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Abstract. We present two hierarchical identity-based encryption (HIBE) schemes, denoted as H1 and H2, from
Type-3 pairings with constant sized ciphertexts. Scheme H1 achieves anonymity while H2 is non-anonymous.
The constructions are obtained by extending the IBE scheme recently proposed by Jutla and Roy (Asiacrypt
2013). Security is based on the standard decisional Symmetric eXternal Di�e-Hellman (SXDH) assumption. In
terms of provable security properties, previous direct constructions of constant-size ciphertext HIBE had one or
more of the following drawbacks: security in the weaker model of selective-identity attacks; exponential security
degradation in the depth of the HIBE; and use of non-standard assumptions. The security arguments for H1 and
H2 avoid all of these drawbacks. These drawbacks can also be avoided by obtaining HIBE schemes by specialising
schemes for hierarchical inner product encryption; the downside is that the resulting e�ciencies are inferior to
those of the schemes reported here. Currently, there is no known anonymous HIBE scheme having the security
properties of H1 and comparable e�ciency. An independent work by Chen and Wee describes a non-anonymous
HIBE scheme with security claims and e�ciency similar to that of H2; we note though that in comparison to H2,
the Chen-Wee HIBE scheme has larger ciphertexts and less e�cient encryption and decryption algorithms. Based
on the current state-of-the-art, H1 and H2 are the schemes of choice for e�cient implementation of (anonymous)
HIBE constructions.
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1 Introduction

Identity-based encryption (IBE) is a form of public key encryption where a recipient’s identity itself is her
public key. The corresponding decryption key is generated and securely transmitted by a trusted authority
called private key generator (PKG). The concept of IBE was introduced by Shamir [42] and the first
constructions were proposed in [18, 5]. In order to reduce the communication and computation overhead
on the PKG, the notion of hierarchical IBE ([25, 26]) was introduced. HIBE imposes a tree-like structure
on entities within the system and provides the higher level entities the ability to delegate key generation
to lower-level entities without the involvement of the PKG.

This work presents two new HIBE schemes called H1 and H2. The literature already contains several
di↵erent HIBE schemes. So, the question arises as to why new ones are needed? We argue below that
previous direct constructions of HIBE schemes had one or more drawbacks related to either e�ciency or
security. The new schemes overcome all these issues and are the candidates of choice for any practical
deployment. To understand this, we need to discuss the di↵erent e�ciency and security issues that arise
while constructing HIBE systems.

E�ciency. Practical constructions of HIBE schemes are obtained from pairings. A pairing is a bilinear,
non-degenerate and e�ciently computable map e from G1 ⇥ G2 to GT , where G1, G2 and GT are groups
of the same order. Practical instantiations of such maps are obtained by suitably choosing G1 and G2 to
be groups of elliptic curve points and GT to be a subgroup of the multiplicative group of a finite field.



Type-3 Pairings: There are di↵erent types of pairings which can be obtained from elliptic curves. Pairings
where the common group order is prime and it is computationally infeasible to find an isomorphism
between G1 and G2 are called Type-3 pairings. Such pairings have the most e�cient implementations,
both in terms of computation and representation [9, 44, 23]. Less e�cient alternatives are when G1 and
G2 are same (called Type-1 pairings) or when the common group order is a composite number (called
composite-order pairings).

Constant-Size Ciphertexts: Recall that in a HIBE scheme, an individual entity can obtain a private
key from either the PKG or from a lower-level entity. In the later case, the complete identity of the
entity is obtained by appending its individual identity to the identity of the entity from which it
obtains the private key. As a result, identities in a HIBE set-up are variable length tuples of strings.
For some HIBE schemes, including the initial ones [25] and later works [3, 45, 10, 46, 39], the length
of a ciphertext grows linearly with the length of the identity. As a result, an encryption to an entity
which is further away from the PKG incurs a communication penalty compared to an encryption to
an entity which is closer to the PKG. In practical terms, such artificial asymmetry in communication
overhead is undesirable. The solution to this is to have a HIBE scheme where the size of the ciphertext
is independent of the length of the identity tuple. We refer to such schemes as constant-size ciphertext
HIBE (denoted CC-HIBE) schemes.

The discussion above suggests that from an e�ciency point of view, HIBE schemes with constant-size

ciphertexts that can be instantiated with Type-3 pairings would o↵er the best performances.

The first construction for CC-HIBE was given by Boneh, Boyen and Goh [4]. This work introduced a
way to hash identity vectors into the pairing groups. Almost all known CC-HIBE schemes that appeared
later have either used this technique or a variant [11, 12, 32, 41, 20, 37, 29, 40, 14]. Since we are interested
in CC-HIBE, we do not consider the line of work [25, 3, 45, 10, 46, 39] where the length of the ciphertext
depends on the length of the identity tuple. Another method for obtaining constant-size ciphertext HIBE is
to specialise constructions of hierarchical inner product encryption. The resulting schemes are not e�cient.
We comment on this later.

Security. Several security-related issues crop up while building HIBE schemes.

Security Model: In terms of security, the goal is to obtain (H)IBE schemes which are secure against
adaptive-identity attacks [5, 25, 43]. The first HIBE construction [25] (though not a CC-HIBE) indeed
achieved this, but, the security argument was based on the use of random oracles. Later works could
avoid the use of random oracles, but, some of them could only be proved secure in the much weaker
model of selective-identity attacks. The first CC-HIBE scheme [4] is secure only under this weaker
model.

Anonymity: Another important security notion is anonymity [1] which requires that a ciphertext does
not reveal any information about the recipient’s identity. Anonymous (H)IBE schemes are useful in
constructing public key encryption with keyword search (PEKS) which further extends to more so-
phisticated primitives such as public key encryption with temporary keyword search (PETKS) and
identity-based encryption with keyword search (IBEKS) [1].

Hardness Assumptions: Security proofs are essentially reductionist arguments that are based on the
assumption that some problems are computationally hard to solve. Certain problems, such as the de-
cisional Di�e-Hellman (DDH) problem over appropriate groups have widespread use in cryptography.
Other examples are the decisional bilinear Di�e-Hellman (DBDH) problem, the decisional linear (DLin)
problem and the decisional symmetric external Di�e-Hellman (SXDH) problem. Schemes whose secu-
rity is based on the hardness of such problems are said to be based on standard assumptions. In contrast,
certain schemes are based on less well-studied problems which are tailor-made to suit the requirements



of the particular scheme. These assumptions are referred to as non-standard. Further, these assump-
tions are sometimes parametrised by a quantity arising in the construction (e.g. maximum length of an
identity tuple, number of key extract queries). Such assumptions are called non-static.

Degradation: Proofs of security (for HIBE schemes) are reductions of the following form. If an algorithm
running in time t breaks the security of the scheme with “advantage” ", then some computational
problem ⇧ can be solved in time t0 with advantage "0. The ratio � of t0/"0 to t/" is the tightness gap
and the reduction is said to have a degradation of �. Depending upon the scheme and the reduction, �
could be a constant or could depend on quantities such as the security parameter, the maximum number
of corrupt users, the maximum length of an identity tuple and possibly other parameters. Designing
schemes that have low degradation is important.

Prior to [24] all HIBE schemes su↵ered from a degradation which is exponential in the depth of the HIBE.
The construction in [24] is very complicated and the security is based on an unnatural assumption. The
first practical method of constructing HIBE schemes where security does not degrade with the depth of the
HIBE is due to Waters [46] who introduced the very important technique of dual-system encryption. The
work [32] provided the first CC-HIBE scheme based on composite-order pairings following the dual-system
approach.

Prefix Decryption. In some HIBE schemes, a ciphertext for an identity vector can be decrypted by any
entity possessing a secret key for a prefix of that identity. Let us name this property prefix decryption. In
constructions with separate ciphertext elements corresponding to individual components of the identity
tuple, such as the one in [25], prefix decryption is facilitated – the ciphertext can be truncated to obtain
a valid ciphertext under the prefix identity vector and thus can be decrypted using the corresponding key.
Prefix decryption in a CC-HIBE could be done as follows: the key for the prefix is used to create a key
corresponding to the recipient identity via delegation; the resulting key is used to decrypt the ciphertext.
The latter method fails when the scheme is anonymous i.e., when the recipient identity is hidden. Delegation
can no longer be done without knowledge of the recipient identity. The above discussion suggests that
achieving constant-size ciphertexts and anonymity simultaneously results in the loss of prefix decryption.
Although it may seem that this restriction is somehow tied to the property of anonymity, we would like to
emphasise that this is a definitional issue. That is, whether prefix decryption is allowed or not must reflect
in the HIBE definition. The definition we provide does not explicitly allow prefix decryption. We stress
that the prefix decryption property is absent in all known HIBE constructions that concurrently attain
constant-size ciphertexts and anonymity. Furthermore, all known HIBE schemes possess at most two out
of the three features – constant-size ciphertexts, anonymity and prefix decryption.

On the other hand, not having prefix decryption guards against key escrow to some extent. An entity
has the power to delegate keys to lower level entities but cannot decrypt ciphertexts sent to the lower-
level entities. This feature may be useful in applications such as email. If the higher level entities are
key generating servers, user privacy will not be compromised in the event that any of these servers is
corrupted. Further, in primitives such as identity-based searchable encryption obtained from anonymous
HIBE schemes [1], this limitation does not make any di↵erence.

We provide a more detailed discussion on prefix decryption in Section 4.2.

1.1 Possible Approaches to the Construction of HIBE Schemes.

We have argued above that among HIBE schemes, it is CC-HIBE which is of practical importance and
among the known CC-HIBE schemes, H1 and H2 are the most suitable ones for practical deployment.
As mentioned earlier, both schemes are based on the recently proposed IBE due to Jutla and Roy [28]
(abbreviated JR-IBE).



