
IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

GPU Architectures and Programming

Soumyajit Dey, Assistant Professor,
CSE, IIT Kharagpur

February 19, 2021

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

I Fifteen years ago, Graphics on a PC were performed by a video graphics array
(VGA) controller.

I VGAs evolved to more complex hardwares : accelerating graphics functions
I Early GPUs and their associated drivers implemented the OpenGL and DirectX

models (APIs) of graphics processing.
I With time, HW functionality evolved as programmable SW

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

CPU

NORTH
BRIDGE

MEMORY

SOUTH
BRIDGE

VGA
CONTROLLER

FRAMEBUFFER
MEMORY

LAN UART

FRONT SIDE BUS

PCI BUS

VGA
DISPLAY

Figure: Historical PC. - Hennessy and Patterson "Computer Organization and Design" -
(Figure reproduced)

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

MT Issue

C-Cache

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared
Memory

SM
I-Cache

…..

…..

Host CPU Bridge System Memory

Compute Work
Distribution

GPU

HD Video Processor

Host Interface

Input Assembler Clip/Setup/Raster/ZCull

Pixel Work DistributionVertex Work Distribution

Interconnection Network

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

SM

TPC

Texture Unit
Tex L1

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

SM

TPC

Texture Unit
Tex L1

ROP L2 ROP ROPL2 L2 Display Interface

DRAM DRAM DRAM DISPLAY

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

SM

TPC

Texture Unit
Tex L1

Figure: GPU Architecture - Hennessy Patterson (Figure reproduced)

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Course Organization

Topic Week Hours
Review of basic COA w.r.t. performance 1 2
Intro to GPU architectures 2 3
Intro to CUDA programming 3 2
Multi-dimensional data and synchronization 4 2
Warp Scheduling and Divergence 5 2
Memory Access Coalescing 6 2
Optimizing Reduction Kernels 7 3
Kernel Fusion, Thread and Block Coarsening 8 3
OpenCL - runtime system 9 3
OpenCL - heterogeneous computing 10 2
Efficient Neural Network Training/Inferencing 11-12 6

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Section 1

The classic 5-stage RISC pipeline

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Basic RISC architecture

I The operation of a processor is characterized by a fetch⇒ decode⇒execute cycle.
I RISC n CISC ⇒ two different philosophies of computing hardware design
I RISC/CISC - Reduced/Complex Instruction Set Computing
I CISC approach - complete a task with as few instructions (instrs) as possible
I A CISC instruction : MUL addr1 addr2 addr3
I Equivalent RISC : LOAD R2 addr2; LOAD R3 addr3; MUL R1 R2 R3; STORE

addr1 R1

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

CISC vs RISC

CISC features

I Older ISA
I Multi-cycle instructions, HW intensive

design
I Efficient RAM usage
I Instructions - complex and variable

length, lots of them
I Micro-code support
I Compound addressing modes

RISC features

I Ideas emerged in 1980s
I Single-cycle instructions, SW intensive

design
I Heavy RAM usage, Large Register file
I Small no. of simple fixed length

instructions
I Less no. of addressing modes

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Elementary CPU Datapath

ADD
Shift
left 2

Instruction
Memory

Address

Instruction

PC

ADD

Sign
Extend

Instruction

M

X
U

M

X
U

M

X
U

4

R−Reg−1

R−Reg−2

W−Reg

Data

Data−1

Data−2

Registers

Zero

Result

RegWrite

ALU operation

ALUSrc

PCSrc

Address

Write data

Data Memory

Data

MemRead

MemWrite

MemToReg

I The datapath ‘fetches’ instruction, ‘decodes’ and ‘executes’ it
I Control logic generates suitable activation signals
I Executes different instructions with variable delays

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Single cycle implementation of datapath

I The choice of clock rate is limited by the instruction with maximum delay
I Options : choose the clock period more than latency of ‘slowest’ instruction or,
I choose variable periods for diff instructions – not practical !
I Alternate possibility - break the instruction execution cycle into a series of basic

steps
I Basic steps have less delay, choose a fast clock and use it to execute one basic step

at a time

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Multi-cycle instructions

A basic stage represents one of the following states in the execution of an instruction
I Fetch (IF): IR ⇐ Memory[PC]; PC=PC+4
I Decode (ID): Understand instruction semantics
I Execute (EX): based on instruction type

