
CS29003: ALGORITHMS LABORATORY
Assignment 4

The (binary) heap data structure is an array that can be viewed as a complete binary tree, as
shown in figure below.

Each node of the tree corresponds to an element of the array that stores the record with key
(simply call value) in the node. Being a complete binary tree, it is completely filled on all levels
except possibly the lowest, which is filled from the left up to a point. The root of the tree is A[1],
and given the index i of a node, the indices of its parent PARENT(i), left child LEFT(i), and right
child RIGHT(i) can be computed simply as follows.

• PARENT(i) : { return bi/2c}

• LEFT(i) : { return 2i}

• RIGHT(i) : { return 2i+1}

Additionally, heaps also satisfy the heap property: for every node i other than the root,
A[PARENT (i)] ≤ A[i] for a min-heap and A[PARENT (i)] ≥ A[i] for a max-heap. The basic heap
operations may be listed as follows.

1 Maintaining the heap property

HEAPIFY is an important subroutine for manipulating heaps. Its inputs are an array A and an
index i into the array. When HEAPIFY is called, it is assumed that the binary trees rooted at
LEFT(i) and RIGHT(i) are heaps, but that A[i] may be smaller than its children, thus violating the
(max) heap property. The function of HEAPIFY is to let the value at A[i] ”float down” in the heap
so that the subtree rooted at index i becomes a heap.

HEAPIFY(A, i)

{

l = LEFT(i);

r = RIGHT(i);

if ((l <= heap -size) && (A[l] > A[i]))

largest = l;

else largest = i;

if ((r <= heap -size) && (A[r] > A[largest ]))

largest = r;

if (largest != i)

exchange(A[i], A[largest ]);

HEAPIFY(A,largest );

}
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Figure 1: The action of HEAPIFY(A, 2), where heap-size[A] = 10. (a) The initial configuration of
the heap, with A[2] at node i = 2 violating the heap property since it is not larger than both children.
The heap property is restored for node 2 in (b) by exchanging A[2] with A[4], which destroys the
heap property for node 4. The recursive call HEAPIFY(A, 4) now sets i = 4. After swapping A[4]
with A[9], as shown in (c), node 4 is fixed up, and the recursive call HEAPIFY(A, 9) yields no
further change to the data structure.

2 Building a heap

We can use the procedure HEAPIFY in a bottom-up manner to convert an array A[1 . . n], where
n = length[A], into a heap. Since the elements in the subarray A[(n/2 + l) . . n] are all leaves of
the tree, each is a 1-element heap to begin with. The procedure BUILD-HEAP goes through the
remaining nodes of the tree and runs HEAPIFY on each one. The order in which the nodes are
processed guarantees that the subtrees rooted at children of a node i are heaps before HEAPIFY is
run at that node.

BUILD -HEAP(A)

{

heap -size = length(A);

for(i = heap -size /2; i >= 1; i--)

HEAPIFY(A, i);

}

3 The heapsort algorithm

The heapsort algorithm starts by using BUILD-HEAP to build a heap on the input array A[1 . .
n], where n = length[A]. Since the maximum element of the array is stored at the root A[1], it can
be put into its correct final position by exchanging it with A[n]. If we now ”discard” node n from
the heap (by decrementing heap-size(A)), we observe that A[1 . . (n - 1)] can easily be made into
a heap. The children of the root remain heaps, but the new root element may violate the heap
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Figure 2: The operation of BUILD-HEAP, showing the data structure before the call to HEAPIFY
in line 3 of BUILD-HEAP. (a) A 10-element input array A and the binary tree it represents. The
figure shows that the loop index i points to node 5 before the call HEAPIFY(A, i). (b) The data
structure that results. The loop index i for the next iteration points to node 4. (c)-(e) Subsequent
iterations of the for loop in BUILD-HEAP. Observe that whenever HEAPIFY is called on a node,
the two subtrees of that node are both heaps. (f) The heap after BUILD-HEAP finishes.

property. All that is needed to restore the heap property, however, is one call to HEAPIFY(A, 1),
which leaves a heap in A[1 . . (n - 1)]. The heapsort algorithm then repeats this process for the
heap of size n - 1 down to a heap of size 2.

