 11 11 15 16 22 33

Input Array

Output Array

   0       1       2         3        4        5        6        7                 Array Indexes

4 11 11 15 16 22 253
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Sequential Code

Inclusive Scan
void scan( float* output , float* input , int length)
{

output [0] = input [0]; // since this is a inclusive scan

for(int j = 1; j < length; ++j)
output[j] = output[j-1] + input[j];

}
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Sequential Code - Complexity

I Code performs exactly n − 1 adds for an array of length n

I Work complexity is O(n)

I Very large n, motivate parallel execution
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Parallel Prefix Sum - Hillis/Steel Scan (Algorithm 1)
for d = 1 to log2n do

forall k ≥ in parallel do
x [k] = x [k − 2d−1] + x [k]
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Example- Hillis/Steel Inclusive Scan

  

1 2 3 4 5 6 7 8

1 3 5 7 9 11 13 15

1 3 6 10 14 18 22 26

1 3 6 10 15 21 28 36

Step-I
Add elements 20 
step away

Step-II 
Add elements 21 
step away

Step-III
Add elements 22 
step away

Nos of steps O(log n)
Work  O (n * log n)
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Analysis

I The algorithm performs O(nlog2n) additions operations.
I Remember that a sequential scan performs O(n) adds. Therefore, this naïve

implementation is not work-efficient.
I Algorithm 1 assumes that there are as many processors as data elements. On a

GPU running CUDA, this is not usually the case.
I Instead, the forall is automatically divided into small parallel batches (called

warps) that are executed sequentially on a multiprocessor.
I The algorithm 1 will not work because it performs the scan in place on the array.

The results of one warp will be overwritten by threads in another warp.
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A double-buffered version of the sum scan from Algorithm 1

Algorithm 2
for d := 1 to log2n do

forall k in parallel do
if k ≥ 2d then

x [out][k] := x [in][k-2d−1] + x [in][k]
else
x [out][k] := x [in][k]

swap(in,out)
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CUDA C code - Algorithm 1
global__ void scan(float *g_odata , float *g_idata , int n)
{

extern __shared__ float temp []; // allocated on invocation
int thid = threadIdx.x;
int pout = 0, pin = 1;
//For exclusive scan ,shift right by one and set first elt to 0
temp[pout*n + thid] = (thid > 0) ? g_idata[thid -1] : 0;
__syncthreads ();
for (int offset = 1; offset < n; offset *= 2)
{

pout = 1 - pout;
pin = 1 - pout;
if (thid >= offset)

temp[pout*n+thid] += temp[pin*n+thid - offset ];
else

temp[pout*n+thid] = temp[pin*n+thid];
__syncthreads ();

}
g_odata[thid] = temp[pout*n+thid1];

}
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Parallel Prefix Sum - Blelloch Scan

I The idea is to build a balanced binary tree on the input data and sweep it to and
from the root to compute the prefix sum.

I A binary tree with n leaves has logn levels, and each level d ∈ [0, n) has 2d nodes.
I If we perform one add per node, then we will perform O(n) adds on a single

traversal of the tree.

Optimizing Reduction Kernels Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Parallel Prefix Sum - Blelloch Scan

The algorithm consists of two phases:
I Reduction Phase: we traverse the tree from leaves to root computing partial

sums at internal nodes of the tree
I Down Sweep Phase: We traverse back up the tree from the root, using the

partial sums to build the scan in place on the array using the partial sums
computed by the reduce phase.
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Blelloch Scan - Reduce Phase

for d := 0 to log2n − 1 do
for k from 0 to n − 1 by 2d+1 in paralle do

x [k + 2d+1 − 1] := x [k + 2d − 1] + x [k + 2d+1 − 1]
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Blelloch Scan - Reduce Phase
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Blelloch Scan - Down-Sweep Phase

x [n − 1] := 0
for d := log2n down to 0 do

for k from 0 to n − 1 by 2d+1 in parallel do
t := x [k + 2d − 1]
x [k + 2d − 1] := x [k + 2d+1 − 1]
x [k + 2d+1 − 1] := t + x [k + 2d+1 − 1]
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Blelloch Scan - Down-Sweep Phase
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Example - Blelloch Exclusive Scan

  

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28

Input

Reduce Step 0

Reduce Step 1

Reduce Step 2

Identity Elements

Down Sweep 0

Down Sweep 1

Down Sweep 2
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Cuda code
__global__ void prescan(float *g_odata , float *g_idata , int n)
{

extern __shared__ float temp []; // allocated on invocation
int thid = threadIdx.x;
int offset = 1;

temp [2* thid] = g_idata [2* thid]; // load input into shared memory
temp [2* thid +1] = g_idata [2* thid +1];
for (int d = n>>1; d > 0; d >>= 1) // build sum in place up the tree
{

__syncthreads ();
if (thid < d)
{

int ai = offset *(2* thid +1) -1;
int bi = offset *(2* thid +2) -1;
temp[bi] += temp[ai];

}
offset *= 2;

}
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Cuda code
if (thid == 0)
temp[n - 1] = 0; // clear the last element

for (int d = 1; d < n; d *= 2) // traverse down tree & build scan
{

offset >>= 1;
__syncthreads ();
if (thid < d)
{

int ai = offset *(2* thid +1) -1;
int bi = offset *(2* thid +2) -1;
float t = temp[ai];
temp[ai] = temp[bi];
temp[bi] += t;

}
}
__syncthreads ();
g_odata [2* thid] = temp [2* thid];//write results to device memory
g_odata [2* thid +1] = temp [2* thid +1];

}
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Reduction Conclusion

We have learnt how to-

I Understand CUDA performance characteristics
I Memory coalescing,
I Divergent branching,
I Bank conflicts,
I Latency hiding

I Use peak performance metrics to guide optimization
I Understand parallel algorithm complexity theory
I Identify type of bottleneck and
I Suitably optimize the algorithm
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