I Arithmetic/logical operation, Mem address / Branch condition computation

I Memory (MEM): For load/store Instr, read/write data from/to memory
I Writeback (WB): Update register file

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Pipelining

I Operate IF→ID→EX→MEM→WB in parallel for a sequence of instructions
I Every basic stage is always processing some instruction
I In every clock cycle, one instruction completes - ideal scenario
I Practical issues - pipeline hazards

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Structural hazard

I Consider a sequence of 4 lw (load-word) instructions
I When the first instruction fetches data from memory, the fourth instruction itself is

to be fetched from memory
I This is structural hazard as the pipeline needs to stall due to lack of resources, if

the hardware cannot support multiple reads in parallel

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Data Hazard : MIPS example

I sub $2, $1, $3; and $12, $2, $5 Read after Write (RAW)
I if ‘sub’ is in IF stage in i + 1-th clock cycle, $2 is updated in (i + 5)-th cycle
I ‘and’ is in EX stage in i + 4-th cycle, updated value of $2 is not yet ready
I Solution : ‘sub’ computes the value for $2 in (i + 3)-th stage,
I this may be forwarded directly to execution of ‘and’
I need suitable logic to detect hazard and forwarding requirement

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Control hazards

I Branch decisions : the branch condition needs evaluation (beq $1, $2, offset)
I The branch decision is inferred only in MEM stage
I Optimization : assume branch not taken, operate pipeline normally,
I Execute branch when decision is evaluated as true (taken) and flush intermediate

instructions from pipeline
I Sophisticated schemes : use branch prediction HW (predict a branch decision

based on branch history table content)

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Section 2

The Memory Hierarchy

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Multi-level Arrangement

Figure: Near to CPU is faster

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Principle of locality

I Temporal locality : If an item is referenced, it will tend to be referenced again soon
I Spatial locality : If an item is referenced, items at nearby addresses will be

referenced soon
I Hence, computer memory is hierarchically organized
I Register file provides fastest access,
I Cache memory uses (fast) SRAM (static random access memory)
I Main memory uses (slow) DRAM (dynamic random access memory) : is less costly

per bit than SRAM

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Cache Mapping

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000001 000101 001001 001101 110001 110101 111001 111101

Cache

Memory

…

I Direct mapped : Cache block address = (memory block address) modulo (Number
of cache blocks in the cache)

I Block = minimum unit of information that can be either present or not present
GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Cache Blocks

I With larger blocks we have lower miss rates due to spatial locality, large blocks
lead to large miss penalty

I Nothing is free : with very big block sizes, we have too small no of blocks in
cache, eventually the miss rate goes up

I Handling Cache Miss:
I Send the PC value (current PC – 4) to the memory
I Read access from main memory, write updated cache entry

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Cache write policy

I Handling consistency : always write the data into both the memory and the cache
(write-through)

I Conservative policy, slows things down
I Use write buffer to perform writes only when buffer is full. Buffer size can be

decided by memory speed
I Alternative policy write-back : Writes are updated only in cache. Main memory is

update only during cache block replacement
I Write-back offers better performance in case of frequent writes, is more complex to

implement

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Memory System

I Memory chips are designed to read/write more than one word in parallel (hiding
latency)

I Use a wide bus - allow parallel access to all words in a block
I OR - keep bus of standard width (= memory word length = register size) and

connect bus with multiple memory units in parallel (memory banks)
I WHY ? bus transmission is fast, memory read/write is slow

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Cache Mapping: alternate schemes

I Fully associative: a block can be placed in any location in the cache. (Large HW
requirement for fast parallel search)

I Practical only for cache with small number of blocks
I Optimizing in the middle : set associative cache
I An n-way set-associative cache consists of a number of sets, each of which consists

of n blocks.
I Set number = (Memory Block number) modulo (Number of sets in the cache)
I Inside a set, all the tags of all the elements must be searched
I Increasing associativity decreases miss rate up to a point, but increases hit time

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Cache replacement policy

I In direct mapped cache, a new block can go to exactly one location
I In fully associative cache, a new block can potentially replace any existing block -

how to resolve ?
I In set associative cache, a new block can potentially replace any existing block

inside a matching set - how to resolve ?
I Least Recently Used (LRU) policy - The block replaced is the one that has been

unused for the longest time.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Section 3

Instruction Level Parallelism (ILP)

