
IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Memory Access Coalescing

Soumyajit Dey, Assistant Professor,
CSE, IIT Kharagpur

March 16, 2022

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Recap: Memory Spaces

Thread
(0, 0)

Registers Registers

Shared Memory

Block (0, 0)

SP-0

Thread
(4, 3)
SP-19

SM-0

Thread
(0, 0)

Registers Registers

Shared Memory

Block (0, 1)

SP-0

Thread
(4, 3)
SP-19

SM-1

Thread
(0, 0)

Registers Registers

Shared Memory

Block (2, 1)

SP-0

Thread
(4, 3)
SP-19

SM-5

Global Memory

Constant Memory

GRID

HOST

Figure: Global Memory Accesses

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Access Scopes
Per-thread

Local Memory

Per-block
Shared

Memory

Per-device Global Memory

kernel 1 kernel n

Unified L2 Cache

Global DRAM Memory

Registers

L1 SMEM

Registers

L1 SMEM

Registers

L1 SMEM

SM 0 SM 1 SM k

INTERCONNECTION NETWORK

Memory
Controller

Figure: Types of Memory Accesses

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Memory Access Types

Latency of accesses differ for different memory spaces
◮ Global Memory (accessible by all threads) is the slowest
◮ Shared Memory (accessible by threads in a block) is very fast.
◮ Registers (accessible by one thread) is the fastest.

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Warp Requests to Memory

◮ The GPU coalesces global memory loads and stores requested by a warp of threads
into global memory transactions.

◮ A warp typically requests 32 aligned 4 byte words in one global memory
transaction.

◮ Reducing number of global memory transactions by warps is one of the keys for
optimizing execution time

◮ Efficient memory access expressions must be designed by the user for the same.

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples

0 1 2 3 4 5 6 7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

tid

global
memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

warp 0

__global__ void memory_access(* a)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid] = a[tid] + 1;
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples

0 1 2 3 4 5 6 7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

tid

global
memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

warp 0

1 global memory transaction for read
1 global memory transaction for write

__global__ void memory_access(* a)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid] = a[tid] + 1;
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples

8 9 10 11 12 13 14 15

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

tid

global
memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

warp 1

1 global memory transaction for read
1 global memory transaction for write

__global__ void memory_access(* a)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid] = a[tid] + 1;
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples

16 17 18 19 20 21 22 23

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

tid

global
memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

warp 2

1 global memory transaction for read
1 global memory transaction for write

__global__ void memory_access(* a)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid] = a[tid] + 1;
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Offset

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

0 1 2 3 4 5 6 7tid

warp 0

__global__ void offset_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid+s] = a[tid+s] + 1;
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Offset

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

0 1 2 3 4 5 6 7tid

warp 0

Misaligned offset access: s=1

2 global memory transactions for read
2 global memory transactions for write

__global__ void offset_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid+s] = a[tid+s] + 1;
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Offset

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

Misaligned offset access: s=1

2 global memory transactions for read
2 global memory transactions for write

8 9 10 11 12 13 14 15tid

warp 1

__global__ void offset_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid+s] = a[tid+s] + 1;
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Offset

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

Aligned offset access: s=8

1 global memory transaction for read
1 global memory transaction for write

__global__ void offset_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid+s] = a[tid+s] + 1;
}

0 1 2 3 4 5 6 7tid

warp 0

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Strided

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

__global__ void strided_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid*s] = a[tid*s] + 1;
}

0 1 2 3 4 5 6 7tid

warp 0

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Strided

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

__global__ void strided_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid*s] = a[tid*s] + 1;
}

0 1 2 3 4 5 6 7tid

warp 0

Misaligned strided access: s=2

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Strided

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

__global__ void strided_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid*s] = a[tid*s] + 1;
}

0 1 2 3 4 5 6 7tid

warp 0

Misaligned strided access: s=2

2 global memory transactions for read
2 global memory transactions for write

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Strided

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

__global__ void strided_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid*s] = a[tid*s] + 1;
}

0 1 2 3 4 5 6 7tid

warp 0

Misaligned strided access: s=4

2 global memory transactions for read
2 global memory transactions for write

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Coalescing Examples: Strided

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
global

memory A[16] A[17] A[18] A[19] A[20] A[21] A[22] A[23]

A[24] A[25] A[26] A[27] A[28] A[29] A[30] A[31]

__global__ void strided_access(* a, int s)
{
 int tid= blockDim.x * blockIdx.x + threadIdx.x;
 a[tid*s] = a[tid*s] + 1;
}

