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Course Organization

Topic Week Hours
Review of basic COA w.r.t. performance 1 2
Intro to GPU architectures 2 3
Intro to CUDA programming 3 2
Multi-dimensional data and synchronization 4 2
Warp Scheduling and Divergence 5 2
Memory Access Coalescing 6 2
Optimizing Reduction Kernels 7 3
Kernel Fusion, Thread and Block Coarsening 8 3
OpenCL - runtime system 9 3
OpenCL - heterogeneous computing 10 2
Efficient Neural Network Training/Inferencing 11-12 6
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Handling Data Level Parallelism

Data parallel algorithms handle multiple data points in each basic step (single thread of
control)
I Vector Processors : early style of data parallel compute
I Single Instruction Multiple Data (SIMD) in x86 : MMX (Multimedia Extensions),

AVX (Advanced Vector Extensions)
I GPUs : have their own distinguishing characteristics
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Vector Processors

I Vector registers : Each vector register is a fixed-length bank holding a single vector,
I Functional units are also vectorized,
I Original Scalar registers are also present.
I VMIPS has eight vector registers, and each vector register holds 64 elements, each

64 bits wide.
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Vector Processors : Consider a simple Y = a ∗ X + Y operation268 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

 L.D F0,a ;load scalar a
 DADDIU R4,Rx,#512 ;last address to load 

Loop:  L.D F2,0(Rx) ;load X[i]
 MUL.D F2,F2,F0 ;a × X[i]
 L.D F4,0(Ry) ;load Y[i]
 ADD.D F4,F4,F2 ;a × X[i] + Y[i]
 S.D F4,9(Ry) ;store into Y[i]
 DADDIU Rx,Rx,#8 ;increment index to X
 DADDIU Ry,Ry,#8 ;increment index to Y
 DSUBU R20,R4,Rx ;compute bound
 BNEZ R20,Loop ;check if done

Here is the VMIPS code for DAXPY. 

 L.D F0,a ;load scalar a
 LV V1,Rx ;load vector X
 MULVS.D V2,V1,F0 ;vector-scalar multiply
 LV V3,Ry ;load vector Y
 ADDVV.D V4,V2,V3 ;add
 SV V4,Ry ;store the result

The most dramatic difference is that the vector processor greatly reduces the
dynamic instruction bandwidth, executing only 6 instructions versus almost
600 for MIPS. This reduction occurs because the vector operations work on 64
elements and the overhead instructions that constitute nearly half the loop on
MIPS are not present in the VMIPS code. When the compiler produces vector
instructions for such a sequence and the resulting code spends much of its time
running in vector mode, the code is said to be vectorized or vectorizable. Loops
can be vectorized when they do not have dependences between iterations of a
loop, which are called loop-carried dependences (see Section 4.5).

Another important difference between MIPS and VMIPS is the frequency of
pipeline interlocks. In the straightforward MIPS code, every ADD.D must wait for
a MUL.D, and every S.D must wait for the ADD.D. On the vector processor, each
vector instruction will only stall for the first element in each vector, and then sub-
sequent elements will flow smoothly down the pipeline. Thus, pipeline stalls are
required only once per vector instruction, rather than once per vector element.
Vector architects call forwarding of element-dependent operations chaining, in
that the dependent operations are “chained” together. In this example, the
pipeline stall frequency on MIPS will be about 64× higher than it is on VMIPS.
Software pipelining or loop unrolling (Appendix H) can reduce the pipeline stalls
on MIPS; however, the large difference in instruction bandwidth cannot be
reduced substantially.

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on three
factors: (1) the length of the operand vectors, (2) structural hazards among the

(a) MIPS
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(b) VMIPS

Figure: Assuming the data size < vector storage (Ref: CoA: a quantitative approach (Hennessy
& Patterson))

In non-vectorized code, every ADD.D must wait for a MUL.D, and every S.D must wait
for the ADD.D
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Vector Processors

I A vector instruction passes lot of parallel work to the hardware
I The FUs can be : fully parallel, or a combination of parallel and pipelined units
I If the clock rate of a vector processor is halved, doubling the number of lanes will

retain the same potential performance.
I Work for compilers - loop vectorization, dependency handling
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Vector Processors

A[9]
….
…

A[1]

B[9]
….
…

B[1]

Reproduced from ("Vector Microprocessors" by Krste Asanović) [1998]

