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Course Organization

Topic Week | Hours
Review of basic COA w.r.t. performance 1 2
Intro to GPU architectures 2 3
Intro to CUDA programming 3 2
Multi-dimensional data and synchronization 4 2
Warp Scheduling and Divergence 5 2
Memory Access Coalescing 6 2
Optimizing Reduction Kernels 7 3
Kernel Fusion, Thread and Block Coarsening 8 3
OpenCL - runtime system 9 3
OpenCL - heterogeneous computing 10 2
Efficient Neural Network Training/Inferencing 11-12 6
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Multi dimensional block

In general
» a grid is a 3-D array of blocks
» a block is a 3-D array of threads
» specified by C struct type dim3

» unused dimensions are set to 1
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Multi dimensional grid, block

dim3 X(ceil(n/256.0), 1, 1);

dim3 Y(2566, 1, 1);

vecAddKernel <<<X, Y>>>(..);

vecAddKernel <<<ceil(n/256), 256>>>(..);

//CUDA compiler is smart enough to realise both as equivalent
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Multi dimensional grid, block

» gridDim.x/y/z € [1,29]
» (blockldx.x, blockldx.y, blockldx.z) is one block

» All threads in the block sees the same value of system vars blockldx.x,
blockldx.y, blockldx.z

» blockldx.x/y/z € [0, gridDim.x/y/z -1]
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Multi dimensional grid, block

block dimension is limited by total number of threads possible in a block — 1024.
> (512, 1,1) -

> (8,16, 4) -/
> (32,16, 2) - /
> (32, 32, 32) - x
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Multi dimensional grid, block declaration

Consider the following host side code

dim3 X(2, 2, 1);
dim3 Y (4, 2, 2);
vecAddKernel <<<X, Y>>>(..);

The memory layout thus created in device when the kernel is launched is shown next
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Figure: Grids and Blocks
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Figure: 2D Matrix
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blockIdx.z blockIdx.x

GRID (0,1,0)] (0,1, 1)

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thrend 6 Thitad 7 Th

BLOCK

threadldx.z | threadldx.x

threadlds.y
blockNum = blockldx.z * (gridDim.x * gridDim.y) + blockIdx.y * gridDim.x + blockIdx.x

threadNum = threadldx.z * (blockDim.x * blockDim.y) + threadIdx.y * (blockDIm.x) +
threadldx.x

globalThreadld = blockNum * (blockDim.x * blockDim.y * blockDim.z) + threadNum

Figure: Global Thread IDs
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Relations among variables

blockNum = blockIdx.z * (gridDim.x * gridDim.y) + blockIdx.y * gridDim.x +
blockIdx.x;

threadNum = threadIdx.z * (blockDim.x * blockDim.y) + threadIdx.y * (blockDim.
x) + threadIdx.x;

globalThreadId = blockNum * (blockDim.x * blockDim.y * blockDim.z) + threadNum

5
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Col 0 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7
Row O (6] 1 2 3 4 5 6 v
Row 1 8 9 10 11 12 13 14 15
Row 2 16 17 18 19 20 21 22 23
Row 3 24 25 26 27 28 29 30 31
Row 4 32 33 34 35 36 37 38 39
Row 5 40 41 42 43 44 45 46 47
Row 6 48 49 50 51 52 53 54 55
Row 7 56 57 58 59 60 61 62 63

i = globalThreadld / NumCols j = globalThreadld % NumCols
NumRows * NumCols = gridDim.x * gridDim.y * gridDim.z * blockDim.x * blockDim.y *

blockDim.z

Figure: Mapping Threads to Matrix
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Mapping between kernels and data

The CUDA programming interface provides support for mapping kernels of any
dimension (upto 3) to data of any dimension

» Mapping a 3D kernel to 2D kernel results in complex memory access expressions.
» Makes sense to map 2D kernel to 2D data and 3D kernel to 3D data
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NumCols = blockDim.x * gridDim.x

NumRows = blockDim.y * gridDim.y

gridDim = (3,2) blockDim = (5,4)
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o Ny o Ny Ny No

Figure: Two Dimensional Kernel
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8 X 15 Matrix

1 5 1

Jj=blockldx.x*blockDim.x+threadldx.x

i=blockldx.y*blockDim.y-+threadldx.y
! N4 ~o

Figure: Two Dimensional Kernel-Data Mapping
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nX = blockDim.x * gridDim.x
nY = blockDim.y * gridDim.y
nZ = blockDim.z * gridDim.z

gridDim = (2,2,2) blockDim = (5,4,3)