0 1 2 3 4 5 6 7tid

warp 0

Misaligned strided access: s=4

4 global memory transactions for read
4 global memory transactions for write

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Profiling

◮ Profiling can be performed using the CUDA event API.
◮ CUDA events are of type cudaEvent_t
◮ Events are created using cudaEventCreate() and destroyed using

cudaEventDestroy()
◮ Events can record timestamps using cudaEventRecord()
◮ The time elapsed between two recorded events is done using

cudaEventElapsedTime()

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Driver Code: Offset Access

cudaEvent_t startEvent , stopEvent;
float ms;
int blockSize = 1024;
int n = nMB *1024*1024/ sizeof(float); //nMB =128
cudaMalloc (&d_a , n * sizeof(float));
for (int i = 0; i <= 32; i++)
{
^^ IcudaMemset(d_a , 0.0, n * sizeof(float));
^^ IcudaEventRecord(startEvent);
^^ Ioffset_access <<n/blockSize ,blockSize >>(d_a , i);
^^ IcudaEventRecord(stopEvent);
^^ IcudaEventSynchronize(stopEvent);
^^ IcudaEventElapsedTime (&ms , startEvent , stopEvent);
^^ Iprintf("%d, %fn", i, 2*nMB/ms);
}

Source:
https://devblogs.nvidia.com/how-access-global-memory-efficiently-cuda-c-kernels/

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Driver Code: Strided Access

cudaEvent_t startEvent , stopEvent;
float ms;
int blockSize = 1024;
int n = nMB *1024*1024/ sizeof(float); //nMB =128
cudaMalloc (&d_a , n * 33 * sizeof(float));
for (int i = 0; i <= 32; i++)
{
^^ IcudaMemset(d_a , 0.0, n * sizeof(float));
^^ IcudaEventRecord(startEvent);
^^ Ioffset_access <<n/blockSize ,blockSize >>(d_a , i);
^^ IcudaEventRecord(stopEvent);
^^ IcudaEventSynchronize(stopEvent);
^^ IcudaEventElapsedTime (&ms , startEvent , stopEvent);
^^ Iprintf("%d, %fn", i, 2*nMB/ms);
}

Source:
https://devblogs.nvidia.com/how-access-global-memory-efficiently-cuda-c-kernels/

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

M
em

or
y

Ba
nd

w
id

th
 (G

Bp
s)

s

Figure: Memory Bandwidth Plot

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Using Shared Memory

◮ Applications typically require different threads to access the same data over and
over again (data reuse)

◮ Redundant global memory accesses can be avoided by loading data into shared
memory.

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Using Shared Memory

◮ Each SM typically has 64KB of on-chip memory that can be partitioned between
L1 cache and shared memory.

◮ Settings are typically 48KB shared memory / 16KB L1 cache, and 16KB shared
memory / 48KB L1 cache. By default the 48KB shared memory setting is used.

◮ This can be configured during runtime API from the host for all kernels using
cudaDeviceSetCacheConfig() or on a per-kernel basis using
cudaFuncSetCacheConfig()

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Recap: Matrix Multiplication Kernel

__global__
void MatrixMulKernel(float* d_M , float* d_N , float* d_P , int N){
int i=blockIdx.y*blockDim.y+threadIdx.y;
int j=blockIdx.x*blockDim.x+threadIdx.x;
if ((i<N) && (j<N)) {

float Pvalue = 0.0;
for (int k = 0; k < N; ++k) {

Pvalue += d_M[i*N+k]*d_N[k*N+j];
}
d_P[i*N+j] = Pvalue;

}
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Recap Matrix Multiplication Kernel

◮ Number of threads launched is equal to the number of elements in the matrix
◮ The same row and column is accessed multiple times by different threads.
◮ Redundant global memory accesses are a bottleneck to performance

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Recap: Matrix Multiplication Kernel

X =

Total Mem. accesses required

= N 2 (N + N/32)

⇡ N 3

Figure: Number of memory accessesMemory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Matrix Multiplication Kernel using Tiling

An alternative strategy is to use shared memory for reducing global memory traffic
◮ Partition the data into subsets called tiles so that each tile fits into shared memory
◮ Threads in a block collaboratively load tiles into shared memory before they use

the elements for the dot-product calculation

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

0

1

2

0

1

2

3

0 1 2

0 1 2 3

bx

tx

tyby m = 0 m = 1 m = 2

m = 0

m = 1

m = 2

Row

Col

TILE WIDTH

gridDim = (3, 3) blockDim = (4, 4)