Extension from IBE. It is quite natural that the construction of a HIBE scheme will be based on an
IBE scheme. Below we list other candidate IBE schemes and why their extensions to HIBE schemes do not
achieve the same security and e�ciency as H1 or H2.

To start with, it is desirable to avoid a security degradation which is exponential in the depth of the
HIBE. In the current state of the art, this means that one has to follow the dual-system approach. So,
any attempt to construct a CC-HIBE should start with an IBE which has been proved secure using the
dual-system technique. In the dual-system proof technique for both IBE and HIBE, ciphertext and key in
the scheme itself are called normal. As part of the proof, alternate forms of ciphertext and key are defined.
These are called semi-functional. In the proof, these are simulated using instances of some hard problem
and the argument proceeds by showing that an adversary’s ability to distinguish between normal and
semi-functional components can be translated into an algorithm to solve the problem. During simulation,
it is essential to ensure that all ciphertexts and keys given to the attacker including the semi-functional
components (possibly generated using elements from the problem instance) have proper distributions i.e.,
as in the real construction. This requirement creates the main hurdle in extending the known IBE schemes
with dual system proofs to CC-HIBE while retaining the security properties. We dicuss this problem below
in detail.

The IBE constructions of Waters [46] and its variants [39] do not have a structure that is suitable
for extension to CC-HIBE. This is because both the ciphertext and keys have associated tags that are
public and play a crucial role in dual system arguments. It is precisely these tags that cause the problem
in extending these IBEs to CC-HIBEs. While extending to a CC-HIBE, su�cient information should be
provided in either the public parameters or the keys to support rerandomisation during key delegation.
The tags either cannot be rerandomised or the elements needed to enable their rerandomisation, when
given out, lead to insecure schemes.

Lewko and Waters [32] presented a new variant of dual system technique by shifting the role of tags
into the semi-functional components. This enabled them to obtain a CC-HIBE scheme over composite
order pairing groups. They converted the IBE version of the scheme to the prime-order asymmetric pairing
setting but not the HIBE scheme. Security of both their IBE schemes (for composite-order pairings as well
as for Type-3 pairings) are based on static but non-standard assumptions. Two works [29, 40] indepen-
dently obtained a CC-HIBE scheme from Lewko-Waters’ IBE in prime-order groups. Both the schemes are
anonymous and achieve security under static assumptions. The only drawback is that the assumptions are
non-standard.

Another IBE scheme following the dual-system approach is due to Chen et.al. [13]. This work uses dual

pairing vector spaces (DPVSs) [33, 34]. These are algebraic structures that have properties found in compos-
ite order groups such as cancelling and parameter-hiding which are useful for dual system arguments [31].
The Chen et.al. IBE can be seen as a translation of Lewko-Waters’ composite-order pairing-based IBE [32]
to the setting of asymmetric pairing using DPVS. It is then natural to ask whether the Lewko-Waters
composite-order CC-HIBE can be similarly translated using the DPVS-approach to a CC-HIBE. Unfortu-
nately, such a transformation does not yield a CC-HIBE. This is due to the fact that for the proof to work,
the dimension of the vector spaces becomes proportional to the HIBE depth. Since ciphertexts contain
vectors from such spaces, the constant-size feature cannot be attained.

Chen and Wee [15] introduced new techniques for parameter-hiding in DPVS-based constructions. The
paper describes an IBE scheme and provides a detailed security proof. Both the conference version and
a later eprint version (with the same title) of the paper mention the construction of a compact HIBE
scheme. None of these versions, however, provide the actual construction of the HIBE scheme or any other
details. Another paper [16] by the same authors provide the construction of the HIBE scheme and the
security proof. We note though that our work has been done independently and without seeing or knowing



about the construction described in [16]1. Apart from the issue of the independence of our work with that
in [16], there are di↵erences between the two works. First, the approach of the present work is di↵erent
from that of [16]; second, we provide both an anonymous HIBE scheme (H1) and a non-anonymous HIBE
scheme (H2), whereas [16] provides only a non-anonymous HIBE scheme; and third, compared to the non-
anonymous HIBE scheme in [16], H2 has smaller ciphertexts and more e�cient encryption and decryption
algorithms.

Hierarchical Inner-Production Encryption. HIBE schemes can also be seen as special cases of hi-
erarchical inner product encryption (HIPE) schemes. HIBE schemes obtained from two constructions of
HIPE schemes by Okamoto and Takashima [35, 36] are comparable to our schemes in terms of provable
properties. The scheme in [35] is not anonymous but achieves constant-size ciphertexts. The construction
in [36] achieves anonymity and prefix decryption but not constant-size ciphertexts. Note that none of the
two HIBE schemes achieve all three properties (anonymity, constant-size ciphertexts and prefix decryption)
at the same time. Both schemes are based on dual pairing vector spaces over symmetric pairing groups
and are shown to be secure under decisional linear (DLin) assumptions. Although constructions based on
DPVSs can be extended to more sophisticated primitives such as attribute-based encryption, a drawback
of using this approach is that the ciphertext size depends on the dimension of some DPVS (chosen during
system setup). This restricts us from making any further optimisations on the size of the ciphertexts by
“transfering” some structure to the keys. Another drawback is as follows. Since the HIBE is an instantiation
of (zero) inner-product encryption, the length of the (attribute-)vector consisting of the identity has to be
twice the maximum depth (h) of the hierarchy to enable cancellation. Moreover, to accommodate a dual
system proof, the dimension of the vector space needs to be at least twice this length i.e., 4h. This will
result in larger keys. Needless to say, we may hope to obtain more e�cient HIBE schemes through direct
constructions.

Predicate Encryption. Any predicate encryption (PE) scheme is defined by a predicate P. A ciphertext
in a PE scheme is associated to an attribute x in addition to the message that it encrypts. Decryption by
a secret key associated to attribute y succeeds if and only if P(x, y) = 1. Many primitives such as IBE,
spatial encryption and inner product encryption can be viewed as specific cases of predicate encryption.
In particular, a HIBE scheme is a PE scheme defined by the equality predicate over hierarchical identities.
Here, the attributes associated with the ciphertexts and keys are nothing but the hierarchical identities.

Recent works by Wee [47] and Attrapadung [2] provide generic constructions of predicate encryption
schemes achieving full security via dual system techniques. Both the works use composite order groups
for their construction. As mentioned earlier, in principle it should be possible to obtain HIBE schemes in
Type-3 setting from these works. Doing this would require specialising a PE scheme to a HIBE scheme
and also converting from composite-order setting to the prime-order setting possibly by using the tools
from [31, 13]. It is not clear though that the resulting HIBE schemes will have e�ciencies comparable to
that of H1 or H2. We believe that HIBE is an important enough primitive to warrant research on obtaining
direct and e�cient constructions of such schemes.

1.2 Extending JR-IBE to CC-HIBE

Schemes H1 and H2 extend the JR-IBE to anonymous and non-anonymous CC-HIBEs respectively. At
a top level, the identity-hashing technique of Boneh-Boyen-Goh [4] (BBG-hash) is applied on JR-IBE.
We work in the setting of asymmetric pairings where ciphertext components are elements of G1 and key
1 We can provide a chronology of events that justify that our work has in fact been done independently of [16].



components are elements of G2. BBG-hash of the identity is required to be computed in both G1 and G2.
During encryption, the BBG-hash is required to be computed in G1 and this requires adding some elements
of G1 to the public parameters.

In previous CC-HIBE schemes in the prime-order setting within the dual system framework [29, 40],
anonymity appears as a by-product of the HIBE extension. The basic di�culty in making it non-anonymous
was due to the following dichotomy concerning key delegation. The BBG-hash for the key is computed in G2.
The hash is defined using certain elements of G2. During key delegation, the hash has to be rerandomised
and so the elements should be publicly available. On the other hand, information about these elements
must not be leaked because they form the source of randomness used to generate the semi-functional
components during simulation.

The problem described above does not arise in case of JR-IBE. The feature of JR-IBE that makes
extension to the non-anonymous CC-HIBE H2 possible is as follows. The master secret consists of two
elements whose linear combination is used to mask the message during encryption. This is unlike previous
(H)IBE schemes where a single element was used for the purpose. The two elements would be information
theoretically hidden from an attacker’s view. So the secret randomness for the semi-functional ciphertext
space is provided by one of the two elements.

Anonymity is achieved by keeping the elements required to compute the BBG-hash in G2 to be secret
and instead provide suitably randomised copies of these elements in the user keys. Problems then arise
while defining semi-functional components and arguing about their well-formedness during simulation.
Fortunately, it turns out that the problems can be handled by using appropriate algebraic relations. The
technique of keeping certain elements hidden and providing their randomised version in the user keys
closely follow the ideas introduced in [6] to obtain anonymity. In H1 the elements that are kept hidden are
exactly the ones required to create the BBG-hash in G2. As a result, an adversary is unable to create an
identity hash in G2 and cancel it out with the BBG-hash of the same identity in G1. This naturally leads
to the scheme H1 being anonymous.

We note that a single-level instantiation of H2 provides a non-anonymous variant of the JR-IBE with
rerandomisable keys.

1.3 Detailed Comparison to Existing HIBE Schemes.

Table 1 provides a comparison of H2 with all previously proposed non-anonymous CC-HIBE schemes. In
terms of security, H2 is comparable to [35] and [14]. The security of the construction in [32] is based on
sub-group decision assumptions that cannot be considered to be standard assumptions. H2 achieves the
best e�ciency compared to all other schemes. Table 2 compares H1 with all previously proposed anonymous
HIBE schemes. In terms of security and e�ciency, there is no construction that is comparable to H1.