Single Lane

A[8]
A[4]

B[9]
B[5]

A[9]
A[5]

B[8]
B[4] B[7]A[7]B[6]A[6]

Four add pipelines can complete four additions per cycle
Elements are interleaved

Figure: Multiple lanes
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GPUs
Ideas from parallel instruction handling by vector architectures, ILP techniques etc were
borrowed to accelerate graphics processing
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Figure: GPU systems (GeForce 8800) - Hennessy, Patterson (reproduced)
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GPU Architecture (Tesla)

I Earlier figure depicts a GPU with an array of 128 streaming/scalar processor (SP)
cores, organized as 16 multithreaded streaming multiprocessors (SM),

I Each SM has 8 SPs,
I 2 SMs together are arranged as independent processing units called

texture/processor clusters (TPCs).
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Early GPUs
Early GPUs accelerated the logical graphics pipeline

Input Assembler

Raster Operations/
Output Merger Pixel Shader

Vertex Shader Geometry 
Shader

Setup and 
Rasterizer

Figure: Graphics logical pipeline

The blue ones are programmable blocks. Popular Graphics APIs like OpenGL and
Direct3D are similarly structured, and continue to evolve rapidly with GPU hardware
advances.
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Shader Programs

Graphics application sends the GPU a sequence of vertices grouped into geometric
primitives—points, lines, triangles, and polygons.
I The input assembler collects vertices and primitives.
I Vertex shader programs map the position of vertices onto the screen, altering their

position, color, or orientation.
I Geometry shader programs operate on geometric primitives (such as lines and

triangles) defined by multiple vertices, changing them or generating additional
primitives.
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Shader Programs

Usually dataflow style, model how light interacts with different materials and to render
complex lighting and shadows.
I The setup and rasterizer unit generates pixel fragments (which are potential

contributions to pixels) that are covered by a geometric primitive.
I The pixel shader program fills the interior of primitives, including interpolating

per-fragment parameters, texturing, and coloring.
I The raster operations processing (or output merger) stage : depth testing and

stencil testing, color blending operation etc
Ref : "Computer Organization and Architecture" - Hennessy, Patterson (Appendix A
on GPUs)
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GPUs : massive multi-threading

Design goals
I Cover the latency of memory loads and texture fetches from DRAM
I Support fine-grained parallel graphics shader (and general parallel compute)

programming models
I Virtualize the physical processors as threads and thread blocks to provide

transparent scalability
I Simplify the parallel programming model to writing a serial program for one thread
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First generation GPUs

I GeForce 256, introduced in 1999
I Contained fixed function vertex, pixel shaders programmed with OpenGL and the

Microsoft DX7 API
I GeForce 3 - the first programmable vertex processor executing vertex shaders

- Ref for contents and here and subsequent places : "NVIDIA Tesla: A Unified Graphics and
Computing Architecture" by Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym,
(NVIDIA) IEEE Micro, Volume 28, Issue 2, March 2008
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Trade-off

I Vertex processors were designed for low-latency, high-precision math operations
I pixel-fragment processors were optimized for high-latency, lower-precision texture

filtering - typically more busy (considering large triangulation)
I if these are fixed function blocks - difficult to select a fixed processor ratio
I Primary design objective for Tesla architecture - execute vertex and pixel-fragment

shader programs on the same unified processor.
I Unification helps in 1) dynamic load balancing of varying vertex- and

pixel-processing workloads, 2) introducing other shaders

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Tesla architecture

We come back to GeForce 8800 GPU with 128 SPs organized as 16 SMs
I external DRAM control and fixed-function raster operation processors (ROPs)

perform color and depth frame buffer operations directly on memory
I The interconnection network carries computed pixel-fragment colors and depth

values from SPs to the ROPs
I The network also routes texture memory read requests from the SP to DRAM and

read data from DRAM through a level-2 cache back to the SPs
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Graphics in Tesla

I The input assembler collects vertex work
I Vertex work distributor distributes vertex work packets to the various TPCs
I The TPCs execute vertex/geometry shader programs
I output data is written to on-chip buffers
I buffers then pass their results to the viewport/clip/setup/raster/zcull block

We continue from here to general purpose processing
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GPGPU

