
IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

GPU Architectures and Programming

Soumyajit Dey, Assistant Professor,
CSE, IIT Kharagpur

December 12, 2019

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Course Organization

Topic Week Hours
Review of basic COA w.r.t. performance 1 2
Intro to GPU architectures 2 3
Intro to CUDA programming 3 2
Multi-dimensional data and synchronization 4 2
Warp Scheduling and Divergence 5 2
Memory Access Coalescing 6 2
Optimizing Reduction Kernels 7 3
Kernel Fusion, Thread and Block Coarsening 8 3
OpenCL - runtime system 9 3
OpenCL - heterogeneous computing 10 2
Efficient Neural Network Training/Inferencing 11-12 6

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Compute Unified Device Architecture

I CUDA C is an extension of C programming language with special constructs for
supporting parallel computing

I CUDA programmer perspective - CPU is a host : dispatches parallel jobs to GPU
devices

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

CUDA program structure

I host code for a host device (CPU)
I device code for GPU(s)
I Any C program is a valid CUDA host code
I In general CUDA programs (host + device) code cannot be compiled by standard

C compilers

NVIDIA C compiler (NVCC)

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The compilation flow

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

The execution flow

CPU serial code
⇓

GPU parallel kernel
⇓

CPU serial code
⇓

GPU parallel kernel

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Examples : Vector addition CPU only

void vecAdd(float* h_A , float* h_B ,
float* h_C , int n)
{
for (i = 0; i < n; i++)

h_C[i] = h_A[i] + h_B[i];
}
int main()
{

float *h_A ,*h_B ,*h_C;
int n;
h_A=(float *) malloc(n*sizeof(float))
h_B=(float *) malloc(n*sizeof(float))
h_C=(float *) malloc(n*sizeof(float))
vecAdd(h_A , h_B , h_C , N);

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Examples : Vector addition CPU-GPU
#include <cuda.h>
#include <cuda_runtime.h>
__global__ void vectorAdd(float*, float*, float*, int);
/* --*/
__global__
void vectorAdd(float* A, float* B,
float* C, int n){ //CUDA kernel definition
int i=threadIdx.x+blockDim.x*blockIdx.x;
if(i<n)

C[i] = A[i] + B[i];
}
/* --*/
void vecAdd(float* h_A , float*h_B ,
float* h_C , int n)
{//host program

int size = n* sizeof(float);
float *d_A=NULL , *d_B=NULL , *d_C=NULL;

// Error code to check return values for CUDA calls
cudaError_t err = cudaSuccess;

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Device Memory Allocation
err = cudaMalloc ((void **)&d_A , size);
if (err != cudaSuccess)
{

fprintf(stderr , "Failed to allocate device vector A (error code %s)!\n",
cudaGetErrorString(err));

exit(EXIT_FAILURE);
}
err = cudaMalloc ((void **)&d_B , size);
if (err != cudaSuccess)
{

fprintf(stderr , "Failed to allocate device vector B (error code %s)!\n",
cudaGetErrorString(err));

exit(EXIT_FAILURE);
}
err = cudaMalloc ((void **)&d_C , size);
if (err != cudaSuccess)
{

fprintf(stderr , "Failed to allocate device vector C (error code %s)!\n",
cudaGetErrorString(err));

exit(EXIT_FAILURE);
}GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Host to Device Data Transfer

printf("Copy input data from the host memory to the CUDA device\n");
err = cudaMemcpy(d_A , h_A , size , cudaMemcpyHostToDevice);

if (err != cudaSuccess)
{

fprintf(stderr , "Failed to copy vector A from host to device (error code %s)
!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);
}

err = cudaMemcpy(d_B , h_B , size , cudaMemcpyHostToDevice);

if (err != cudaSuccess)
{

fprintf(stderr , "Failed to copy vector B from host to device (error code %s)
!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);
}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Kernel Launch

int threadsPerBlock = 256;
int blocksPerGrid =(n+threadsPerBlock -1)/threadsPerBlock;
printf("CUDA kernel launch with %d blocks of %d threads\n",threadsPerBlock ,