We fix some notation required to compare di↵erent parameters of HIBE constructions. h: maximum
depth of the HIBE; `: length of the identity tuple; q: number of key extraction queries. In [11], N is the
number of bits in an identity and k represents number of blocks of N/k bits. #pp, #msk, #cpr and #key
denote number of group elements in the public parameters, master secret, ciphertext and key respectively.
Enc, Dec, KGen and Deleg indicate the e�ciency of encryption, decryption, key generation and delegation
algorithms. For Type-3 pairing based schemes, PP and ciphertexts consist elements of G1; MSK and keys
consist elements of G2. #pp = (a, b) means that there are a elements from G1, G2 and b elements of GT .
#cpr = (a, b) denotes a elements from G1 and b elements from Zp where p = |G1|. We do not consider the
GT element that masks the message in our comparison as it is present in all constructions. Enc = (a, b)
implies that a scalar multiplications are required in G1 and b exponentiations in GT ; ‘Dec’ is measured in
terms of number of pairings; ‘KGen’ is determined by number of scalar multiplications in G2; ‘Deleg’, by



number of scalar multiplications in G2. ‘Assump’ denotes the set of underlying complexity assumptions;
Deg is a shorthand for security degradation. ‘Prefix Dec’ indicates whether or not the HIBE supports
prefix decryption. ‘Const #cpr’ denotes constant number of elements in the ciphertext (or constant-size
ciphertext).

Scheme [4] [11] [12] [32] [35] [14] H2

Pairing Type-1 Type-1 Type-1 Composite Type-1 Type-3 Type-3
Security selective-id adaptive-id selective+-id adaptive-id adaptive-id adaptive-id adaptive-id

Assump.
Decisional
h-wBDHI

h-wDBDHI* h-wDBDHI*
Subgroup
Decision

DLin d-Lin SXDH

Deg. 1 O((kq2N/k)h) 1 O(q) O(q) O(q) O(q)

#pp (h + 4, 0) (h + 3 + hk, 0) (2h + 3, 1) (h + 3, 1) (32h2 + 16h + 25, 1) (2d(d + 1)(h + 2), d) (3h + 9, 1)
#msk 1 1 1 1 5 d + 1 2
#cpr (2,0) (2,0) (3,0) (2,0) (13,0) (2(d+1),0) (3,1)
#key h� `+ 2 (k + 1)(h� `) + 2 2(h� `+ 1) h� `+ 2 8h + 5 (d + 1)(h� `+ 2) 2(h� `) + 5
Enc (`+ 2, 1) (2,1) (`+ 2, 1) (`+ 2, 1) 32h + 23 (d(d + 1)(`+ 2), d) (`+ 4, 1)
Dec 2 2 2 2 13 2(d + 1) 3
KGen h + 2 2(h� `+ 1) 2h� `+ 2 2h� `+ 4 16h(h + `) + 10 d(d + 1)(h + 2) 2h + 7
Deleg. `+ 2 2(h� `) 2h� `+ 1 2h� `+ 6 16h(h + `+ 1) + 10 d(d + 1)(h + 2) + d + 1 2h + 9

Table 1: Comparison of non-anonymous CC-HIBE schemes based on pairings without random oracles.

E�ciency comparison of H2 with [32]. In absolute terms, the number of group elements required for
composite-order based schemes is less than that required in the new HIBE schemes. However, only counting
group elements is not a proper comparison. One has to consider the actual size for representing a single
group element at a desired security level.

For concreteness, let us consider a security level of 128 bits. For Type-3 pairings, using Table-2 of [8],
elements of G1 and G2 can be represented using 257 and 513 bits respectively. In contrast, the order of
G1 = G2 for composite-order pairings is a product of at least three primes. The basic security requirement
is that this group order should be hard to factor. To attain 128-bit security level, the length of the bit
representation of the group order should be about 3000 bits (or more). So, for schemes based on composite-
order groups, the length of representations of elements of G1 (and G2) will be about 3000 bits. This is
about 12 times (resp. 6 times) more than the length of bit representation of elements of G1 (resp. G2)
using Type-3 pairings. The wide di↵erence in the length of representations of group elements more than
adequately compensates for the absolute number of group elements in composite-order HIBE schemes being
lesser than that in the newly proposed HIBE scheme.

For example, ciphertexts in H1 (or H2) consist of 3 elements of G1 which is about 770 bits whereas
ciphertexts in the HIBE of [32] will be about 9000 bits (3 elements each having length about 3000 bits).
Similar considerations apply to public parameters (PP), master secret key (MSK) and decryption keys.
The larger length of the parameters also lead to a significant slow down in the basic operations of scalar
multiplication and pairing computation leading to much slower algorithms for encryption, decryption, key
generation and key delegation.

Comparing H2 with [35] and [14]. The schemes in [35, 14] both achieve similar security guarantees as
H2. The construction of [35] the number of elements in the ciphertext and the number of pairings required
for decryption is 13 as opposed to just 3 in H2. The scheme in [14] achieves similar parameters when
d = 1 (d-Lin is XDH when d = 1) but is still less e�cient compared to H2 in terms of ciphertext size and



decryption time. Ciphertext in [14] will consist of 4 G1-elements whereas H2 contains 3 G1-elements along
with an element of Zp. If an element of G1 is represented using two elements of Zp, then H2 ciphertexts
consist of 7 Zp elements as opposed to 8 in [14]. Certainly, H2 has shorter ciphertexts.

From Table 1 and the previous discussion, the only non-anonymous HIBE scheme which is comparable
in e�ciency and security to H2 is the Chen-Wee scheme described in [14] for d = 1 whence d-Lin becomes
DDH. H2 has shorter ciphertexts and faster encryption and decryption algorithms, while the Chen-Wee
scheme has shorter decryption keys and faster key generation and delegation algorithms. For an encryption
scheme, encryption and decryption will be used more often than key generation and delegation, so, the
advantage of H2 over the Chen-Wee scheme outweighs the disadvantages. When d > 1, the Chen-Wee
scheme is based on progressively weaker assumptions than the SXDH assumption and the resulting schemes
also become progressively more ine�cient.

Scheme [6] [41] [20] [37] [29],[40] [36] H1

Pairing Type-3 Composite Composite Type-1 Type-3 Type-1 Type-3
Security selective-id selective-id adaptive-id selective-id adaptive-id adaptive-id adaptive-id

Assump. DLin,DBDH
`-wBDH*,
`-cDH

Subgroup
Decision

h-BDHE
Aug. h-DLin

LW1,LW2,DBDH
[29]:3-DH,XDH

[40]:A1
DLin SXDH

Deg. O(1) O(1) O(q) O(1) O(q) O(hq) O(q)
Prefix Dec. No No No No No Yes No
Const #cpr No Yes Yes Yes Yes No Yes

#pp (2(h2 + 3h + 2), 1) (h + 6, 1) (h + 4, 1) (h + 6, 1) (3h + 6, 1) (4(9h + 4), 1) (h + 4, 1)
#msk h2 + 5h + 7 h + 4 2 4 h + 6 18h + 10 2h + 6
#cpr (2h + 5, 0) (3,0) (2,0) (4,0) (6,0) (9`+ 5, 0) (3,1)
#key (h + 3)(3h� `+ 5) 3(h� `+ 3) 2(h� `+ 2) 3(h� `+ 4) 6(h� `+ 2) (4h� 2`+ 1)(9`+ 5) + 36(h� `) 4(h� `) + 10
Enc (2(`+ 3)(h + 2) + 1, 1) (`+ 6, 1) (`+ 4, 1) (`+ 5, 1) (3(`+ 2), 1) 27`+ 15 (`+ 4, 1)
Dec 2h + 3 4 2 4 6 9`+ 5 3

KGen
h3 + h2(5� `)+

h(7� 3`)� 2`+ 2
3h� 2`+ 2 4(h + 2� 3`)(h + 2(h� `+ 8)) 6h� 5`+ 12 (2h + 3)(27`+ 10) 2(2h� 2`+ 5)

Deleg. 5(h + 2)(h + 3) + 1 6(h� `) + 214(h� `) + 11 (4(h� `) + 25) 2(h� `+ 3) (9`+ 5)(6h`+ 14h� 2`2 � 8`+ 5) 4(h� `+ 5)

Table 2: Comparison of anonymous HIBE schemes based on pairings without random oracles.

H1 and other anonymous HIBE schemes. It is clear from Table 2 that all anonymous HIBE schemes
possess either constant-size ciphertexts or the prefix decryption property and not both. The Boyen-Waters
HIBE [6] has none of the two properties. The Okamoto-Takashima scheme [36] supports prefix decryption
and at the same time achieves anonymity but at the cost of non-constant size of the ciphertext (the size is
linear in the depth of the identity). In addition, ciphertexts in their scheme reveal the length of the recipient
identity unlike the Boyen-Waters HIBE. H1, on the other hand, is anonymous and has short ciphertexts
but lacks prefix deryption. All other e�ciency parameters are better in case of H1.

We conclude that among anonymous HIBE schemes, H1 is the most e�cient scheme with all the
standard provable properties. We emphasise that the e�ciency and provable security properties achieved
for H1 have not been simultaneously achieved earlier, either for composite-order pairings, or, for prime-
order pairings. For use in practice, one may choose the Okamoto-Takashima scheme or H1 according to
whether the application requires prefix decryption or not.

A note on notation and proof technique. We have used the JR-IBE [28] as the basic building block
and consequently, our notation and proofs build on that of [28]. This makes it easier for a reader to
see the connections between our work and the IBE construction in [28]. We note, though, that we have
provided all the relevant details and it is possible to directly verify, with a bit of work, all the claims in



this paper without referring to [28]. Frameworks for presenting dual-system constructions and proofs have
been proposed [31, 22]. Neither the JR-IBE nor the constructions in the present work appear to fall within
these frameworks.