Row = by * TILE WIDTH + ty

Col = bx * TILE WIDTH + tx

Note: m is loop induction variable

[0, WIDTH/TILE WIDTH]

WIDTH

Figure: Access Expressions

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Matrix Multiplication Kernel using Tiling

__global__
void MatrixMulKernel(float* d_M , float* d_N , float* d_P ,int Width) {.

^^ I__shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
^^ I__shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

^^I int bx = blockIdx.x;
^^I int by = blockIdx.y;
^^I int tx = threadIdx.x;
^^I int ty = threadIdx.y;

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;
float Pvalue = 0;
for (int m = 0; m < Width/TILE_WIDTH; ++m) {
Mds[ty][tx] = d_M[Row*Width + m*TILE_WIDTH + tx];
Nds[ty][tx] = d_N[(m*TILE_WIDTH + ty)*Width + Col];
__syncthreads ();
for (int k = 0; k < TILE_WIDTH; ++k)
Pvalue += Mds[ty][k] * Nds[k][tx];

__syncthreads ();
}
d_P[Row*Width + Col] = Pvalue;
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

syncthreads()

syncthreads()

Thread
(0, 0)

Registers Registers

Shared Memory

Block (0, 0)

SP-0

Thread
(1, 1)
SP-3

SM-0

LOAD

Thread
(0, 0)

Registers Registers

Shared Memory

Block (0, 0)

SP-0

Thread
(1, 1)
SP-3

SM-0

COMPUTE

syncthreads()

syncthreads()

Thread
(0, 0)

Registers Registers

Shared Memory

Block (0, 0)

SP-0

Thread
(1, 1)
SP-3

SM-0

LOAD

Thread
(0, 0)

Registers Registers

Shared Memory

Block (0, 0)

SP-0

Thread
(1, 1)
SP-3

SM-0

COMPUTE

Figure: Load and compute tiles in shared memory

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

N
W

N

W

Mem. accesses for computing a tile in C

= (# Mem. accesses to load a tile) x (# Tiles

to load from A & B)= (W/32 x W) x (2N/W)

Total Mem. Accesses = (# Mem. accesses
for computing a tile in C) x (# Tiles)

= (W/32 x W) x (2N/W) x (N 2/W 2)

= (N 3/16W)

Figure: Number of memory accesses

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Tranpose Operation

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Figure: Transposing a Matrix

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Matrix Transpose CPU only

void transposeHost(float *out , float *in , const int nx , const int ny)
{
^^Ifor (int iy = 0; iy < ny; ++iy)
^^I{
^^I^^Ifor (int ix = 0; ix < nx; ++ix)
^^I^^I{
^^I^^I^^Iout[ix*ny+iy] = in[iy*nx+ix];
^^I^^I}
^^I}
}

Professional CUDA C Programming by Cheng et al.

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Matrix Transpose GPU Kernel- Naive Row

__global__ void transposeNaiveRow(float *out , float *in , const int nx , int ny)
{

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix < nx && iy < ny) {

out[ix * ny + iy] = in[iy * nx + ix];
}

}

Loads by rows and stores by columns

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Matrix Transpose GPU Kernel- Naive Col

__global__ void transposeNaiveRow(float *out , float *in , const int nx ,int ny)
{

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix < nx && iy < ny) {

out[iy*nx + ix] = in[ix*ny + iy];
}

}

Loads by columns and stores by rows

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Driver Code

#define CHECK(call)
{
^^ IcudaError_t err = call;
^^Iif (err != cudaSuccess)
^^I{
^^I fprintf(stderr , " Failed with error code %s\n", cudaGetErrorString (err)

);
^^I exit(EXIT_FAILURE) ;
^^I}
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Driver Code
int main(int argc , char **argv)
{

// set up device
int dev = 0;
cudaDeviceProp deviceProp;
CHECK(cudaGetDeviceProperties (& deviceProp , dev));
printf("%s starting transpose at ", argv [0]);
printf("device %d: %s ", dev , deviceProp.name);
CHECK(cudaSetDevice(dev));

// set up array size 8192*8192
int nx = 1 << 13;
int ny = 1 << 13;

// select a kernel and block size
int iKernel = 0;
int blockx = 32;
int blocky = 32;

if (argc > 1) iKernel = atoi(argv [1]);