(0,0,0)| (0,0,1)| (0,1,0)| (0,1,1) | (1,0,0)| (1,0,1)| (1,1,0)| (1,1,1)

Block 0 Block 1-Block 2 Bloek'3 Block 4 Block 5 Block 6 Block 7

/

/

1 1 5 1

t t t t t t
j=blockldx.x*blockDim.x-+threadldx.x j=blockIdx.x*blockDim.x-+threadldx.x
i=blockIdx.y*blockDim.y-threadldx.y

i=blockIdx.y*blockDim.y-+threadldx.y
N Ny 0 No Ng No
Z*blockDim.z-+ threadldx.z z*blockDim z+ threadId

No N3 No N1 N3 No

Figure: Three Dimensional Kernel
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8 X 15 Matrix

Figure: Three Dimensional Kernel-Data Mapping
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Synchronization

De- Block O Block 1
/ Block 4 || Block 5 \

| [ [ [ ]
Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
Block 4 Block 5

Block 6 || Block 7

Figure: Mapping Blocks to Hardware

» Each block can execute in any order relative to other blocks.

» Lack of synchronization constraints between blocks enables scalability.
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Synchronization

» Synchronization constraints can be enforced to threads inside a thread block.

» Threads may co-operate with each other and share data with the help of local
memory (more on this later)

» CUDA construct _ synchthreads() is used for enforcing synchronization.
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M = |88 888

__syncthreads()

Figure: Input: A 11 X 11 matrix, Output: A vector of size 12 where each element represents
the column sums and the last element represents the sum of the column sums.
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Synchronization Host Program

int main()

{
int N=1024;
int size_M=N*N;
int size_V=N+1;

(d_M,M,size_Mx*sizeof (float),
cudaMemcpyHostToDevice) ;
(d_V, V, size_Vxsizeof (float),
cudaMemcpyHostToDevice) ;
dim3 grid(1,1,1);
dim3 block(N,1,1);
sumTriangle <<<grid,block>>>(d_M,d_V,N);
(V,d_V,size_Vx*sizeof (float),
cudaMemcpyDeviceToHost) ;
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Kernel

void sumTriangle(float* M, float* V, int N){

int j=threadIdx.x;

float sum=0.0;

for (int i=0;i<j;i++)
sum+=M[i*N+j];

V[jl=sum;
O3
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Kernel
if (j == N-1)
{ sum = 0.0;
for(i=0;i<N;i++)
sum =sum + V[i];
VIN] = sum;
}

Once each thread finishes computing sum across columns, the total sum is computed
by the last thread.
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Synchronization Program Variant |

Modification: Only elements at odd indices are summed.

void sumTriangle(float* M, float* V, int N){

int j=threadIdx.x;
float sum=0.0;
for (int i=0;i<j;i++)
if (i%2) // Check for odd indices
sum+=M[i*N+j];

V[jl=sum;
(O
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Synchronization Program Variant |

Addition still carried out by the last thread.

if(j == M)
{
sum = 0.0;
for(i=0;i<N;i++)
sum =sum + V[i];
VI[N+1] = sum;
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tid= 01 2 3 4

6 7 8 910

__syncthreads()

V= LT TT1T]

Figure: A variant of SumTriangle where only the elements at odd indices of a column are added
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Synchronization Program Variant |l

Modification: Consider summing all indices again. But use all threads for final
reduction.

void sumTriangle(float* M, float* V, int N){

int j=threadIdx.x;
float sum=0.0;

for (int i=0;i<j;i++)
sum+=M[i*N+j];

V[jl=sum;
O3
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Synchronization Program Variant |l

Reduction possible since addition is an associative operation.

for (unsigned int s=1;s<N;s*= 2)

{
if (j %(2%s)==0 && j+s < N)
VIjl+=VI[j+s];
(O
}

}

Once each thread finishes computing sum across columns, the total sum is computed
by all the threads.
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Reduction

iterations

tid o 1 2 3 4 5 6 7 8 9 10 u
|o 1|2|3|4|5|6|7|8|9|10|11|
L= 1~ 1 l— 1 |
) R S S
{ { [

Ll [ [ =] [ [ [=f []]
{ {
=l [ LT[ f=f []]

Figure: Reducing an
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