2 Preliminaries

Some basic notation, definitions and the complexity assumptions used in our proofs are presented in this
section. Definition of HIBE and security notions are provided in Appendix A.

2.1 Notation

The notation x1, . . . , xk
R � X indicates that elements x1, . . . , xk are sampled independently from the set

X according to some distribution R. The uniform distribution is denoted U. For a (probabilistic) algorithm
A, y  � A(x) means that y is chosen according to the output distribution of A on input x. A(x; r) denotes
that A is run on input x with its internal random coins set to r. For two integers a < b, the notation [a, b]
represents the set {x 2 Z : a  x  b}. If G is a finite cyclic group, then G⇥ denotes the set of generators
of G.

2.2 Asymmetric Pairings and Hardness Assumptions

A bilinear pairing is given by a 7-tuple G = (p, G1, G2, GT , e, P1, P2) where G1 = hP1i, G2 = hP2i are
groups written additively and GT is a multiplicatively written group, all having the same order p and
e : G1 ⇥G2 ! GT is a map with the following properties.

1. Bilinearity: For P1, Q1 2 G1 and P2, Q2 2 G2, the following holds:
e(P1, P2 + Q2) = e(P1, P2)e(P1, Q2) and e(P1 + Q1, P2) = e(P1, P2)e(Q1, P2).

2. Non-degeneracy: If e(P1, P2) = 1T , the identity element of GT , then either P1 is the identity of G1 or
P2 is the identity of G2.

3. E�cient computation: The function e should be e�ciently computable.

In an asymmetric pairing, G1 6= G2. If no e�ciently computable isomorphisms between G1 and G2 are
known, then such pairings are called Type-3 pairings. The terms ‘Type-3 pairing’ and ‘asymmetric pairing’
are used interchangeably in the rest of the paper.

Let G = (p, G1, G2, GT , e, P1, P2) be an asymmetric pairing and A , a probabilistic polynomial time
(PPT) algorithm A that outputs 0 or 1. We now describe the decisional Di�e-Hellman (DDH) assumptions
in groups G1 and G2, called DDH1 and DDH2 respectively.

Assumption DDH1. Define a distribution D as follows: P1
U � G⇥

1 ; P2
U � G⇥

2 , a, s
U � Zp, µ

U � Zp:
D = (G, P1, aP1, asP1). The advantage of A in solving the DDH1 problem is given by

AdvDDH1
G (A ) = |Pr[A (D, sP1) = 1]� Pr[A (D, (s + µ)P1) = 1]|.

Essentially, A has to decide whether µ = 0 or µ
U � Zp given (D, (s + µ)P1). The (", t)-DDH1 assumption

holds in G if for any adversary A running in time at most t, AdvDDH1
G (A )  ".



Assumption DDH2. Let a distribution D be defined as follows: P1
U � G⇥

1 ; P2
U � G⇥

2 , r, c
U � Zp,

�
U � Zp: D = (G, P1, P2, rP2, cP2). A ’s advantage in solving the DDH2 problem is given by

AdvDDH2
G (A ) = |Pr[A (D, rcP2) = 1]� Pr[A (D, (rc + �)P2) = 1]|.

The (", t)-DDH2 assumption is that, for any t-time algorithm A , AdvDDH2
G (A )  ".

3 Jutla-Roy IBE with Ciphertexts in G1

In the IBE scheme of Jutla-Roy [28] (JR-IBE), ciphertext consists of elements in G2 and keys contain
elements from G1. For Type-3 pairings, elements of G1 have a shorter representation compared to the
elements of G2. To reduce the length of the ciphertext, one has to interchange the roles of the two groups.
In contrast, for a signature scheme, it would be advantageous to have the signature to consist of elements
from G1. Since the JR-IBE is obtained from non-interactive zero knowledge (NIZK) proofs via the idea of
signatures, the scheme results in ciphertext elements being in G2.

This section describes a “dual” of the Jutla-Roy [28] (JR-IBE-D) where ciphertexts live in G1 and keys
in G2. We use a compact notation to denote normal and semi-functional ciphertexts and keys. The group
elements shown in curly brackets { } are the semi-functional components. To get the scheme itself, these
components should be ignored.

Parameters: Choose P1
U � G⇥

1 , P2
U � G⇥

2 , �1, �2, �3, �4, c, d, u, e
U � Zp, b

U � Z⇥
p , and set U1 =

(��1b + d)P1, V1 = (��2b + e)P1, W1 = (��3b + c)P1, gT = e(P1, P2)��4b+u. The parameters are given
by

PP : (P1, bP1, U1, V1, W1, gT )
MSK : (P2, cP2, �1, �2, �3, �4, d, u, e)

Ciphertext: Consists of (C0, C1, C2, C3, tag) where

tag, s
U � Zp, {µ

U � Zp}
C0 = m · (gT )s{e(P1, P2)uµ},
C1 = sP1{+µP1}, C2 = sbP1, C3 = s(U1 + idV1 + tagW1){+µ(d + id · e + tag · c)P1}.

Key: Contains five elements (K1, . . . ,K5) defined as follows.

r
U � Zp, {�,⇡

U � Zp}
K1 = rP2, K2 = rcP2{+�P2}, K3 = (u + r(d + ide)) P2{+�⇡P2},
K4 = �r�3P2{��

b P2}, K5 = (��4 � r(�1 + id�2)) P2{��⇡
b P2} .

Note 1. In JR-IBE [28], b is mentioned to be an element of Zp. This is an oversight and b should be an
element of Z⇥

p as we have mentioned above. This is because if b is zero, then division by b and consequently
the definitions of the semi-functional components will not be meaningful.

The original JR-IBE scheme in [28] was proved to be secure based on the SXDH assumption. Straight-
forward modifications of proof in [28] will also show the security of the variant JR-IBE-D under the same
assumption. For the sake of completeness, we state the security theorem JR-IBE-D.

Theorem 1. If ("DDH1, t1)-DDH1 and ("DDH2, t2)-DDH2 assumptions hold in G1 and G2 respectively, then

JR-IBE-D is (", t)-ANO-IND-ID-CPA-secure where "  "DDH1 + q · "DDH2 + (q/p), t1 = t + O(⇢) and t2 =
t + O(⇢). ⇢ is the maximum time required for one scalar multiplication in G1 and G2.



4 Our CC-HIBE Constructions

Both schemes H1 and H2 are based on a Type-3 prime-order pairing with group order p. Identities are
variable length tuples of elements from Z⇥

p with maximum length h.

As is typical with BBG-type extensions the element V1 is replaced with h elements V1,1, . . . , V1,h – one
for each level of an identity. The set U1, (V1,j)j2[1,h] is used to create the identity hash – for an identity
id = (id1, . . . , id`), the hash is given by U1 +

P`
j=1 idjV1,j . Element W1 will be retained to append the

tag-component to the hash. This replaces the hash in JR-IBE-D ciphertext without a↵ecting the number
of elements in the ciphertext. Moreover, since the hash is embedded in a single ciphertext component,
only one tag is required. Note that the keys in JR-IBE-D have two sub-hashes that when combined during
decryption cancels with the hash of the ciphertext.

In JR-IBE-D, each of U1, V1, W1 is split into two components kept as part of the master secret. The two
sets of components determine the sub-hashes required in generating keys. Similarly, for the HIBE, we need
to split V1,j for all j 2 [1, h] as V1,j = b�2,j +ej where �1,j , ej

U � Zp. So the sub-hashes are determined by
the vectors v1 = (d, e1, . . . , eh) and v2 = (�1, �2,1, . . . ,�2,h). Rerandomisation of keys during delegation
can be done in two possible ways – make the encodings of vectors v1,v2 along with �3, c in G2 public; or
provide appropriately randomised copies of these elements in the key.

The second method retains the anonymity property leading to the scheme H1. This is because the
vectors v1,v2 can be used to test whether a given ciphertext is encrypted to a particular identity or not.
Keeping them secret naturally leads to anonymity. The former method leads to the scheme H2 that has
shorter keys and faster algorithms compared to H1. But the e�ciency comes at the cost of losing anonymity.
Due to space constraints we only describe H1 and discuss its security. A description of H2 followed by an
outline of its security is provided in Appendices B and D.

4.1 Scheme H1

We define H1 = (H1.Setup, H1.Encrypt, H1.KeyGen, H1.Delegate, H1.Decrypt) where the algorithms are as
follows.

H1.Setup(): Generate a Type-3 pairing (p, G1, G2, GT , e, F1, F2) based on the security parameter . Com-
pute parameters as follows.

P1
U � G⇥

1 , P2
U � G⇥

2

�1, �3, �4, c, d, u, (�2,j , ej)h
j=1

U � Zp, b
U � Z⇥

p ,

U1 = (��1b + d)P1, V1,j = (��2,jb + ej)P1 for j = 1, . . . , h, W1 = (��3b + c)P1,
gT = e(P1, P2)��4b+u,

PP : (P1, bP1, U1, (V1,j)h
j=1, W1, gT )

MSK : (P2, cP2, �1, �3, �4, d, u, (�2,j , ej)h
j=1)

H1.Encrypt(PP, M, id = (id1, . . . , id`)): Pick tag, s
U � Zp and set the ciphertext C = (C0, C1, C2, C3, tag)

where

C0 = M · (gT )s, C1 = sP1, C2 = sbP1, C3 = s(U1 +
P`

j=1 idjV1,j + tagW1).

