Multi-dimensional mapping of dataspace; Synchronization

Soumyajit Dey, Assistant Professor,
CSE, IT Kharagpur

January 21, 2021

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Course Organization

Topic Week | Hours
Review of basic COA w.r.t. performance 1 2
Intro to GPU architectures 2 3
Intro to CUDA programming 3 2
Multi-dimensional data and synchronization 4 2
Warp Scheduling and Divergence 5 2
Memory Access Coalescing 6 2
Optimizing Reduction Kernels 7 3
Kernel Fusion, Thread and Block Coarsening 8 3
OpenCL - runtime system 9 3
OpenCL - heterogeneous computing 10 2
Efficient Neural Network Training/Inferencing 11-12 6

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Multi dimensional block

In general
» a grid is a 3-D array of blocks
» a block is a 3-D array of threads
» specified by C struct type dim3

» unused dimensions are set to 1

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Multi dimensional grid, block

dim3 X(ceil(n/256.0), 1, 1);

dim3 Y(2566, 1, 1);

vecAddKernel <<<X, Y>>>(..);

vecAddKernel <<<ceil(n/256), 256>>>(..);

//CUDA compiler is smart enough to realise both as equivalent

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Multi dimensional grid, block

» gridDim.x/y/z € [1,29]
» (blockldx.x, blockldx.y, blockldx.z) is one block

» All threads in the block sees the same value of system vars blockldx.x,
blockldx.y, blockldx.z

» blockldx.x/y/z € [0, gridDim.x/y/z -1]

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Multi dimensional grid, block

block dimension is limited by total number of threads possible in a block — 1024.
> (512, 1,1) -

> (8,16, 4) -/
> (32,16, 2) - /
> (32, 32, 32) - x

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Multi dimensional grid, block declaration

Consider the following host side code

dim3 X(2, 2, 1);
dim3 Y (4, 2, 2);
vecAddKernel <<<X, Y>>>(..);

The memory layout thus created in device when the kernel is launched is shown next

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

block]dx.y
blockldx.z » Dblockldx.x

|
GRID <07 07 O> <O’ Oﬂ 1> <07 17 0> <Oa 1; 1>

(0,0,0)((0,0,1)K0,0,2)0, 0,3)(0, 1,030, 1, 1)(0, 1, 2){(0, 1, 3){(1,0,0)|(1, 0, 1)(1, 0, 2)(1, 0, B)(1, 1, O)(L, 1, 1{(1,1,2){(1,1,3)

threadldx.z | threadldx.x

threadldx.y

Figure: Grids and Blocks

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Col 0 Col 1

Col 2 Col 3 Col 4

Col 5 Col 6 Col 7

Row O

Row 1

Row 2

Row 3

Row 4

ol

Row

Row 6

Row 7

imensional mapping of dataspace; Synchronization

Figure: 2D Matrix

Soumyajit Dey, Assistant Professor, CSE, IIT

blockIdx.z blockIdx.x

GRID (0,1,0)] (0,1, 1)

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thrend 6 Thitad 7 Th

BLOCK

threadldx.z | threadldx.x

threadlds.y
blockNum = blockldx.z * (gridDim.x * gridDim.y) + blockIdx.y * gridDim.x + blockIdx.x

threadNum = threadldx.z * (blockDim.x * blockDim.y) + threadIdx.y * (blockDIm.x) +
threadldx.x

globalThreadld = blockNum * (blockDim.x * blockDim.y * blockDim.z) + threadNum

Figure: Global Thread IDs

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Relations among variables

blockNum = blockIdx.z * (gridDim.x * gridDim.y) + blockIdx.y * gridDim.x +
blockIdx.x;

threadNum = threadIdx.z * (blockDim.x * blockDim.y) + threadIdx.y * (blockDim.
x) + threadIdx.x;

globalThreadId = blockNum * (blockDim.x * blockDim.y * blockDim.z) + threadNum

5

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Col 0 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7
Row O (6] 1 2 3 4 5 6 v
Row 1 8 9 10 11 12 13 14 15
Row 2 16 17 18 19 20 21 22 23
Row 3 24 25 26 27 28 29 30 31
Row 4 32 33 34 35 36 37 38 39
Row 5 40 41 42 43 44 45 46 47
Row 6 48 49 50 51 52 53 54 55
Row 7 56 57 58 59 60 61 62 63

i = globalThreadld / NumCols j = globalThreadld % NumCols
NumRows * NumCols = gridDim.x * gridDim.y * gridDim.z * blockDim.x * blockDim.y *

blockDim.z

Figure: Mapping Threads to Matrix

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Mapping between kernels and data

The CUDA programming interface provides support for mapping kernels of any
dimension (upto 3) to data of any dimension

» Mapping a 3D kernel to 2D kernel results in complex memory access expressions.
» Makes sense to map 2D kernel to 2D data and 3D kernel to 3D data

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

NumCols = blockDim.x * gridDim.x

NumRows = blockDim.y * gridDim.y

gridDim = (3,2) blockDim = (5,4)

0,0) [€0,1) |(0,2) |(1,0) |(1,1) |(1,2)

,,Bfo'c/k/b Bl@ek/i Bleck/é Block 3 Block 4 Block 5

- . - .
- e -7 /
- S - /
©.0) [©.1)]...... 3.3 | 6.4 ©0) | ©1) |...... .9 | 3.9)
Throad 0 Thread ,\' Thrond 19 Thrend 20 Thrand 0 Thrend ,\' Thread 19 Thrond 20
1 5 1 1 5 1
t t t
x*blockDim.x+th dld: x*blockDim.x+threadld
y*blockDim.y+threadldx.y y*blockDim.y-threadldx.y
o Ny o Ny Ny No

