Problem sets

For $\Sigma=\{0,1\}$:

1. Design a CFG for:
$L=\left\{w \mid w\right.$ contains at least three $\left.0^{\prime} s\right\} . w$ contains at least 30 's.

Ans:

$$
\begin{gathered}
S \rightarrow S 1 S 1 S 1 S \\
S \rightarrow 1 S|0 S| \epsilon
\end{gathered}
$$

2. Design a CFG for: $L=\{w \mid w$ contains more 1's than 0 's $\}$.

Ans:

$$
\begin{aligned}
& S \rightarrow S_{1} \mid S_{1} \\
& S_{1} \rightarrow 0 S_{1} 1\left|1 S_{1} 0\right| S_{1} S_{1}\left|1 S_{1}\right| \epsilon
\end{aligned}
$$

3. Grammar for $L=\{w \mid w$ starts and ends with same symbol $\}$.

Ans: This actually is a regular language
$S \rightarrow 0 T \mid 1 U$
$T \rightarrow 0 T|1 T| 0$
$U \rightarrow 0 U|1 U| 1$
4. Design a CFG for: $L=\{w \mid w$ length is odd $\}$.
$S \rightarrow 0 S 0|0 S 1| 1 S 0|1 S 1| 0 \mid 1$
5. Similar: w is odd length with mid symbol 0
6. Similar: w is palindrome.
7. Consider the following grammar.

$$
\begin{array}{r}
S \rightarrow a S b|b Y| Y a \\
Y \rightarrow b Y|a Y| \epsilon
\end{array}
$$

Describe in english language the language for the given grammar.
Ans: The grammar generates two kinds of strings
Either $a^{n} b(a+b)^{*} b^{n} \quad$ OR $\quad a^{n}(a+b)^{*} a b^{n}$ with $n \geq 0$
Essentially this is $\Sigma^{*} \backslash\left\{a^{n} b^{n} \mid n \geq 0\right\}$
8. PDA for palindromes:

9. PDA for non-palindromes:

10. Let us define $A / B=\{w \mid w x \in A$ for some $\mathrm{x} \in B\}$. If A is a CFL and B is regular, prove that A / B is a CFL

Proof idea: Let A have a corresponding PDA M and B have a DFA N.
a. Construct PDA X which accepts $A \cap B$ by parallel composition of machines M and N .
b. Any transition of X of the form $(s, t) \xrightarrow{a, A \rightarrow B}\left(s^{\prime}, t^{\prime}\right)$ is replaced by $(s, t) \xrightarrow{\epsilon, A \rightarrow B}\left(s^{\prime}, t^{\prime}\right)$.
c. Let start state of X be q_{0}. For all states q of A , the transition relation $\delta(q, \epsilon, A)$ is updated as $\left(q_{0}, A\right) \cup\{\delta(q, \epsilon, A)\}$. Essentially a nondeterministic transition is added from any state in A to q_{0}.
d. The above construction ensures that after simulation of w in A, a nondeterministic jump is possible to X and X makes a nondeterministic guess of x to reach final state.

With overall acceptance defined as final states of X, the overall PDA with components A (modified) and X accepts A / B. Hence this is CFL.
11. For a CFG in CNF form, prove that a string of length n can be derived in at most $2 \mathrm{n}-1$ derivation steps.