Each TPC has two SMs, each SM has
I eight streaming/scalar processor (SP) cores,
I two special function units (SFUs),
I a multi-threaded instruction fetch and issue unit (MT Issue),
I an instruction cache, a read-only constant cache,
I a 16-Kbyte read/write shared memory.
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GPGPU

I Each SP core contains a scalar multiply-add (MAD) unit, giving the SM eight
MAD units

I The SM uses its two SFU units for transcendental functions
I Each SFU also contains four floating-point multipliers
I In total an SM has eight MAD and floating-point multipliers
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SIMT

GPU execution model
I SIMT architecture is similar to SIMD design, which applies one instruction to

multiple data lanes.
I The difference is that SIMT applies one instruction to multiple independent

threads in parallel, not just multiple data lanes.
I A SIMD instruction controls a vector of multiple data lanes together, a SIMT

instruction controls the execution and branching behavior of one thread.
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SIMT

I In contrast to SIMD vector architectures, SIMT enables programmers to write
thread level parallel code for independent threads as well as data-parallel code for
coordinated threads

I SIMT - essentially a single thread of SIMD instructions
I Each SM’s multithreaded instruction unit creates, manages, schedules, and

executes threads in groups of 32 parallel threads called warps
I Each SM manages a pool of 24 warps, with a total of 768 threads
I Each SM maps warp threads to the SP cores
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Warp execution

I In each operation cycle, the SM warp scheduler selects one of the 24 warps
I An issued warp executes over four processor cycles
I The SP cores and SFU units execute instructions independently
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ISA

I Support for floating-point, integer, bit, conversion, transcendental, flow control,
memory load/store

I Floating-point and integer operations include add, multiply, multiply-add,
minimum, maximum, compare, set predicate, and conversions between integer and
floating-point numbers

I Transcendental function instructions include cosine, sine, binary exponential, binary
logarithm, reciprocal, and reciprocal square root.

I Bitwise operators include shift left, shift right, logic operators, and move
I Control flow includes branch, call, return, trap, and barrier synchronization
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Register File

Each SIMD processor (SM)
I has a large vector register file
I like a vector processor, these registers are divided logically across the SIMD Lanes,

i.e. the SPs
I These numbers vary across across architecture families.
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Fermi GTX 480 GPU

Has
I 16 SMs, total 512 CUDA cores
I Each SM has 32 SPs, 32,768 32-bit registers divided logically across executing

threads
I Each SIMD Thread is limited to no more than 64 registers
I A warp has access to 64×32 registers which are 32 bit,
I Alternatively, considering double-precision floating-point operands, a warp has

access to 32 vector registers of 32 elements, each of which is 64 bits wide.
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Fermi Streaming Multiprocessor (SM)

Register File (32,768 x 32-bit)
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Figure: Fermi Streaming
Multiprocessor (SM)
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Operand Collector

FP Unit INT Unit

Dispatch Port
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Figure: Single SP

I Each SM has 16 Load/store units
(load/store data at each address
to cache or DRAM.) - 16 SIMD
lanes

I Each lane has 2048 registers
I Each SM has 4 SFUs, Each SP

has one FP, one Integer ALU.
I ALUs also support Boolean, shift,

move, compare, convert, bit-field
extract, ...
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Memory Hierarchy

I Local memory for per-thread, private, temporary data (implemented in external
DRAM)

I Shared memory for low-latency access to data shared by threads in the same SM
I Global memory for data shared by all threads of a computing application

(implemented in external DRAM)
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Fermi Memory Hierarchy

DRAM

L2 Cache

Shared Memory L1 Cache

Thread

I Shared memory enables threads to cooperate,
facilitates reuse of on-chip data, and reduces
off-chip traffic.

I Each SM has 64 KB of on-chip memory that
can be configured as 48 KB of Shared memory
with 16 KB of L1 cache or as 16 KB of Shared
memory with 48 KB of L1 cache.

