Tutorial 3

Recursive Function Theory

Quick Recap of Notation: $f_{i}(\cdot)$ denotes the function computed by the TM with encoding $i \in \mathbb{N}$. For a $\operatorname{TM} \mathcal{M},\langle\mathcal{M}\rangle$ denotes its encoding in \mathbb{N}.

1. Prove that there exists $x_{0} \in \mathbb{N}$ such that for all y,

$$
f_{x_{0}}(y)=\left\{\begin{array}{cl}
y^{2} & \text { if } y \text { is even } \\
f_{x_{0}+1}(y) & \text { otherwise }
\end{array}\right.
$$

Solution: There exists a partial recursive function g in two variables such that

$$
g(x, y)=\left\{\begin{array}{cl}
y^{2} & \text { if } y \text { is even } \\
f_{x+1}(y) & \text { otherwise }
\end{array}\right.
$$

Let \mathcal{M} be a TM that does the following on input x, y : check if y is even; if so write y^{2} on the tape and halt; otherwise simulate the TM with index $x+1$ on input y. Clearly \mathcal{M} computes $g(x, y)$. By Kleene's recursion theorem, there exists $x_{0} \in \mathbb{N}$ such that

$$
f_{x_{0}}(y)=g\left(x_{0}, y\right)=\left\{\begin{array}{cl}
y^{2} & \text { if } y \text { is even } \\
f_{x_{0}+1}(y) & \text { otherwise }
\end{array}\right.
$$

for all y.
2. Define any fixed point for the total recursive function $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ defined as follows: for $x \in \mathbb{N}$, the TM with description $\sigma(x)$ computes the function

$$
f_{\sigma(x)}(y)=\left\{\begin{array}{cl}
1 & \text { if } y=0 \\
f_{x}(y+1) & \text { otherwise }
\end{array}\right.
$$

Describe a fixed point for σ.
Solution: Let \mathcal{M} be a $T M$ that on input $y \in \mathbb{N}$ outputs 1 if $y=0$ and outputs a constant $a \in \mathbb{N}$ otherwise. Then $\hat{x}=\langle\mathcal{M}\rangle$ is a fixed point for σ, as justified below.
For $y=0$, we have

$$
f_{\hat{x}}(y)=1=f_{\sigma(\hat{x})}(y)
$$

and otherwise, we have

$$
f_{\hat{x}}(y)=a=f_{\hat{x}}(y+1)=f_{\sigma(\hat{x})}(y) .
$$

3. A Turing machine \mathcal{M} is minimal if it has the fewest states among all TMs that accept $L(\mathcal{M})$. Prove that there does not exist an infinite r.e. set of minimal TMs.
Hint: Roger's fixed point theorem.

Solution: Suppose that A of minimal Turing machines over a fixed alphabet (say, $\{0,1\}$) is an infinite r.e. set. (Let us restrict ourselves to TMs over input alphabet $\{0,1\}$ and stack alphabet $\Gamma=\Sigma \cup\{\vdash, \iota\}$.) Then there exists a machine \mathcal{N} that enumerates A. For a TM \mathcal{M}, denote by $s(\mathcal{M})$ the number of states of \mathcal{M}. Let \mathcal{K} be a machine that computes a map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ defined as: $\sigma(x)$ is the first machine \mathcal{J} enumerated by \mathcal{N} such that $s(\mathcal{J})>s\left(\mathcal{M}_{x}\right)$ (here, \mathcal{M}_{x} denotes the TM with description i. More precisely, on input x, \mathcal{K} does the following.

- Construct \mathcal{M}_{x} from x.
- Use \mathcal{N} to enumerate TMs in A.
- Stop when a TM \mathcal{J} with $s(\mathcal{J})>s\left(\mathcal{M}_{x}\right)$ is enumerated. This event will occur eventually, as there are only finitely many TMs with fewer states than \mathcal{M}_{x} and A is infinite.
- Output the description/encoding of \mathcal{J}.
\mathcal{K} is a total TM and hence σ is a total recursive function. By recursion theorem, there exists a fixed point x_{0} such that $L\left(\mathcal{M}_{x_{0}}\right)=L\left(\mathcal{M}_{\sigma\left(x_{0}\right)}\right)$. But $\mathcal{M}_{\sigma\left(x_{0}\right)} \in A$ is a minimal TM for $L\left(\mathcal{M}_{x_{0}}\right)$ and yet $s\left(\mathcal{M}_{x_{0}}\right)<s\left(\mathcal{M}_{\sigma\left(x_{0}\right)}\right)$. This contradicts the minimality of $\mathcal{M}_{\sigma\left(x_{0}\right)}$ and our assumption that A is an infinite r.e. set.

4. Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be any total recursive function. Prove that σ has infinitely many fixed points i.e., there are infinitely many $w \in \mathbb{N}$ such that $f_{w}(y)=f_{\sigma(w)}(y)$ for all y.
Hint: Recursion theorem ensures there is atleast one fixed point for 'any' total recursive function. If the set of fixed points is finite, does it contradict recursion theorem?

Solution: Suppose there exists a total recursive function σ with finitely many fixed points. Let the set of fixed points be denoted \mathcal{F}. Let g be a partial recursive function such that the indices of all TMs computing g are outside \mathcal{F}. That is for all TMs \mathcal{M} computing $g,\langle\mathcal{M}\rangle \notin \mathcal{F}$. In other words, for all TMs \mathcal{M} computing $g, f_{\langle\mathcal{M}\rangle} \neq f_{w}$ for every $w \in \mathcal{F}$.
Let u be an index of some TM computing g. Now, define a function $\tau: \mathbb{N} \rightarrow \mathbb{N}$ implicitly so that

$$
\tau(x)=\left\{\begin{array}{cl}
u & \text { if } x \in \mathcal{F} \\
\sigma(x) & \text { otherwise }
\end{array}\right.
$$

Observe that τ is total recursive:

- For any $x \in \mathbb{N}$, check whether $x \in \mathcal{F}$. This can be done in finite time since \mathcal{F} is a finite set.
- If $x \in \mathcal{F}$, then set $\tau(x)=u$; otherwise compute $\sigma(x)$ (which is total recursive) and assign the resulting value to $\tau(x)$.

We now argue that τ has no fixed point. If $x \in \mathcal{F}$, then $\tau(x)=u$ and since $f_{u} \neq f_{w}$ for every $w \in \mathcal{F}$, we have (in particular) $f_{\tau(x)} \neq f_{x}$. Now suppose $x \notin \mathcal{F}$. Then $f_{\tau(x)}=f_{\sigma(x)} \neq f_{x}$. Combining the two, we have $f_{\tau(x)} \neq f_{x}$ for every $x \in \mathbb{N}$ thus implying that τ has no fixed points. This contradicts the recursion theorem. Hence, any total recursive function must have inifinitely many fixed points.
5. Let \mathcal{M}_{x} denote the Turing machine with index $x \in \mathbb{N}$. Here's a statement of the recursion theorem, specialised to language recognisers:
"Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be any total recursive function. Then there exists $x_{0} \in \mathbb{N}$ such that $L\left(x_{0}\right)=L\left(\sigma\left(x_{0}\right)\right) . "$

Use it to provide an alternate proof of Rice's theorem (part I).
Solution: Let P be any non-trivial property of r.e. sets. Then there exist encodings of TMs u, v such that $P(L(u))=\top$ and $P(L(v))=\perp$. Assume, for the sake of contradiction, that P is decidable. Define a function $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ as follows:

$$
\sigma(x)= \begin{cases}u & \text { if } P(L(x))=\perp \\ v & \text { otherwise }\end{cases}
$$

By our assumption, σ is a total recursive function. The recursion theorem implies that σ has a fixed point x_{0} with $L\left(x_{0}\right)=L\left(\sigma\left(x_{0}\right)\right)$. Now, if $P\left(L\left(x_{0}\right)\right)=\top$, we have

$$
\top=P\left(L\left(x_{0}\right)\right)=P\left(L\left(\sigma\left(x_{0}\right)\right)\right)=P(L(v))=\perp,
$$

thus contradicting our assumption that P is decidable. Therefore, P is undecidable.
Food for thought: Does a generalisation of Rice's theorem hold for partial recursive functions? That is, can you show that any non-trivial property of the set of partial recursive functions is undecidable?