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Actual Pipeline CPI

Pipeline Cycles per instruction (CPI) = Ideal pipeline CPI + Structural stalls + Data
hazard stalls + Control stalls

I Handling hazards require both architectural and compiler techniques
I Data hazard types while executing instruction i followed by j in a pipeline

I RAW — j tries to read a source before i writes it, so j incorrectly gets the old value
I WAW — j tries to write an operand before it is written by i. Will not happen in

simple RISC, but in pipelines that write in more than one basic stage or allow an
instruction to proceed even when a previous instruction is stalled

I WAR - j tries to write a destination before it is read by i, can happen in case
instructions are reordered

I RAR - not a hazard

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Compiler Techniques for ILP
To keep a pipeline full, a compiler can find sequences of unrelated instructions that can
be overlapped

for (i=100; i>=0; i=i–1)
x[i] = x[i] + s;

Unoptimized MIPs

Loop:
L.D F0,0(R1) ;F0=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer //loop overhead
;8 bytes (per DW)
BNE R1,R2,Loop ;branch R1!=R2 //branch decision

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Unrolling: eliminated three branches and decrements of R1 (Hen Pat etl. al.)
Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
L.D F6,-8(R1)
ADD.D F8,F6,F2
S.D F8,-8(R1) //Code size increase - more instr cache miss
L.D F10,-16(R1) //more no. of live values - increased register pressure
ADD.D F12,F10,F2
S.D F12,-16(R1)
L.D F14,-24(R1)
ADD.D F16,F14,F2
S.D F16,-24(R1)
DADDUI R1,R1,#-32
BNE R1,R2,Loop

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Branch Prediction assisted ILP
General single level predictor with 2-bit saturating counter

weakly
not taken

weakly
taken

strongly
taken

strongly
not taken

not taken

not taken not taken not taken

taken taken taken

taken

I conditional jump has to deviate twice from past before the prediction changes.
I Consider a sequence of altering decisions in a loop and calculate performance

improvement over 1-bit saturating counter !!!!

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Hierarchical Prediction

How about generalizing the idea of prediction with larger branch histories.
I store m length history of a branch - 2m possibilities
I for each possibility use an n-bit predictor : (m, n) prediction scheme
I a two-level predictor with m-bit history can predict any repetitive sequence with

any period if all m-bit sub-sequences are different.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Dynamic Scheduling for ILP

I Simple pipelines execute instructions in-order
DIV.D F0,F2,F4
ADD.D F10,F0,F8
SUB.D F12,F8,F14

I SUB.D suffers as ADD.D stalls due to dependence
I different ordering will avoid stall in this case
I Out of order execution brings in the possibility of WAR and WAW hazards

Robert Tomasulo: developed algorithm to minimize WAW and WAR hazards while
allowing out of order execution (tracks when operands for instructions are available to
minimize RAW hazards and uses register renaming to minimize WAW and WAR).

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

Register Renaming

DIV F0,F2,F4
ADD F6,F0,F8 //(RAW for DIV : F0)
S F6,0(R1) //(RAW for ADD : F6)
SUB F8,F10,F14 //(WAR for ADD : F8)
MUL F6,F10,F8 // (WAR for S, WAW for ADD)
//(RAW for SUB : F8)

I RAW is due to data dependency, stalls in-order
pipeline

I WAR/WAW constrains out-of-order execution

⇒

DIV F0,F2,F4
ADD S,F0,F8
S S,0(R1)
SUB T,F10,F14
MUL F6,F10,T

I S removes WAR of MUL,
I S removes WAW of MUL,
I T removes WAR of SUB,

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The classic 5-stage RISC pipeline The Memory Hierarchy Instruction Level Parallelism (ILP)

ILP Using Multiple Issue and Static Scheduling

Multiple-issue processors - allow multiple instructions to be issued in a clock cycle
I VLIW (very long instruction word) - Parallel instructions statically scheduled by

compiler; issue a fixed number of instructions formatted as one large instruction
I Statically scheduled superscalar - issue a varying rather than a fixed number of

instructions (compiler decided) per clock, in-order execution
I Dynamically scheduled superscalar - issue a varying rather than a fixed number of

instructions (hardware decided) per clock, out-of-order execution
For large issue width VLIW (with multiple independent FUs) is preferred w.r.t.
statically scheduled superscalar

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

	The classic 5-stage RISC pipeline
	The Memory Hierarchy
	Instruction Level Parallelism (ILP)