blocksPerGrid);
vectorAdd <<<blocksPerGrid ,threadsPerBlock >>>(d_A , d_B , d_C , n);
err = cudaGetLastError ();
// device function (CUDA kernel) called from host does not have return type
//CUDA runtime functions (execute in host side) can have return type

if (err != cudaSuccess)
{

fprintf(stderr , "Failed to launch vectorAdd kernel (error code %s)!\n",
cudaGetErrorString(err));

exit(EXIT_FAILURE);
}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Device to Host Memory Transfer
printf("Copy output data from the output device to the host memory\n");
err = cudaMemcpy(h_C , d_C , size , cudaMemcpyDeviceToHost);
if (err != cudaSuccess)
{

fprintf(stderr , "Failed to copy vector C from device to host (error code %s
)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);
}
cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
// Verify that the result vector is correct
for (int i = 0; i < n; ++i)
{

if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5)
{

fprintf(stderr , "Result verification failed at element %d!\n", i);
exit(EXIT_FAILURE);

}
}
printf("Test PASSED");

} // End of Function

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Compile and Run

nvcc kernel.cu host.cu -o output

./ output
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Observations

CPU GPU

Host Memory Device Memory

Figure: CPU/GPU Mem Layout

I cuda.h → includes during compilation CUDA API functions and CUDA system
variables

I h_A, h_B, h_C → arrays mapped to main memory locations

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Observations

cudaMalloc ((void **)&d_A , size);
// allocate memory segment from GPU global memory
// expects a generic pointer (void **)
//the low level function is common for all object types
cudaMemcpy(d_A , h_A , size , cudaMemcpyHostToDevice);
// transfer data from CPU to GPU memory
//d_A cannot be dereferenced in host code

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Observations

//d_A cannot be dereferenced in host code
cudaMemcpy(h_C , d_C , size , cudaMemcpyDeviceToHost);
// transfer data from GPU to CPU memory
//can also transfer among different device mem locations
//can also transfer data host to host - we do not need that
// cannot transfer data among different GPU devices
cudaFree(d_A);
//free GPU global memory

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

CUDA kernel

A CUDA kernel when invoked launches multiple threads arranged in a 2 level hierarchy,
check the device fn call.

vectorAdd <<<ceil(n/256) ,256>>>
(d_A , d_B , d_C , n)

I The call specifies a grid of threads to be launched
I the grid is arranged in a hierarchical manner
I (no. of blocks, no. of thread per block)
I all blocks contain same no. of threads (max 1024)
I blocks can be numbered as (_,_,_) triplets : more on this later

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

i=blockIdx.x*blockDim.x+threadIdx.x i=blockIdx.x*blockDim.x+threadIdx.x i=blockIdx.x*blockDim.x+threadIdx.x...

...

C[i]=A[i]+B[i] C[i]=A[i]+B[i] C[i]=A[i]+B[i]

Block 0 Block N-1Block 1

0 1 2 3 255254253252 0 1 2 3 252 253 254 255 0 1 2 3 252 253 254 255

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Kernel specific system vars

I gridDim - no. of blocks in the grid
I gridDim.x - no. of blocks in dimension x of multi-dim grid !!
I blockDim - no. of threads/block
I blockDim.x - no. of threads/block in dimension x of multi-dim block !!
I For single dimension defn of block composition in grid, blockDim = blockDim.x
I blockidx.x = block number for a thread
I threadidx.x = thread no. inside a block

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

__global__
void vectorAdd(float* A, float* B,
float* C, int n){
int i=threadIdx.x+blockDim.x*blockIdx.x;
if(i<n)

C[i] = A[i] + B[i];
}

I The code is executed by all the threads in the grid
I Every thread has a unique combination of (blockIdx.x, threadIdx.x) which maps to

a unique value of i
I i is private to each thread

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

i=blockIdx.x*blockDim.x+threadIdx.x i=blockIdx.x*blockDim.x+threadIdx.x i=blockIdx.x*blockDim.x+threadIdx.x...

...