H1.KeyGen(MSK, id = (id1, . . . , id`)): Pick r1, r2
U � Zp and compute the secret key SKid = (S1,S2) for

id, with S1 = ((Ki)i2[1,5], (D1,j , E1,j)j2[`+1,h]) and S2 = ((Ji)i2[1,5], (D2,j , E2,j)j2[`+1,h]) where



K1 = r1P2, K2 = r1cP2, K3 =
⇣
u + r1(d +

P`
j=1 idjej)

⌘
P2,

K4 = �r1�3P2, K5 =
⇣
��4 � r1(�1 +

P`
j=1 idj�2,j)

⌘
P2,

D1,j = r1ejP2, E1,j = �r1�2,jP2 for j = ` + 1, . . . , h,

J1 = r2P2, J2 = r2cP2, J3 = r2

⇣
d +

P`
j=1 idjej

⌘
P2,

J4 = �r2�3P2, J5 = �r2(�1 +
P`

j=1 idj�2,j)P2,
D2,j = r2ejP2, E2,j = �r2�2,jP2 for j = ` + 1, . . . , h

H1.Delegate(id = (id1, . . . , id`), id`+1): Let id : id`+1 = (id1, . . . , id`+1). SKid:id`+1
is generated from SKid as

follows.

r̃1, r̃2
U � Z⇥

p ,

K1  K1 + r̃1J1, K2  K2 + r̃1J2, K3  (K3 + id`+1D1,`+1) + r̃1(J3 + id`+1D2,`+1),
K4  K4 + r̃1J4, K5  (K5 + id`+1E1,`+1) + r̃1(J5 + id`+1E2,`+1),
D1,j  D1,j + r̃1D2,j , E1,j  E1,j + r̃1E2,j for j = ` + 2, . . . , h,

J1  r̃2J1, J2  r̃2J2, J3  r̃2(J3 + id`+1D2,`+1),
J4  r̃2J4, J5  r̃2(J5 + id`+1E2,`+1),
D2,j  r̃2D2,j , E2,j  r̃2E2,j for j = ` + 2, . . . , h,

setting r1  r1 + r̃1r2 and r2  r̃2r2. Note that the new values of r1 and r2 have uniform and independent
distribution over Zp given that r1, r2

U � Zp and r̃1, r̃2
U � Z⇥

p . Hence the distribution of SKid:id`+1
is same

as that of a freshly generated key for id : id`+1 via the H1.KeyGen algorithm.

H1.Decrypt(C,SKid): Return M 0 computed as: M 0 =
C0 · e(C3, K1)

e(C1, tagK2 + K3)e(C2, tagK4 + K5)
.

Correctness: For all messages M , for all 1  `  h, for all identities id of length `, for all C and
SKid such that C  H1.Encrypt(M, id), SKid  H1.KeyGen(MSK, id) and M 0 = H1.Decrypt(C,SKid),
it holds that M 0 = M . The following computation substantiates this claim. Let (C = (C0, C1, C2, C3)) =
H1.Encrypt(M, id; s) and (SKid = (S1,S2)) = H1.KeyGen(MSK, id; r1, r2) with id = (id1, . . . , id`). We
show the computation in steps. Let h1 = d +

P`
j=1 idjej + tag · c and h2 = �1 +

P`
j=1 idj�2,j + tag ·�3.

e(C1, tagK2 + K3) = e(sP1, tag · r1cP2 + (u + r1(d +
P`

j=1 idjej))P2)

= e(sP1, uP2 + r1(d +
P`

j=1 idjej + tag · c)P2)

= e(P1, P2)sue(P1, P2)r1sh1

e(C2, tag ·K4 + K5) = e(sbP1,�tag · r1�3P2 � (�4 + r1(�1 +
P`

j=1 idj�2,j))P2)

= e(sbP1,��4P2 � r1(�1 +
P`

j=1 idj�2,j + tag ·�3)P2)

= e(P1, P2)�sb�4e(P1, P2)�r1sbh2

e(C3, K1) = e(s(U1 +
P`

j=1 idjV1,j + tag ·W1), r1P2)

= e((��1b + d)P1 +
P`

j=1 idj(��2,jb + ej)P1 + tag · (��3b + c)P1, P2)r1s

= e(�(�1 +
P`

j=1 idj�2,j + tag ·�3)bP1, P2)r1se((d +
P`

j=1 idjej + tag · c)P1, P2)r1s

= e(P1, P2)�r1sbh2e(P1, P2)r1sh1



Then, the message M 0 obtained after decryption is given by

M 0 =
C0 · e(C3, K1)

e(C1, tag ·K2 + K3)e(C2, tag ·K4 + K5)

=
M · gs

T · e(P1, P2)�r1sbh2e(P1, P2)r1sh1

e(P1, P2)sue(P1, P2)r1sh1e(P1, P2)�sb�4e(P1, P2)�r1sbh2

=
M · e(P1, P2)(��4b+u)s

e(P1, P2)s(��4b+u)

= M,

as required.

The above holds as well for all SKid derived from secret keys for higher level identities through the
H1.Delegate algorithm. This is because a derived key have the same distribution as a key generated by a
fresh call to the H1.KeyGen algorithm which has been pointed out in the description of the H1.Delegate
algorithm.

From a dual system perspective. One can see in Section 5 that the scalar u, along with scalars
d, c, ejj2[1,h], define the semi-functional ciphertext space for H1. These scalars provide the secret informa-
tion for simulating semi-functional components. A crucial requirement for a dual system proof is that these
scalars are statistically hidden from the adversary. Observe that the element gT in the public parameters,
information theoretically hides the element u. Similarly, elements U1, V1,j , W1 hide the scalars d, ej , c re-
spectively. Further intuition with respect to the dual-system proof and a sketch of how the various scalars
interact is provided in Section 5.

4.2 Anonymity and Constant-Size Ciphertexts

As mentioned in Section 1, many HIBE schemes (such as [25]) have the prefix decryption property. That is,
an entity with identity id0 and a corresponding secret key SKid0 can decrypt any ciphertext corresponding
to id where id0 is a prefix of id. As an example, consider the Gentry-Silverberg HIBE [25] (GS-HIBE)
based on a symmetric pairing e : G ⇥ G ! GT . The ciphertext for an identity id = (id1, . . . , id`) consists
of points rP0, rP2, . . . , rP` from G and the n-bit string M � H2(e(P1, Q0)r) where H1 : {0, 1}⇤ ! G,
H2 : GT ! {0, 1}n are crytographic hash functions, Pi = H1(id1, . . . , idi) for i 2 [1, `], elements P0, Q0

come from PP and M is the message. Note that when we remove the points rP`0+1, . . . , rP` (`0 < `),
the remaining components form a valid ciphertext for the identity id0 = (id1, . . . , id`0) and hence can be
decrypted using a secret key for id0. The prefix decryption property holds in this case.

In the non-anonymous setting, id is known. Hence, decryption can be done via a secret key for id that
is derived from SKid0 by a sequence of calls to the Delegate algorithm. In case of anonymous HIBE, id
is not known and as a result, delegation is not possible. If the ciphertext contains separate components
corresponding to each level of id, prefix decryption would still hold. As shown above (for the case of
GS-HIBE), one can truncate the ciphertext retaining only the components corresponding to id0 and then
perform decryption using SKid0 . The anonymous HIBE of Okamoto-Takashima[35] also has this property.
But in case of an anonymous HIBE where the ciphertext size is constant, as in H1, it is not possible to
decrypt the ciphertext with SKid0 . The reason is that is no way to remove (or truncate) the randomised
components corresponding id \ id0 from the ciphertext (here, id \ id0 denotes the su�x of id0 in id i.e.,
id`0 , . . . , id`). More percisely, given the hash s(U1 +

P`
j=1 idjV1,j + tagW1) for id it is impossible to extract a

hash for id0 since we have no knowledge of sV1,j ’s. This limitation is not particular to our work and neither



is something that arises due to the techniques that we use. It is an inherent limitation and is present
in all previously known HIBE constructions which simultaneously achieve constant-size ciphertexts and
anonymity.

On the contrary, as pointed out in Section 1, the absence of prefix decryption property is acceptable
and possibly useful in certain applications. For related discussions on this issue, the reader is refered to
[25] and [17].

5 Security of H1

The scheme H1 is proved secure in the sense of ANO-IND-ID-CPA (described in Section A) following the dual
system methodology introduced by Waters [46]. We first provide algorithms H1.SFEncrypt and H1.SFKeyGen
that generate semi-functional ciphertexts and keys (respectively) required for a dual system proof. In
addition, we need an algorithm PSFKeyGen that generates partial semi-functional keys ([40]). These are
required only in the security proof of H1 and not H2.

H1.SFEncrypt(MSK, C): Let (C = (C0, C1, C2, C3))  H1.Encrypt(m, id = (id1, . . . , id`)). Pick µ
U � Zp

and modify the components of C as follows.

C0  C0 · e(P1, P2)uµ, C1  C1 + µP1, C2  C2, C3  C3 + µ(d +
P`

j=1 idjej + tag · c)P1.

Return the modified ciphertext C = (C0, C1, C2, C3).

H1.SFKeyGen(MSK,SKid): This algorithm takes in a normal secret key SKid = (S1,S2) for identity
id = (id1, . . . , id`) and generates a semi-functional key as follows.

�1, �2, ⇡,�, (⇡j , �j)h
j=1

U � Zp,

K1  K1, K2  K2 + �1P2, K3  K3 + �1⇡P2, K4  K4 �
⇣�1

b

⌘
P2, K5  K5 �

⇣�1⇡

b

⌘
P2,

D1,j  D1,j + �1⇡jP2, E1,j  E1,j �
⇣�1⇡j

b

⌘
P2 for j = ` + 1, . . . , h,

J1  J1, J2  J2 + �2P2, J3  J3 + �2�P2, J4  J4 �
⇣�2

b

⌘
P2, J5  J5 �

⇣�2�

b

⌘
P2,

D2,j  D2,j + �2�jP2, E2,j  E2,j �
⇣�2�j

b

⌘
P2 for j = ` + 1, . . . , h,

The resulting key SKid = (S1,S2) is returned.