I Source : NVIDIA Whitepaper on Fermi

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

Fermi Memory Hierarchy

DRAM

Memory 
Controller

L2 Cache

L2 Cache

Memory 
Controller

DRAM

SM SM SM

SM SM SM

DRAM

Memory 
Controller

L2 Cache

L2 Cache

Memory 
Controller

DRAM

SM SM SM

SM SM SM

…

…
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…
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Memory 
Controller

DRAM

I L1 (Data) cache + Shared memory is
private to SMs along with read-only
texture and constant caches

I L2 is unified for all SMs, 6
high-bandwidth DRAM channels

I Compared to CPU, GPUs have larger
register file, smaller L1/L2 cache with
higher bandwidth

I Ref : "The Architecture and Evolution of
CPU-GPU Systems for General Purpose
Computing" - Manish Arora
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GPU ISA

I The instruction set target of the NVIDIA compilers is an abstraction of the
hardware instruction set

I PTX (Parallel Thread Execution) provides a instruction set for compilers that
remains same for different generations of GPUs

I PTX code gets translated to target hardware instructions while being loaded to
GPU
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PTX instructions

I format : opcode.type d, a, b, c;
I a,b,c, are source; d is destination operand
I Source operands are 32-bit or 64-bit registers or a constant value
I All instructions can be predicated by 1-bit predicate registers, which can be set by

a set predicate instruction (setp)

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur



IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, kms� kOflm̂

GPUs becoming ubiquitous

GPUs have started finding wide usage in several domains where workloads have become
intensive
I Mobile GPUs : ARM Mali, Adreno GPUs (Qualcom) - accelerate graphics as well

as compute tasks
I NVIDIA in embedded space : Jetson TX/ Nano / AGX Xavier ⇒ Multi core ARM

CPU + 128-512 core GPU targeting AI / Deep Learning tasks
I NVIDIA Drive : for implementing autonomous car and ADAS functionality

powered by deep learning (Tesla cars !!)
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GPUs as mobile workload accelerators

L2 Cache L2 Cache L2 Cache

MMU

CPU Big cores
CPU small cores Mali GPU cores

Figure: Typical architecture of an
ARM based Mobile SoC

I Objective : Maximize performance and reduce
power consumption

I Developers need to map the workload across
the whole CPU + GPU system

I RenderScript for Android SDK, OpenCL -
language support for data parallel computation
on Mobile devices
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Integrated GPUs in Desktop Systems

With the release of AMD’s Fusion and Intel’s Ivy Bridge architecture (i3, i5, i7) in
2011, the trend of fused CPU-GPU architectures started
I CPU and GPU access the same physical memory such that zero-copy transfers can

be employed
I Zero- copy transfers ensure coherency; translate pointers to memory buffers for the

common CPU and GPU address space, but do not actually transfer data.
I Bad effect - CPU and GPU compete for memory bandwidth of the shared physical

memory
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Integrated GPUs in Desktop Systems

Main Memory 
(DDR) 

L1-I$

L2$

L2$

GPU Cache

Shared Last-Level Cache

GPU

CPU CPU

CPU CPU

System Bus

L2$

L1-D$ L1-I$ L1-D$

L1-I$ L1-D$

L2$

L1-I$ L1-D$

Figure: Fused CPU-GPU with shared LLC

I In more recent architectures, Intel
Broadwell and beyond, CPU and GPU
were further integrated

I They access the shared last level cache
(LLC)

I This helps in CPU and GPU executing
computational kernels on the same
data in parallel collaboratively (LLC
enables cache coherence between CPU
and GPU)

I "Co-Scheduling on Fused CPU-GPU
Architectures with Shared Last Level
Caches" - Henkel et. al.
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Jetson Series from NVIDIA

Memory Controller

CPU 0 CPU 3 K1 GPU

L1-I
32KB

L1-D
32KB

L1-D
32KB

L2
2 MB

L2
128 MB

DRAM
Bank 31
64 MB

DRAM
Bank 1
64 MB

DRAM
Bank 2
64 MB

DRAM
Bank 30
64 MB

DRAM
Bank 0
64 MB

L1-I
32KB

…..

…
192 cores

Figure: Jetson TK1

I TK1 SOC incorporates a quad-core
2.32 GHz 32-bit ARM machine and an
integrated Kepler GK20a GPU

I The CPUs share a 2-MB L2 cache
I The GPU has 192 cores and a 128-KB

L2 cache
I The CPU also has ‘little’ ARM cores

(not shown) - low power, low
performance
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NVIDIA Drive series of systems

Figure: Source- Wiki, NVIDIA Drive
PX Platform

I The Nvidia Drive PX 2 is based on 1/2 Tegra
SoCs where each SoC contains 2 Denver cores,
4 ARM A57 cores and a GPU from the Pascal
generation

I Useful for implementing high throughput real
time neural net processing - self driving / drive
assist systems
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