C[i]=A[i]+B[i] C[i]=A[i]+B[i] C[i]=A[i]+B[i]

Block 0 Block N-1Block 1

0 1 2 3 255254253252 0 1 2 3 252 253 254 255 0 1 2 3 252 253 254 255

1 256 253

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Function declaration Keywords

__global__
void vectorAdd(float* A, float* B, float* C, int n)

Table: CUDA Keywords for functions and their scope

Keywords and Functions Executed on the Only callable from the
__device__ float DeviceFunc() device device
__global__ void KernelFunc() device host
__host__ float HostFunc() host host

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

CUDA functions

I Every function is a default __host__ function (if not having any CUDA
keywords)

I A function can be declared as both __host__ and __device__ function
I "__host__ __device__ fn()"
I Runtime system generates two object files, one can be called from host fn()s,

another from device fn()s

I __global__ functions can also be called from the device using CUDA kernel
semantics (<<< ... >>>) if you are using dynamic parallelism - that requires
CUDA 5.0 and compute capability 3.5 or higher.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

CUDA functions : more observations

I __device__ functions can have a return type other than void but __global__
functions must always return void

I __global__functions can be called from within other kernels running on the GPU
to launch additional GPU threads (as part of CUDA dynamic parallelism model)
while __device__ functions run on the same thread as the calling kernel.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Matrix Multiplication (CPU only)

void MatrixMulKernel(float* M, float* N, float* P, int N){
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
{
float Pvalue =0.0;
for (int k = 0; k < N; ++k)
{

Pvalue += M[i][k]*N[k][j];
}
P[i][j] = Pvalue;

}
}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Matrix Multiplication Host Program

int main()
{

int size = 16*16;
cudaMemcpy(d_M , M, size*sizeof(float),
cudaMemcpyHostToDevice);
cudaMemcpy(d_N , N, size*sizeof(float),
cudaMemcpyHostToDevice);
dim3 grid (2,2,1);
dim3 block (8,8,1);
int N=16; //N is the number of rows and columns
MatrixMulKernel <<<grid ,block >>>(d_M ,d_N ,d_P ,N)
cudaMemcpy(P, d_P , size*sizeof(float),
cudaMemcpyDeviceToHost);

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Matrix Multiplication Kernel

__global__
void MatrixMulKernel(float* d_M , float* d_N , float* d_P , int N){

int i=blockIdx.y*blockDim.y+threadIdx.y;
int j=blockIdx.x*blockDim.x+threadIdx.x;
if ((i<N) && (j<N)) {

float Pvalue = 0.0;
for (int k = 0; k < N; ++k) {

Pvalue += d_M[i*N+k]*d_N[k*N+j];
}
d_P[i*N+j] = Pvalue;

}
}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

X =

Figure: Matrix Multiplication

d_P[i ∗ N + j] =
N∑

k=0
d_M[i ∗ N + k] ∗ d_N[k ∗ N + j]

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Slightly Advanced Example: Julia Sets

A Julia Set (named after the French mathematicians Gaston Julia who worked on
complex dynamics during the early 20th century.) J represents a set of points
contained in the boundary of a certain class of functions over complex numbers.
I Given a set of points in a complex plane, the set J is constructed by evaluating for

each point, a simple iterative equation given by Zn = Z 2
n + C where Zn represents

a complex number and C represents a complex constant.
I A point does not belong to J , if iterative application of the equation yields a

diverging sequence of numbers for that point.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Complex Numbers (CPU)
struct Complex {
float r;
float i;
};

float magnitude(struct Complex a){
return ((a.r * a.r) + (a.i * a.i));

}

void add(struct Complex a, struct Complex b, struct Complex *res){
res ->r = a.r + b.r;
res ->i = a.i + b.i;

}

void mul(struct Complex a, struct Complex b, struct Complex *res){
res ->r= (a.r * b.r) - (a.i * b.i);
res ->i= (a.r * b.i) + (a.i * b.r);

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

From Pixel Grid to Complex Plane

aj = scale*(xj-DIM/2)/DIM/2
bj = scale*(yj-DIM/2)/DIM/2

Colour (xj,yj) depending on
membership of aj + ibj in Julia Set

Colour (xj,yj) red if it belongs to set
Colour (xj,yj) black if it does not belong
to set.

x

y

Translate and Scale

DIM

DIM

(xj, yj)

(aj, bj)

a

b

Figure: Coordinate Transformation
GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Julia Function for a point (CPU)
int julia(int x, int y) {

const float scale = 1.5;
float jx = scale * (float)(DIM/2 - x)/(DIM/2);
float jy = scale * (float)(DIM/2 - y)/(DIM/2);

struct Complex c,a,r1,r2;
c.r= -0.8;c.i=0.154;
a.r=jx; a.i=jy;
int i = 0;
for (i=0; i <200; i++) {
//a = a*a + c;

mul(a,a,&r1);
add(r1,c,&r2);
if (magnitude(r2) > 1000)

return 0; // return 0 if it is not in set
a.r = r2.r;
a.i = r2.i;

}
return 1; // return 1 if point is in set

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Driver Code(CPU)
void kernel(unsigned char *ptr)
{

for (int y=0; y<DIM; y++)
{

for (int x=0; x<DIM; x++)
{

int offset = x + y * DIM;
int juliaValue = julia(x,y);
ptr[offset *4 + 0] = 255 * juliaValue;
ptr[offset *4 + 1] = 0;
ptr[offset *4 + 2] = 0;
ptr[offset *4 + 3] = 255;

}
}

}

A 32 bit per pixel color bitmap represents a 2D grid of pixel values where each pixel is
represented by 4 channels (R,G,B,α) and where each channel has values in the range
[0− 255]. (α represents transparency).

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Driver Code(CPU)

int main(void)
{

CPUBitmap bitmap(DIM , DIM);
unsigned char *ptr = bitmap.get_ptr ();
kernel(ptr);
bitmap.display_and_exit ();

}

We leave out intricate details of how bitmap data is constructed. The primary focus of
discussing this application lies in depicting the underlying computation involved in
constructing Julia sets.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Complex Numbers GPU
struct cuComplex {
float r;
float i;
};

__device__ float magnitude(struct cuComplex a){
return ((a.r * a.r) + (a.i * a.i));

}

__device__ void add(struct cuComplex a, struct cuComplex b, struct cuComplex *
res){

res ->r = a.r + b.r;
res ->i = a.i + b.i;

}

__device__ void mul(struct cuComplex a, struct cuComplex b, struct cuComplex *
res){

res ->r= (a.r * b.r) - (a.i * b.i);
res ->i= (a.r * b.i) + (a.i * b.r);

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Julia Function GPU
__device__ int julia(int x, int y) {

const float scale = 1.5;
float jx = scale * (float)(DIM/2 - x)/(DIM/2);
float jy = scale * (float)(DIM/2 - y)/(DIM/2);

struct cuComplex c,a,r1,r2;
c.r= -0.8;c.i=0.154;
a.r=jx; a.i=jy;
int i = 0;
for (i=0; i <200; i++) {
//a = a*a + c;

mul(a,a,&r1);
add(r1,c,&r2);
if (magnitude(r2) > 1000)

return 0; // return 0 if it is not in set
a.r = r2.r;
a.i = r2.i;

}
return 1; // return 1 if point is in set

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

CUDA Kernel GPU

__global__ void kernel(unsigned char *ptr) {
// map from threadIdx/BlockIdx to pixel position
int x = blockIdx.x;
int y = blockIdx.y;
int offset = x+y*gridDim.x;

int juliaValue = julia(x,y);
ptr[offset *4 + 0] = 255 * juliaValue; // red if 1 , black if 0
ptr[offset *4 + 1] = 0;
ptr[offset *4 + 2] = 0;
ptr[offset *4 + 3] = 255;

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Host Program

int main(void) {
CPUBitmap bitmap(DIM , DIM);
unsigned char *dev_bitmap;

cudaMalloc((void **)&dev_bitmap , bitmap.image_size ()) ;
dim3 grid(DIM ,DIM);
kernel <<<grid ,1>>>(dev_bitmap);

cudaMemcpy(bitmap.get_ptr (),dev_bitmap ,bitmap.image_size (),
cudaMemcpyDeviceToHost);

bitmap.display_and_exit ();
cudaFree(dev_bitmap);