PSFKeyGen(MSK,SKid): Returns a key SKid for identity id with S1-components having semi-functional
terms (generated according to H1.SFKeyGen algorithm) and S2-components being normal (as returned by
H1.KeyGen algorithm).

Discussion. It is natural to ask whether it is at all required to define semi-functional terms for S2 compo-
nents of a key that do not play any role in decryption. The answer is yes and the reason is as follows. Since
all the elements required to create the id-hash in G2 are hidden, there is no way to test the identity to
which a ciphertext is encrypted. The scheme seems to be anonymous but to prove it, we need to ensure that
a semi-functional encryption to a target identity is indistinguishable from a semi-functional encryption to
a random identity vector. (We need semi-functionality in order to deal with the key extraction queries.)

Normally, the K-components of the key are used for decrypting a ciphertext. When these are paired
with the ciphertext components we obtain the blinding factor for the message that only depends on �4, u
and the randomiser s. Instead if we try decrypting using J-components of the key (which do not have
�4 and u terms), we get 1T , the identity of GT . Hence the J-components help in testing whether the



ciphertext is indeed encrypted under id or not. The presence of such a test does not help in proving
anonymity property. Therefore, it is essential to make S2-components of all keys semi-functional before
arguing about anonymity.

It is straightforward to see that decryption of a semi-functional ciphertext by a normal key or that of a
normal ciphertext with a semi-functional key succeeds. When both ciphertext and key are semi-functional,
decryption results in an extra masking factor of e(P1, P2)�µ(tag+⇡) on the message. Decryption is only
successful if ⇡ = �tag whence the ciphertext and key become nominally semi-functional.

The following theorem states precisely the security guarantee we obtain for H1.

Theorem 2. If ("DDH1, t1)-DDH1 and ("DDH2, t2)-DDH2 assumptions hold in G1 and G2 respectively, then

H1 is (", t)-ANO-IND-ID-CPA-secure where "  "DDH1+2q ·"DDH2+(2q/p), t1 = t+O(h⇢) and t2 = t+O(h⇢).
⇢ is the maximum time required for one scalar multiplication in G1 and G2.

Proof Sketch. Fix any t-time adversary A . Let Greal denote the HIBE security game ano-ind-cpa (de-
scribed in Section A) and Gfinal be a game where all keys are semi-functional and the challenge cipher-
text is a semi-functional encryption of a random message to a random identity vector. The probability
that A wins in Gfinal is 1/2. To prove the theorem, we need to show a bound on Advano-ind-cpa

H1
(A ) =

|Pr[A wins in Greal]�(1/2)| which is equivalent to bounding |Pr[A wins in Greal]�Pr[A wins in Gfinal]|.
In order to obtain this bound, we first define a sequence of games starting from Greal and making small
changes until we reach Gfinal. Define Gk,0, 1  k  q similar to Greal except that challenge ciphertext
is semi-functional, first k � 1 keys are semi-functional and k-th key is partial semi-functional. In Gk,1,
0  k  q, the challenge ciphertext is semi-functional and first k keys are semi-functional. The game
sequence is Greal, G0,1, (Gk,0,Gk,1)

q
k=1, Gfinal. The advantage of A in winning Greal can now be bounded

in terms of its advantage in distinguishing between successive games. This is done via reductions from the
SXDH problem to the task of distinguishing between successive games. Essentially, there are two kinds
of reductions - first and second. In the first reduction, we show that A ’s ability to distinguish between
Greal and G0,1 can be used to solve a DDH1 instance. The second reduction shows that an algorithm A
that can distinguish between Gk�1,1 and Gk,0 for some k 2 [1, q], can be used to construct an algorithm
B2 solving DDH2. Similar arguments hold for all values of k and also for the transition from Gk,0 to Gk,1.
The final transition i.e, Gq,1 to Gfinal is done just by changing the way information provided to A is
generated so that the distribution of A ’s view in the two games are statistically indistinguishable except
with probability 2q/p.. We now provide an outline of each stage in the proof.

First Reduction: Suppose that B1 is a DDH1-solver. B1 simulates the game using a DDH1 instance
(G, P1, bP1, sbP1, P2, (s+µ)P1). The element b of the instance corresponds to the scalar b of the scheme.
B1 sets up the system normally since it has all information required to do so. The master secret is
also known since none of its components depend on b. Furthermore, it cannot create semi-functional
keys as no encoding of b in G2 is provided. All the key extract queries are answered normally. B1

sets the randomiser for the challenge ciphertext bC to be s (from the instance). bC will be normal or
semi-functional depending on whether the instance is real i.e., µ = 0, or random (µ U � Zp).

Second Reduction: The DDH2-solver B2 obtains an instance (G, P1, P2, rP2, cP2, (rc + �)P2). Here c
corresponds to the scalar c in MSK. Elements d, (ej)j2[1,h] are set to random degree-1 polynomials
in c. Scalar b is chosen randomly from Z⇥

p . Let y = (d, e1, . . . , eh). The public parameters are created
di↵erently since y is not known. Only its encoding in G2 i.e, yP2 is known. Specifically U1, V1,j , W1

are chosen at random from G1. Depending on these and y, the corresponding �’s are implicitly set.
Encodings of �’s can be computed only in G2. This enables normal key generation as well as semi-
functional key generation. In its response to the k-th key extract query, B2 maps r from the instance to



the randomiser r1 in the key. Accordingly it generates the key choosing r2 at random. If � = 0, the key
will be normal. Otherwise the key is partial semi-functional and � corresponds to the randomiser �1 in
the semi-functional part. Moreover, a linear polynomial f(idk) in idk-components is embedded in the
semi-functional scalar ⇡. This polynomial is determined by the co-e�cients of c in y. The coe�cients
of c in ej also determine ⇡j respectively. For the challenge ciphertext, B2 has to create semi-functional
components which depend on y. But y depends on c and encoding of c in G1 is not known. The only
way out is to set tag = �f( bid�) so that terms depending on c vanish. A consequence is that B2 can only
generate nominally semi-functional ciphertext for idk. We then argue that the simulation is perfect.

Final Transition: It is required to show that Gq,1 and Gfinal are statistically indistinguishable from the
attacker’s point of view except for probability at most 2q/p. The generation of public parameters and
keys provided to A are changed ensuring that their form is equivalent to that in Gq,1 and they are
independent of the scalars u, d, (ej)j2[1,h]. Consequently the challenge ciphertext is the only place where
these scalars come into play, especially in those components that consist of the identity-hash and the
message. Basically, the message and the id-hash are masked by random quantities so that Gfinal is
simulated.

Refer to Appendix C for details of the proof.

6 Conclusion

We obtain two HIBE schemes with constant-size ciphertexts and full security from the IBE scheme of
Jutla and Roy. One achieves anonymity while the other is non-anonymous with shorter keys. Compared to
previous HIBE schemes, our constructions provide very good e�ciency with just 3 pairings for decryption
and 3 group elements in the ciphertext. These are also the only CC-HIBEs achieving security under standard
assumptions and degradation independent of the HIBE depth. In HIBE-related literature focussed on either
constant-size ciphertexts or anonymity or both, we believe that our constructions complete the picture.
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A Hierarchical Identity-Based Encryption

Definition. A HIBE scheme consists of five probabilistic polynomial time (in the security parameter)
algorithms – Setup, Encrypt, KeyGen, Delegate and Decrypt.

– Setup: based on input a security parameter  and maximum depth of the HIBE h, this algorithm
generates and outputs the public parameters PP and the master secret MSK.

– KeyGen: inputs an identity vector id and master secret MSK and outputs the secret key SKid corre-
sponding to id.

– Encrypt: inputs an identity id, a message M and returns a ciphertext C.
– Delegate: takes as input a depth ` identity vector id = (id1, . . . , id`), a secret key SKid and an identity

id`+1; returns a secret key for the identity vector (id1, . . . , id`+1).
– Decrypt: inputs a ciphertext C, an identity vector id, secret key SKid and returns either the corre-

sponding message M or ? indicating failure.

Correctness. The HIBE scheme is said to satisfy the correctness condition if for all 1  `  h, for all
identities id = (id1, . . . , id`), for all SKid  KeyGen(MSK, id) or SKid  Delegate(id \ id`, id`), for all
messages M and for all C  � Encrypt(id, M), the output of Decrypt(C, id,SKid) equals M with probability
1.



Security Model. The standard notion of security of a HIBE scheme is indistinguishability of ciphertexts
against a chosen plaintext attack (first described by [25]). It is modelled by the following security game,
called ind-cpa.

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on an identity vector id,
the challenger responds with a key SKid.

Challenge: A provides two message M0, M1 and identity bid as challenge with the restriction that no
prefix of bid has been queried in Phase 1. The challenger then chooses a bit � uniformly at random from
{0, 1} and returns an encryption bC of M� under bid to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that no queried identity
id is a prefix of bid.

Guess: A outputs a bit �0.

If � = �0, then A wins the game. The advantage of A in breaking the security of the HIBE scheme in
the game ind-cpa given by

Advind-cpa

HIBE (A ) =
����Pr[� = �0]� 1

2

���� .

The HIBE scheme is said to be (", t, q)-IND-ID-CPA secure if every t-time adversary making at most q

queries has Advind-cpa

HIBE (A )  ".