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Driver Code

^^ Isize_t nBytes = nx * ny * sizeof(float);
^^I// execution configuration
^^ Idim3 block (blockx , blocky);
^^ Idim3 grid ((nx + block.x - 1) / block.x, (ny + block.y - 1) / block.y);
^^I// allocate host memory
^^ Ifloat *h_A = (float *) malloc(nBytes);
^^ Ifloat *hostRef = (float *) malloc(nBytes);
^^ Ifloat *gpuRef = (float *) malloc(nBytes);
^^I// initialize host array
^^ IinitialData(h_A , nx * ny);
^^I// allocate device memory
^^ Ifloat *d_A , *d_C;
^^ ICHECK(cudaMalloc ((float **)&d_A , nBytes));
^^ ICHECK(cudaMalloc ((float **)&d_C , nBytes));
^^I// copy data from host to device
^^ ICHECK(cudaMemcpy(d_A , h_A , nBytes , cudaMemcpyHostToDevice));

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Driver Code

// kernel pointer and descriptor
void (* kernel)(float *, float *, int , int);
char *kernelName;
// set up kernel
switch (iKernel)
{

case 0:
kernel = &transposeNaiveRow; kernelName = "NaiveRow"; break;

case 1:
kernel = &transposeNaiveCol; kernelName = "NaiveCol"; break;

}
// run kernel

kernel <<<grid , block >>>(d_C , d_A , nx , ny);
^^ ICHECK(cudaGetLastError ());

^^ ICHECK(cudaMemcpy(gpuRef , d_C , nBytes , cudaMemcpyDeviceToHost));
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Profile using NVPROF

◮ nvprof is a command-line profiler available for Linux, Windows, and OS X.
◮ nvprof is able to collect statistics pertaining to multiple events/metrics at the same

time.
◮ nvprof is a standalonetool and does not require the programmer to use the CUDA

events API.

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Execute Code: NaiveRow

nvprof –devices 0 –metrics gst_throughput, gld_throughput ./transpose 0
==108029== NVPROF is profiling process 108029 , command: ./ transpose 0
./ transpose starting transpose at device 0: Tesla K40m with matrix nx 8192 ny

8192 with kernel 0
==108029== Some kernel(s) will be replayed on device 0 in order to collect all

events/metrics.
==108029== Replaying kernel "transposeNaiveRow(float*, float*, int , int)" (

done)
==108029== Metric result:
Invocations Metric Name Metric Description Min Max
Device "Tesla K40m (0)"
Kernel: transposeNaiveRow(float*, float*, int , int)
1 gst_throughput Global Store Throughput 249.37 GB/s 249.37 GB/s
1 gld_throughput Global Load Throughput 31.171 GB/s 31.171 GB/s

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Execute Code: NaiveCol

nvprof –devices 0 –metrics gst_throughput, gld_throughput ./transpose 1
==108037== NVPROF is profiling process 108037 , command: ./ transpose 1
./ transpose starting transpose at device 0: Tesla K40m with matrix nx 8192 ny

8192 with kernel 1
==108037== Some kernel(s) will be replayed on device 0 in order to collect all

events/metrics.
==108037== Replaying kernel "transposeNaiveCol(float*, float*, int , int)" (

done)
==108037== Metric result:
Invocations Metric Name Metric Description Min Max
Device "Tesla K40m (0)"
Kernel: transposeNaiveCol(float*, float*, int , int)
1 gst_throughput Global Store Throughput 17.421 GB/s 17.421 GB/s
1 gld_throughput Global Load Throughput 139.37 GB/s 139.37 GB/s
^^I

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Using Nvidia Visual Profiler

◮ The nvvp software provides a GUI based tool for analyzing CUDA applications and
supports a guided analysis mode for optimizing kernels.

◮ nvprof provides a –analysis-metrics option to capture all GPU metrics for use by
NVIDIA Visual Profiler software during its guided analysis mode.

◮ The -o flag can be used with nvprof to dump a logs file that can be imported into
nvvp.

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Naive Row Kernel Profiling Analysis

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Naive Col Kernel Profiling Analysis

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Compute Analysis

Naive Row Naive Col

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Memory Bandwidth Analysis: Naive Row

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Memory Bandwidth Analysis: Naive Col

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Latency Analysis in NVVP

Instruction stalls prevents warps from executing on any given cycle and are of the
following types.
◮ Pipeline busy: The compute resources required by the instruction is not available.
◮ Constant: A constant load is blocked due to a miss in the constants cache.
◮ Memory Throttle: Large number of pending memory operations prevent further

forward progress.
◮ Texture: The texture subsystem is fully utilized or has too many outstanding

requests.
◮ Synchronization: The warp is blocked at a __syncthreads() call.