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Julia Fractal Pattern

Figure: Julia Set

CUDA by Example: An Introduction to General-Purpose GPU Programming by Sanders et al.
GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Complex Numbers (CPU) C++

struct Complex
{

float r;
float i;
Complex(float a, float b) : r(a), i(b)
{}
float magnitude2(void) { return r * r + i * i; }
Complex operator *(const Complex& a)
{

return Complex(r*a.r - i*a.i, i*a.r + r*a.i);
}
Complex operator +(const Complex& a)
{

return Complex(r+a.r, i+a.i);
}

};

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Julia Function for a point (CPU) C++

int julia(int x, int y)
{

const float scale = 1.5;
float jx = scale * (float)(DIM/2 - x)/(DIM/2);
float jy = scale * (float)(DIM/2 - y)/(DIM/2);
Complex c(-0.8, 0.156); // constant C
Complex a(jx, jy);
int i = 0;
for (i=0; i <200; i++) {

a = a * a + c;
if (a.magnitude2 () > 1000)
return 0;

}
return 1;

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Complex Numbers GPU (C++)

struct cuComplex
{

float r;
float i;
__device__ cuComplex(float a, float b) : r(a), i(b) {}
__device__ float magnitude2(void) {return r * r + i * i;}
__device__ cuComplex operator *(const cuComplex& a) {

return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
}
__device__ cuComplex operator +(const cuComplex& a) {

return cuComplex(r+a.r, i+a.i);
}

};

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Julia Function GPU (C++)

__device__ int julia(int x, int y) {
const float scale = 1.5;
float jx = scale * (float)(DIM/2 - x)/(DIM/2);
float jy = scale * (float)(DIM/2 - y)/(DIM/2);

cuComplex c(-0.8 ,0.154);
cuComplex a(jx,jy);

int i = 0;
for (i=0; i <200; i++) {

a = a*a + c;
if (a.magnitude2 () > 1000)

return 0; // return 0 if (x,y) is not in set
}
return 1; // return 1 if (x,y) is in set

}

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Pre-requisite to run CUDA on your system

To use CUDA on your system, you will need the following installed:
I CUDA-capable GPU
I A supported version of Linux with a gcc compiler and toolchain
I NVIDIA CUDA Toolkit (available at

http://developer.nvidia.com/cuda-downloads)

Please follow the steps to install CUDA from here.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

http://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

How to setup Google Colab
Google Colab can compile and execute CUDA code online.

I Open this link in Google Chrome.
I Open NEW PYTHON 3 NOTEBOOK.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

https://colab.research.google.com/notebooks/welcome.ipynb#recent=true

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Cont.

I Click on Runtime -> Change runtime type.
I Select GPU from the drop down menu and click on Save.

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Cont.

I Check your NVCC version using this code in code cell:
!nvcc --version

I The output should be something like this:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005 -2018 NVIDIA Corporation
Built on Sat_Aug_25_21 :08:01 _CDT_2018
Cuda compilation tools , release 10.0, V10 .0.130

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Cont.

If NOT then, install CUDA Version 9 following these commands in code cell.
!wget https:// developer.nvidia.com/compute/cuda /9.2/ Prod/local_installers/cuda

-repo -ubuntu1604 -9-2-local_9 .2.88 -1 _amd64 -O cuda -repo -ubuntu1604 -9-2-
local_9 .2.88 -1 _amd64.deb

!dpkg -i cuda -repo -ubuntu1604 -9-2-local_9 .2.88 -1 _amd64.deb
!apt -key add /var/cuda -repo -9-2-local/7 fa2af80.pub
!apt -get update
!apt -get install cuda -9.2

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

IN
D

IA
N

IN
ST

IT
UTE

OF TECHNOLOGY
KH

A
R

A
G

PU
R

� �

5119

yog, km
s� kOflm̂

Cont.

I Execute the given command to install a small extension to run nvcc from
Notebook cells.
!pip install git+git:// github.com/andreinechaev/nvcc4jupyter.git

I Load the extension using this code:
%load_ext nvcc_plugin

I Go to Insert -> Code Cell
I Write %%cu in the first line
I Write the cuda program and execute

GPU Architectures and Programming Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