Anonymity. The security game defined below captures both anonymity and security against a chosen
plaintext attack for HIBE schemes. This model, which we call ano-ind-cpa, is equivalent to the standard
security notions for IND-ID-CPA-security and anonymity taken together and has been used earlier in [21,
20].

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on an identity vector id,
the challenger responds with a key SKid.

Challenge: A provides two message-identity pairs (M0, bid0) and (M1, bid1) as challenge with the restriction
that neither bid0, bid1 nor any of their prefixes should have been queried in Phase 1. The challenger then
chooses a bit � uniformly at random from {0, 1} and returns an encryption bC of M� under the identity bid�

to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that no queried identity
id is a prefix of either bid0 or bid1.

Guess: A outputs a bit �0.

If � = �0, then A wins the game. The advantage of A in breaking the security of the HIBE scheme in
the game ano-ind-cpa given by

Advano-ind-cpa

HIBE (A ) =
����Pr[� = �0]� 1

2

���� .

The HIBE scheme is said to be (", t, q)-ANO-IND-ID-CPA secure if every t-time adversary making at most
q queries has Advano-ind-cpa

HIBE (A )  ".



B Scheme H2

This section presents the second (non-anonymous) HIBE construction. As discussed in Section 4, two sub-
hashes in the key are combined to form the identity-hash required for cancellation with the ciphertext.
The sub-hashes are determined by the vectors v1 = (d, e1, . . . , eh) and v2 = (�1, �2,1, . . . ,�2,h). In order
to realise anonymity, these vectors are kept as part of the master secret in H1. Additional elements had
to be provided in the key to enable rerandomisation during delegation. It turns out that we can obtain a
non-anonymous scheme by making these vectors public. The availablity of these vectors facilitates reran-
domisation and hence the keys no longer need extra components for this purpose. As a result, keys are
shorter and algorithms KeyGen, Delegate are more e�cient in comparison to H1.

The method of followed here in obtaining a non-anonymous HIBE did not work out for previously
known anonymous HIBE schemes [40, 30]. This is due to the following reasons. The element GT would be
of the form e(P1, P2)↵ where ↵ is part of the master secret. P1 and P2 would be required for encryption
and delegation respectively as a result of which both P1 and P2 would be present in PP. However, this
leaks ↵ information theoretically thus revealing the message too! The splitting of ↵ here in terms of �4

and u precisely overcomes this problem. These scalars further provide the randomness required to generate
semi-functional components.

Regarding the dual system proof, we mentioned in Section 4 that some elements in the master secret
provide the randomness required to generate semi-functional components during simulation. In H2, the
scalars d, c, (ej)j2[1,h] are revealed information theoretically in the public parameters. Although d, c, ej

being hidden provides more randomness, they are not essential to generating the required amount of
randomness in the proof. The scalar u, hidden by GT in the public parameters, is su�cient.

We define H2 = (H2.Setup, H2.Encrypt, H2.KeyGen, H2.Delegate, H2.Decrypt) where the algorithms are as
follows.

H2.Setup(): Generate a Type-3 pairing (p, G1, G2, GT , e, F1, F2) based on the security parameter . Com-
pute parameters as follows.

P1
U � G⇥

1 , P2
U � G⇥

2

�1, �3, �4, c, d, u, (�2,j , ej)h
j=1

U � Zp, b
U � Z⇥

p ,

U1 = (��1b + d)P1, V1,j = (��2,jb + ej)P1 for j = 1, . . . , h, W1 = (��3b + c)P1,
gT = e(P1, P2)��4b+u,

PP : (P1, bP1, U1, (V1,j)h
j=1, W1, P2, �1P2, �3P2, dP2, cP2, (�2,jP2, ejP2)h

j=1, gT )
MSK : (�4, u)

H2.Encrypt(PP, M, id = (id1, . . . , id`)): Pick tag, s
U � Zp and set the ciphertext C = (C0, C1, C2, C3, tag)

where

C0 = M · (gT )s, C1 = sP1, C2 = sbP1, C3 = s(U1 +
P`

j=1 idjV1,j + tagW1).

H2.KeyGen(MSK, id = (id1, . . . , id`)): Pick r
U � Zp and compute the secret key SKid =

((Ki)i2[1,5], (Dj , Ej)j2[`+1,h]) for id where,

K1 = rP2, K2 = rcP2, K3 =
⇣
u + r(d +

P`
j=1 idjej)

⌘
P2,

K4 = �r�3P2, K5 =
⇣
��4 � r(�1 +

P`
j=1 idj�2,j)

⌘
P2,

Dj = rejP2, Ej = �r�2,jP2 for j = ` + 1, . . . , h.



H2.Delegate(id = (id1, . . . , id`), id`+1): Let id : id`+1 = (id1, . . . , id`+1). SKid:id`+1
is generated from SKid as

follows.

r̃
U � Z⇥

p ,

K1  K1 + r̃P2, K2  K2 + r̃cP2, K3  (K3 + id`+1D`+1) + r̃(d +
P`+1

j=1 idjej)P2,
K4  K4 � r̃�3P2, K5  (K5 + id`+1E`+1)� r̃(�1 +

P`+1
j=1 idj�2,j)P2,

Dj  Dj + r̃ejP2, Ej  Ej � r̃�2,jP2 for j = ` + 2, . . . , h,

setting r  r + r̃. Note that the distribution of SKid:id`+1
is same as that of a freshly generated key for

id : id`+1 via the KeyGen algorithm.

H2.Decrypt(C,SKid): Return M 0 computed as:

M 0 =
C0 · e(C3, K1)

e(C1, tagK2 + K3)e(C2, tagK4 + K5)
.

Note 2. The encryption and decryption algorithms of H1 and H2 are identical and hence the correctness of
decryption for H2 follows from that of H1.

Note 3. The KeyGen and Delegate algorithms for H2 are identical to the portion of the corresponding
algorithms for H1 which modify the S1-components of the key. The S2 components of the key in H1 are not
required in H2.

Discussion. Setting h = 1 in H2 yields a non-anonymous variant of JR-IBE-D. The resulting IBE has
e�ciency comparable to JR-IBE-D but has seven extra elements from G2 in public parameters. It is inter-
esting to note that H2 is the only known HIBE within the dual system framework which has rerandomisable
keys. The same holds for the corresponding IBE as well.

C Proof of Theorem 2

Consider a sequence of games Greal, G0,1, (Gk,0,Gk,1)
q
k=1, Gfinal between an adversary A and a challenger

with the games defined as follows.

– Greal: the actual HIBE security game ano-ind-cpa (described in Section A).
– Gk,0, 1  k  q: challenge ciphertext is semi-functional; first k � 1 keys are semi-functional and k-th

key is partial semi-functional.
– Gk,1, 0  k  q: challenge ciphertext is semi-functional; first k keys are semi-functional.
– Gfinal: challenge ciphertext is a semi-functional encryption of a random message under a random

identity vector; all keys are semi-functional.

Let X⇤ denote the event that A wins in G⇤. Clearly, the bit � is statistically hidden from the attacker in
Gfinal, which means that Pr[Xfinal] = 1/2.

In Lemmas 1, 2, 3 and 4, we show that

– |Pr[Xreal]� Pr[X0,1]|  "DDH1,
– |Pr[Xk�1,1]� Pr[Xk,0]|  "DDH2,
– |Pr[Xk,0]� Pr[Xk,1]|  "DDH2,
– |Pr[Xq,1]� Pr[Xfinal]|  2q/p.



The advantage of A in breaking the security of H1 is thus given by

Advano-ind-cpa

H1
(A ) = |Pr[Xreal]�

1
2
|

= |Pr[Xreal]� Pr[Xfinal]|

 |Pr[Xreal]� Pr[X0,1]|+
qX

k=1

(|Pr[Xk�1,1]� Pr[Xk,0]|+ |Pr[Xk,0]� Pr[Xk,1]|)

+ |Pr[Xq,1]� Pr[Xfinal]|

 "DDH1 + 2q"DDH2 +
2q

p
.

In the sequel, B1 (resp. B2) is a DDH1-solver (resp. DDH2-solver). We argue that B1, using the adver-
sary’s ability to distinguish between Greal and G0,1, can solve DDH1. Similarly, A ’s power to distinguish
between Gk�1,1 and Gk,0 (or Gk,0 and Gk,1) for k 2 [1, q], can be leveraged to build a DDH2-solver B2.

Lemma 1. |Pr[Xreal]� Pr[X0,1]|  "DDH1.

Proof. Let (G, P1, bP1, sbP1, P2, (s+µ)P1) be the instance of DDH1 that B1 has to solve i.e., decide whether
µ = 0 or µ

U � Zp. The phases of the game are simulated by B1 as described below.

Setup: Choose c, d, u, �1, �3, �4, (ej , �2,j)h
j=1

U � Zp and set parameters as:

U1 = ��1(bP1) + dP1, V1,j = ��2,j(bP1) + ejP1 for j = 1, . . . , h, W1 = ��3(bP1) + cP1,
gT = e(bP1, P2)��4e(P1, P2)u

PP : (P1, bP1, U1, (V1,j)h
j=1, W1, gT )

All the secret scalars present in the MSK are known. B1 can thus create normal keys. However, B1’s lack
of knowledge of the scalar b or its encoding in G2 does not allow it to create semi-functional keys.

Key Generation Phases 1 & 2: B1 answers all of A ’s queries with normal keys generated by the
H1.KeyGen algorithm.