Figure: Two Dimensional Kernel

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Multi-dimensional mapping of dataspace; Synchronization

8 X 15 Matrix

1 5 1

Jj=blockldx.x*blockDim.x+threadldx.x

i=blockldx.y*blockDim.y-+threadldx.y
! N4 ~o

Figure: Two Dimensional Kernel-Data Mapping

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

nX = blockDim.x * gridDim.x
nY = blockDim.y * gridDim.y
nZ = blockDim.z * gridDim.z

gridDim = (2,2,2) blockDim = (5,4,3)

(0,0,0)| (0,0,1)| (0,1,0)| (0,1,1) | (1,0,0)| (1,0,1)| (1,1,0)| (1,1,1)

Block 0 Block 1-Block 2 Bloek'3 Block 4 Block 5 Block 6 Block 7

/

/

1 1 5 1

t t t t t t
j=blockldx.x*blockDim.x-+threadldx.x j=blockIdx.x*blockDim.x-+threadldx.x
i=blockIdx.y*blockDim.y-threadldx.y

i=blockIdx.y*blockDim.y-+threadldx.y
N Ny 0 No Ng No
Z*blockDim.z-+ threadldx.z z*blockDim z+ threadId

No N3 No N1 N3 No

Figure: Three Dimensional Kernel

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Multi-dimensional mapping of dataspace; Synchronization

8 X 15 Matrix

Figure: Three Dimensional Kernel-Data Mapping

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Synchronization

De- Block O Block 1
/ Block 4 || Block 5 \

| [[[]
Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
Block 4 Block 5

Block 6 || Block 7

Figure: Mapping Blocks to Hardware

» Each block can execute in any order relative to other blocks.

» Lack of synchronization constraints between blocks enables scalability.

Multi-dimensional mapping of dataspace; Synchronization

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Synchronization

» Synchronization constraints can be enforced to threads inside a thread block.

» Threads may co-operate with each other and share data with the help of local
memory (more on this later)

» CUDA construct _ synchthreads() is used for enforcing synchronization.

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

M = |88 888

__syncthreads()

Figure: Input: A 11 X 11 matrix, Output: A vector of size 12 where each element represents
the column sums and the last element represents the sum of the column sums.

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Synchronization Host Program

int main()

{
int N=1024;
int size_M=N*N;
int size_V=N+1;

(d_M,M,size_Mx*sizeof (float),
cudaMemcpyHostToDevice) ;
(d_V, V, size_Vxsizeof (float),
cudaMemcpyHostToDevice) ;
dim3 grid(1,1,1);
dim3 block(N,1,1);
sumTriangle <<<grid,block>>>(d_M,d_V,N);
(V,d_V,size_Vx*sizeof (float),
cudaMemcpyDeviceToHost) ;

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Kernel

void sumTriangle(float* M, float* V, int N){

int j=threadIdx.x;

float sum=0.0;

for (int i=0;i<j;i++)
sum+=M[i*N+j];

V[jl=sum;
O3

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Kernel
if (j == N-1)
{ sum = 0.0;
for(i=0;i<N;i++)
sum =sum + V[i];
VIN] = sum;
}

Once each thread finishes computing sum across columns, the total sum is computed
by the last thread.

Multi-dimensional mapping of dataspace; Synchronization

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Synchronization Program Variant |

Modification: Only elements at odd indices are summed.

void sumTriangle(float* M, float* V, int N){

int j=threadIdx.x;
float sum=0.0;
for (int i=0;i<j;i++)
if (i%2) // Check for odd indices
sum+=M[i*N+j];

V[jl=sum;
(O

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Synchronization Program Variant |

Addition still carried out by the last thread.

if(j == M)
{
sum = 0.0;
for(i=0;i<N;i++)
sum =sum + V[i];
VI[N+1] = sum;

Multi-dimensional mapping of dataspace; Synchronization

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

tid= 01 2 3 4

6 7 8 910

__syncthreads()

V= LT TT1T]

Figure: A variant of SumTriangle where only the elements at odd indices of a column are added

Multi-dimensional mapping of dataspace; Synchronization

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Synchronization Program Variant |l

Modification: Consider summing all indices again. But use all threads for final
reduction.

void sumTriangle(float* M, float* V, int N){

int j=threadIdx.x;
float sum=0.0;

for (int i=0;i<j;i++)
sum+=M[i*N+j];

V[jl=sum;
O3

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Multi-dimensional mapping of dataspace; Synchronization

Synchronization Program Variant |l

Reduction possible since addition is an associative operation.

for (unsigned int s=1;s<N;s*= 2)

{
if (j %(2%s)==0 && j+s < N)
VIjl+=VI[j+s];
(O
}

}

Once each thread finishes computing sum across columns, the total sum is computed
by all the threads.

Multi-dimensional mapping of dataspace; Synchronization Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

Reduction

iterations

tid o 1 2 3 4 5 6 7 8 9 10 u
|o 1|2|3|4|5|6|7|8|9|10|11|
L= 1~ 1 l— 1 |
) R S S
{ { [

Ll [[=] [[[=f []]
{ {
=l [LT[f=f []]

Figure: Reducing an

Multi-dimensional mapping of dataspace; Synchronization

array of 12 elements

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