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Latency Analysis in NVVP

Instruction stalls prevents warps from executing on any given cycle and are of the
following types.
◮ Instruction Fetch: The next assembly instruction has not yet been fetched.
◮ Execution Dependency: An input required by the instruction is not yet available.
◮ Memory Dependency: A load/store cannot be made because the required

resources are not available, or are fully utilized, or too many requests of a given
type are oustanding.

◮ Not Selected: Warp was ready to issue, but some other warp was issued instead.

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Latency Analysis

Naive Row Naive Col

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Transpose using Shared Memory
#define TILE_DIM 32
#define BLOCK_ROWS 32
__global__ void transposeCoalesced(float *odata , float *idata , const int nx ,

const int ny)
{

__shared__ float tile[TILE_DIM][TILE_DIM];

int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
tile[threadIdx.y+j][threadIdx.x] = idata [(y+j)*width + x];

__syncthreads ();

^^I^^I

Source: https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Transpose using Shared Memory

x = blockIdx.y * TILE_DIM + threadIdx.x; // transpose block offset
y = blockIdx.x * TILE_DIM + threadIdx.y;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
odata [(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];

}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Execute Code: TransposeCoalesced

nvprof –devices 0 –metrics shared_store_throughput,shared_load_throughput
./transpose 2
==108373== NVPROF is profiling process 108373 , command: ./ transpose 2
./ transpose starting transpose at device 0: Tesla K40m with matrix nx 8192 ny

8192 with kernel 2
==108373== Metric result:
Invocations Metric Name Metric Description Min Max
Device "Tesla K40m (0)"
Kernel: transposeCoalesced(float*, float*, int , int)
1 shared_store_throughput Shared Memory Store Throughput 81.40 GB/s 81.40 GB/s
1 shared_load_throughput Shared Memory Load Throughput 1e+03GB/s 1e+03GB/s

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Kernel Analysis

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Compute and Latency Analysis

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Memory Bandwidth Analysis

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Using Shared Memory: Simple Copy

__global__ void copySharedMem(float *odata , float *idata , const int nx , const
int ny)

{
__shared__ float tile[TILE_DIM * TILE_DIM];
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

tile[(threadIdx.y+j)*TILE_DIM + threadIdx.x] = idata [(y+j)*width + x];
__syncthreads ();
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

odata [(y+j)*width + x] = tile[(threadIdx.y+j)*TILE_DIM + threadIdx.x];
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Profiling Results: CopySharedMem

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

No Bank Conflicts

__global__ void transposeNoBankConflicts(float *odata , float *idata , const int
nx , const int ny)

{
__shared__ float tile[TILE_DIM][TILE_DIM +1];
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

tile[threadIdx.y+j][threadIdx.x] = idata [(y+j)*width + x];
__syncthreads ();
x = blockIdx.y * TILE_DIM + threadIdx.x; // transpose block offset
y = blockIdx.x * TILE_DIM + threadIdx.y;
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

odata [(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

No Bank Conflicts

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Profiling Results: No bank conflicts

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Profiling Results: No bank conflicts

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Transpose Fine Grained

__global__ void transposeFineGrained(float *odata , float *idata , int width ,
int height)

{
__shared__ float block[TILE_DIM][TILE_DIM +1];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + (yIndex)*width;

^^Ifor (int i=0; i < TILE_DIM; i += BLOCK_ROWS)
block[threadIdx.y+i][threadIdx.x]= idata[index+i*width];

__syncthreads ();
for (int i=0; i < TILE_DIM; i += BLOCK_ROWS)

^^I odata[index+i*height] = block[threadIdx.x][threadIdx.y+i];
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Profiling Results: Transpose FineGrained

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Transpose Coarse Grained

__global__ void transposeCoarseGrained(float *odata , float *idata , int width ,
int height)

{
__shared__ float block[TILE_DIM][TILE_DIM +1];
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
for (int i=0; i<TILE_DIM; i += BLOCK_ROWS)

^^I block[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];
__syncthreads ();
for (int i=0; i<TILE_DIM; i += BLOCK_ROWS)

odata[index_out+i*height] = block[threadIdx.y+i][threadIdx.x];
}

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE OF TECHNOLOGY

KHA
R

A
G

PUR

Profiling Results: Transpose CoarseGrained

Memory Access Coalescing Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