Challenge: A sends two message-identity pairs (m0, bid0), (m1, bid1). B1 chooses �
U � {0, 1}, encrypts

M� under bid� and sends the resulting ciphertext bC = ( bC0, bC1, bC2, bC3, ctag) to A . Let bid� = (bid1, . . . , bidb̀). bC
is computed as:

ctag U � Zp,
bC0 = M� · e(sbP1, P2)��4e((s + µ)P1, P2)u = M� · gs

T e(P1, P2)uµ,
bC1 = (s + µ)P1 = sP1 + µP1,
bC2 = sbP1,
bC3 = (��1 �

Pb̀
j=1 �2,j

bidj � ctag ·�3)(sbP1) + (d +
Pb̀

j=1 ej
bidj + ctag · c)(s + µ)P1

= (��1b + d +
Pb̀

j=1
bidj(��2,jb + ej) + ctag(��3b + c))(sP1) + (d +

Pb̀
j=1 ej

bidj + ctag · c)(µP1)

= s(U1 +
Pb̀

j=1
bidjV1,j + ctagW1) + µ(d +

Pb̀
j=1 ej

bidj + ctag · c)P1.

Observe that bC is normal if µ = 0 and semi-functional when µ
U � Zp.

Guess: A outputs its guess �0 and halts.



B returns 1 if A ’s guess is correct i.e., � = �0; otherwise B1 returns 0. The advantage of B1 in solving
the DDH1 instance is given by

AdvDDH1
G (B1) = |Pr[B1 returns 1|µ = 0]� Pr[B1 returns 1|µ U � Zp]|

= |Pr[� = �0|µ = 0]� Pr[� = �0|µ U � Zp]|
= |Pr[Xreal]� Pr[X0,1]|.

Since AdvDDH1
G (B1)  "DDH1, we have |Pr[Xreal]� Pr[X0,1]|  "DDH1.

Lemma 2. |Pr[Xk�1,1]� Pr[Xk,0]|  "DDH2.

Proof. B2 is given an instance (G, P1, P2, rP2, cP2, (rc+�)P2) of DDH2 and asked to decide whether � = 0
or �

U � Zp. It simulates the game as described below.

Setup: Pick scalars u,�0
1, �

0
3, �

0
4, d1, d2, (ej,1, ej,2, �0

2,j)
h
j=1

U � Zp and b
U � Z⇥

p and (implicitly) set

d = d1 + cd2, �1 =
�0

1 + d

b
, �3 =

�0
3 + c

b
, �4 =

�0
4 + u

b
,

ej = ej,1 + cej,2, �2,j =
�0

2,j + ej

b
for j = 1, . . . , h.

Parameters are generated as follows.

U1 = ��0
1P1, V1,j = ��0

2,jP1 for j = 1, . . . , h, W1 = ��0
3P1,

gT = e(P1, P2)��0
4

PP : (P1, bP1, U1, (V1,j)h
j=1, W1, gT )

The elements �1, �2,j , �3, d, ej that are part of the MSK are not available to B2. Even without these,
B2 can generate keys as explained in the simulation of the key generation phases.

Key Generation Phases 1 & 2: A queries on identities id1, id2, . . . , idq. B responds to the i-th query
(i 2 [1, q]) considering three cases.

Case 1: i > k
B2 returns a normal key, SKidi = (S1,S2) with S1 = ((Ki)i2[1,5], (D1,j , E1,j)j2[`+1,h]) and S2 =
((Ji)i2[1,5], (D2,j , E2,j)j2[`+1,h]). The master secret is not completely available to B2 and hence the
H1.KeyGen needs a modification. The S1-components are computed as shown below.

r1, r2
U � Zp,

K1 = r1P2, K2 = r1(cP2),

K3 =

0

@u + r1

0

@d1 +
X̀

j=1

idjej,1

1

A

1

A P2 + r1

0

@d2 +
X̀

j=1

idjej,2

1

A (cP2) =

0

@u + r1

0

@d +
X̀

j=1

idjej

1

A

1

A P2,

K4 = �b�1r1(�0
3P2 + cP2) = �r1

✓
�0

3 + c

b

◆
P2 = �r1�3P2,

K5 = �b�1

0

@�0
4 + u + r1

0

@�0
1 + d1 +

X̀

j=1

idj(�0
2,j + ej,1)

1

A

1

A P2 � b�1r1

0

@d2 +
X̀

j=1

idjej,2

1

A (cP2)



= b�1

0

@��0
4 � u� r1

0

@�0
1 + d +

X̀

j=1

idj(�0
2,j + ej)

1

A

1

A P2

=

0

@��0
4 + u

b
� r1

0

@�0
1 + d

b
+

X̀

j=1

idj

✓
�0

2,j + ej

b

◆1

A

1

A P2

=

0

@��4 � r1

0

@�1 +
X̀

j=1

idj�2,j

1

A

1

A P2,

for j = ` + 1, . . . , h,
D1,j = r1(ej,1P2 + ej,2(cP2)) = r1ejP2,

E1,j = �r1b
�1(�0

2,j + ej,1)P2 � r1b
�1ej,2(cP2) = �r1

✓
�0

2,j + ej

b

◆
P2 = �r1�2,jP2.

S2-components are generated in a similar fashion using a randomiser r2
U � Zp and leaving out the

scalars u and �0
4. Details are omitted.

Case 2: i < k
In this case, B2 first creates a normal key SKidi and runs H1.SFKeyGen on SKidi . This is possible
because the only scalar used in H1.SFKeyGen is b which is known to B2.

Case 3: i = k
Let SKidk

= (S1,S2) be the key that B2 generates for idk. Elements of S2 are created normally
(as indicated in Case 1). In the S1-portion of SKidk

, B2 embeds the DDH2 instance (consisting of
P2, cP2, rP2, (rc + �)P2) by generating the components as:

K1 = rP2, K2 = (rc + �)P2,

K3 = uP2 +

0

@d1 +
X̀

j=1

idjej,1

1

A (rP2) +

0

@d2 +
X̀

j=1

idjej,2

1

A (rc + �)P2

= uP2 + r

0

@d1 +
X̀
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idjej,1 + c

0

@d2 +
X̀

j=1

idjej,2

1

A

1

A P2 + �

0
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idjej,2

1

A P2
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0

@u + r

0

@d +
X̀
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idjej

1

A

1

A P2 + �

0

@d2 +
X̀
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idjej,2

1

A P2,

K4 = �b�1(�0
3rP2 + (rc + �)P2) = �r

✓
�0

3 + c

b

◆
P2 �

⇣�

b

⌘
P2 = �r�3P2 �

⇣�

b

⌘
P2,

K5 = �b�1

0

@�0
1 + d1 +

X̀

j=1

idj(�0
2,j + ej,1)

1

A (rP2)� b�1

0

@d2 +
X̀

j=1

idjej,2

1

A (rc + �)P2

= �b�1r

0

@�0
1 + d +

X̀

j=1

idj(�0
2,j + ej)

1

A P2 � b�1�

0

@d2 +
X̀

j=1

idjej,2

1

A P2

= �r

0

@�0
1 + d

b
+

X̀

j=1

idj

✓
�0

2,j + ej

b

◆1

A P2 �
⇣�

b

⌘
0

@d2 +
X̀

j=1

idjej,2

1

A P2



= �r

0

@�1 +
X̀

j=1

idj�2,j

1

A P2 �
⇣�

b

⌘
0

@d2 +
X̀

j=1

idjej,2

1

A P2,

for j = ` + 1, . . . , h,
D1,j = ej,1(rP2) + ej,2(rc + �)P2 = rejP2 + �ej,2P2,
E1,j = �b�1(�0

2,j + ej,1)rP2 � b�1ej,2(rc + �)P2

= �r

✓
�0

2,j + ej

b

◆
P2 �

⇣�ej,2

b

⌘
P2

= �r�2,jP2 �
⇣�ej,2

b

⌘
P2.

When � = 0, SKidk
is normal with r1 = r; otherwise, it is partial semi-functional with

r1 = r, �1 = �,
⇡ = d2 +

P`
j=1 idjej,2 and

⇡j = ej,2 for j = ` + 1, . . . , h

set implicitly.

Challenge: B2 obtains two message-identity pairs (m0, bid0), (m1, bid1) from A . It then picks �
U � {0, 1},

s, µ
U � Zp and generates a semi-functional encryption of M� under bid� = (bid1, . . . , bidb̀) given by bC =

( bC0, bC1, bC2, bC3, ctag) where

ctag = �d2 �
b̀X

j=1

bidjej,2,

bC0 = M� · gs
T · e(P1, P2)uµ,

bC1 = sP1 + µP1,
bC2 = sbP1,
bC3 = s

⇣
U1 +

Pb̀
j=1

bidjV1,j + ctagW1

⌘
+ µ

⇣
d1 +

Pb̀
j=1

bidjej,1

⌘
P1

= s
⇣
U1 +

Pb̀
j=1

bidjV1,j + ctagW1

⌘

+µ
⇣
(d1 + cd2) +

Pb̀
j=1

bidj(ej,1 + cej,2) + ctag · c
⌘

P1 � µ
⇣
d2c +

Pb̀
j=1

bidjej,2c
⌘

P1 � ctag · cµP1

= s
⇣
U1 +

Pb̀
j=1

bidjV1,j + ctagW1

⌘

+µ
⇣
d +

Pb̀
j=1

bidjej + ctag · c
⌘

P1 + cµ
⇣
�d2 �

Pb̀
j=1

bidjej,2 � ctag
⌘

P1

= s
⇣
U1 +

Pb̀
j=1

bidjV1,j + ctagW1

⌘
+ µ

⇣
d +

Pb̀
j=1

bidjej + ctag · c
⌘

P1.

The last step follows due to the fact that ctag = �d2 �
Pb̀

j=1
bidjej,2. Note that bC is properly formed. Also,

this is the only way B2 can generate a semi-functional ciphertext since no encoding of c is available in
the group G1. An implication is that B2 can only create a nominally semi-functional ciphertext for idk

since the relation tag = �⