
CS41001: Theory of Computation Autumn 2022

Tutorial 3

Recursive Function Theory

Quick Recap of Notation: fi(·) denotes the function computed by the TM with encoding
i ∈ N. For a TM M, 〈M〉 denotes its encoding in N.

1. Prove that there exists x0 ∈ N such that for all y,

fx0(y) =

{
y2 if y is even

fx0+1(y) otherwise

Solution: There exists a partial recursive function g in two variables such that

g(x, y) =

{
y2 if y is even

fx+1(y) otherwise

LetM be a TM that does the following on input x, y: check if y is even; if so write y2 on the tape
and halt; otherwise simulate the TM with index x+ 1 on input y. Clearly M computes g(x, y).

By Kleene’s recursion theorem, there exists x0 ∈ N such that

fx0
(y) = g(x0, y) =

{
y2 if y is even

fx0+1(y) otherwise

for all y.

2. Define any fixed point for the total recursive function σ : N → N defined as follows: for
x ∈ N, the TM with description σ(x) computes the function

fσ(x)(y) =

{
1 if y = 0

fx(y + 1) otherwise

Describe a fixed point for σ.

Solution: LetM be a TM that on input y ∈ N outputs 1 if y = 0 and outputs a constant a ∈ N
otherwise. Then x̂ = 〈M〉 is a fixed point for σ, as justified below.

For y = 0, we have
fx̂(y) = 1 = fσ(x̂)(y)

and otherwise, we have
fx̂(y) = a = fx̂(y + 1) = fσ(x̂)(y).

3. A Turing machine M is minimal if it has the fewest states among all TMs that accept
L(M). Prove that there does not exist an infinite r.e. set of minimal TMs.
Hint: Roger’s fixed point theorem. 10



Solution: Suppose that A of minimal Turing machines over a fixed alphabet (say, {0, 1}) is an
infinite r.e. set. (Let us restrict ourselves to TMs over input alphabet {0, 1} and stack alphabet
Γ = Σ ∪ {`, }.) Then there exists a machine N that enumerates A. For a TM M, denote by
s(M) the number of states of M. Let K be a machine that computes a map σ : N → N defined
as: σ(x) is the first machine J enumerated by N such that s(J ) > s(Mx) (here, Mx denotes
the TM with description i). More precisely, on input x, K does the following.

• Construct Mx from x.

• Use N to enumerate TMs in A.

• Stop when a TM J with s(J ) > s(Mx) is enumerated. This event will occur eventually,
as there are only finitely many TMs with fewer states than Mx and A is infinite.

• Output the description/encoding of J .

K is a total TM and hence σ is a total recursive function. By recursion theorem, there exists a
fixed point x0 such that L(Mx0

) = L(Mσ(x0)). But Mσ(x0) ∈ A is a minimal TM for L(Mx0
)

and yet s(Mx0) < s(Mσ(x0)). This contradicts the minimality of Mσ(x0) and our assumption
that A is an infinite r.e. set.

4. Let σ : N → N be any total recursive function. Prove that σ has infinitely many fixed
points i.e., there are infinitely many w ∈ N such that fw(y) = fσ(w)(y) for all y.
Hint: Recursion theorem ensures there is atleast one fixed point for ‘any’ total recursive function. If

the set of fixed points is finite, does it contradict recursion theorem?

Solution: Suppose there exists a total recursive function σ with finitely many fixed points. Let
the set of fixed points be denoted F . Let g be a partial recursive function such that the indices
of all TMs computing g are outside F . That is for all TMs M computing g, 〈M〉 /∈ F . In other
words, for all TMs M computing g, f〈M〉 6= fw for every w ∈ F .

Let u be an index of some TM computing g. Now, define a function τ : N→ N implicitly so that

τ(x) =

{
u if x ∈ F

σ(x) otherwise

Observe that τ is total recursive:

• For any x ∈ N, check whether x ∈ F . This can be done in finite time since F is a finite set.

• If x ∈ F , then set τ(x) = u; otherwise compute σ(x) (which is total recursive) and assign
the resulting value to τ(x).

We now argue that τ has no fixed point. If x ∈ F , then τ(x) = u and since fu 6= fw for every
w ∈ F , we have (in particular) fτ(x) 6= fx. Now suppose x /∈ F . Then fτ(x) = fσ(x) 6= fx.
Combining the two, we have fτ(x) 6= fx for every x ∈ N thus implying that τ has no fixed points.
This contradicts the recursion theorem. Hence, any total recursive function must have inifinitely
many fixed points.

5. LetMx denote the Turing machine with index x ∈ N. Here’s a statement of the recursion
theorem, specialised to language recognisers:

“Let σ : N → N be any total recursive function. Then there exists x0 ∈ N such that
L(x0) = L(σ(x0)).”
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Use it to provide an alternate proof of Rice’s theorem (part I).

Solution: Let P be any non-trivial property of r.e. sets. Then there exist encodings of TMs
u, v such that P (L(u)) = > and P (L(v)) = ⊥. Assume, for the sake of contradiction, that P is
decidable. Define a function σ : N→ N as follows:

σ(x) =

{
u if P (L(x)) = ⊥
v otherwise

By our assumption, σ is a total recursive function. The recursion theorem implies that σ has a
fixed point x0 with L(x0) = L(σ(x0)). Now, if P (L(x0)) = >, we have

> = P (L(x0)) = P (L(σ(x0))) = P (L(v)) = ⊥,

thus contradicting our assumption that P is decidable. Therefore, P is undecidable.

Food for thought: Does a generalisation of Rice’s theorem hold for partial recursive
functions? That is, can you show that any non-trivial property of the set of partial
recursive functions is undecidable?
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