HEAPSORT(A)

{

BUILD -HEAP(A);

for(i = length(A); i>=2; i--)

{

exchange(A[1], A[i]);

heapsize --;

HEAPIFY(A,1);

}

}
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Figure 3: The operation of HEAPSORT. (a) The heap data structure just after it has been built
by BUILD-HEAP. (b)-(j) The heap just after each call of HEAPIFY. The value of i at that time is
shown. Only lightly shaded nodes remain in the heap. (k) The resulting sorted array A.

inplace stable worst average best remarks

quick X N2 NlogN NlogN fastest in practice, NlogN probabilistic guarantee

merge X NlogN NlogN NlogN N log N guarantee, stable

heap X NlogN NlogN NlogN N log N guarantee,in-place

4 Properties of Heapsort

So, if you have to sort in O(N log N) worst-case without using extra memory, you may consider
using heapsort. Mergesort will consume linear amount of extra space. Quicksort takes quadratic
time in the worst case. However, as a downside,

• inner loop of heapsort is longer than quicksorts leading to extra costs.

• heapsort makes poor use of cache memory.

5 Priority Queues

Heapsort is an excellent algorithm, but a good implementation of quicksort, usually beats it in
practice. Nevertheless, the heap data structure itself has enormous utility. In this section, we
present one of the most popular applications of a heap: its use as an efficient priority queue. A
priority queue is a data structure for maintaining a set S of elements, each with an associated value
called a key. A priority queue supports the following operations.

• INSERT(S, x) inserts the element x into the set S.

• MAXIMUM/MINIMUM(S) returns the element of S with the largest/smallest key.

• EXTRACT-MAX/MIN(S) removes and returns the element of S with the largest/smallest key.
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One application of priority queues is to schedule jobs on a shared computer. The priority queue
keeps track of the jobs to be performed and their relative priorities. When a job is finished or
interrupted, the highest-priority job is selected from those pending using EXTRACT-MAX. A new
job can be added to the queue at any time using INSERT.

A priority queue can also be used in an event-driven simulator. The items in the queue are
events to be simulated, each with an associated time of occurrence that serves as its key. The events
must be simulated in order of their time of occurrence, because the simulation of an event can cause
other events to be simulated in the future. For this application, it is natural to reverse the linear
order of the priority queue and support the operations MINIMUM and EXTRACT-MIN instead of
MAXIMUM and EXTRACT-MAX. The simulation program uses EXTRACT-MIN at each step to
choose the next event to simulate. As new events are produced, they are inserted into the priority
queue using INSERT.

Not surprisingly, we can use a heap to implement a priority queue. The operation HEAP-
MAXIMUM returns the maximum heap element in constant time by simply returning the value
A[1] in the heap. The HEAP-EXTRACT-MAX procedure is similar to the for loop body of the
HEAPSORT procedure.

HEAP -EXTRACT -MAX(A)

{

if heap -size < 1

error "heap underflow";

max = A[1];

A[1] = A[heap -size];

heap -size=heap -size - 1;

HEAPIFY(A, 1);

return max;

}

The running time of HEAP-EXTRACT-MAX is O(lg n), since it performs only a constant amount
of work on top of the O(lg n) time for HEAPIFY. The HEAP-INSERT procedure inserts a node
into heap A. To do so, it first expands the heap by adding a new leaf to the tree. Then, it traverses
a path from this leaf toward the root to find a proper place for the new element.

HEAP -INSERT(A,key)

{ In array representation , you should for overflow here;

heap -size=heap -size + 1;

i = heap -size;

while i > 1 and A[PARENT(i)] < key

{

A[i] = A[PARENT(i)];

i = PARENT(i);

}

A[i] = key;

}

Observe the key difference between heap and BST in this context. A min-heap is a rooted tree
such that the key stored at every node is less or equal to the keys of all its descendants. Similarly a
max-heap is one in which the key at a node is greater or equal to all its descendants. A search-tree
is a rooted tree such that the key sorted at every node is greater than (or equal to) all the keys in its
left subtree and less than all the keys in its right subtree. Heaps maintain only a partial ordering,
whereas search trees maintain a total ordering. Finding a min/max in BST incurs logarithmic time,
while in heap it is constant time. Hence, for a priority queue implementation, we go for a heap.
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6 Event Driven Simulation

Enough of theory! The objective of this assignment is to learn usage of priority queues as data
structures which help in carrying out event driven simulation. First of all, what are the very basics
of carrying out simulation ? You are provided a set of objects and a set of rules governing some
dynamical properties of the objects. Your program keeps on updating the properties/states by
executing the rules after a specific time stamp. For example, there are a set of spherical particles
moving on a 2-d plane with some predefined constant speed. You solve standard equations of
motion to compute the position and velocity of each particle after every 10 mili-second (say). The
idea discussed this far is the basic concept behind ‘Time-driven simulation’ of particle dynamics for
which the steps are as follows.

• Discretize time in quanta of size dt.

• Update the position of each particle after every dt units of time and check for overlaps.

• If overlap, roll back the clock to the time of the collision, update the velocities of the colliding
particles, and continue the simulation.

Consider the elaboration as provided in the figure. However, the approach has the following issues.

 and execute collision

t t+dt t+2dt

A collision detected
Roll back simulation

• N2 overlap checks per time quantum.

• May miss collisions if dt is too large and colliding particles fail to overlap when we are looking.

• Simulation is too slow if dt is very small.

An alternative strategy is ‘Event-driven simulation’ which essentially asks for doing something only
when something other than usual (an event) is supposed to occur. In such a strategy, we change
state instantenously only when an event (collision) happens. Such a simulation strategy will focus
only on time-points when collisions occur resulting in a sudden change of state of the system. For
each particle, you have to initialize the following information fields: radius, position co-ordinates,
velocity along each of x and y axis. For each particle, compute the time instants when it may
(possibly) collide with every other particle and every wall. In that way, you get a set of pending
events 〈particle1/wall, particle2/wall, time, valid/invalid〉. Initially, all of these are valid events.
Insert the pending events into a priority queue. Your main loop iterates as follows.

1. Extract and delete the event which is immediately pending (with time-stamp t say) from the
queue.

2. If the event is invalid, ignore it.

3. Advance all particles to time t on a straight line trajectory.
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4. If the extracted event is valid,

• Update the velocities of colliding particle(s).

• Mark every future event involving the particle(s) as invalid.

• Predict future particle-wall and particle-particle collisions involving the colliding parti-
cle(s) and insert these new events onto the queue.

7 Optimizations

It is a good idea to have the entire state of the system maintained in a single data structure (let us call
STATE). For every particle, store its ‘color’, radius, last computed position (px, py), velocity (vx, vy)
and time of update. While forming the dynamical equations for collision detection, keep
in mind the radius of the particles and do not treat them as points without dimensions.

We need an efficient routine which should mark some future events as invalid after processing
a collision event. We want to avoid a linear search (which shall be slow in case of large no of
particles). Hence, we shall have a linked list for each particle in the structure STATE (which stores
the information for every particle as discussed earlier). Thus for any particle (i say), every node in
the linked list contains a pointer which shall point to a collision event stored in the heap in which
particle i is involved. Thus, for marking events which involve i, you simply traverse the linked list
for i inside STATE, get directly to the requisite positions in the heap and mark those as invalid.
You should deallocate the list once all the events are marked invalid. Again, whenever you compute
future collisions involving i, you need to create the nodes in the list for i.

The list implementation adds one overhead which you need to be careful about. Whenever the
elements in the heap change their positions, the pointers in the list need to be carefully updated.

8 I/O

Initialize your simulation with a pre-defined area (length and breadth specification), a set of five
particles with initial velocities (as per your convenience) and radius. The user may provide a time
horizon ( 100 sec say). Your output should be a plot exhibiting the trajectories of the five particles
(in different colors) up to 100 sec. Also, in a seperate text file, you should log the velocity and
position vectors of each particle at the moment of each collision.

Generating plot data: Store the trajectories for each particle in separate log files. Suppose
particle i suffers two collisions at instants t1 followed by t2. You should compute intermediate
position co-ordinates for the particle at timesteps t1 + k × (t2−t1)

10 for k = 0, 1, · · · , 10 and store this
in the file for particle i. With each location information, you definitely need to store the time when
the particle was in that location. Use this data which you have generated for each particle to obtain
the plots.
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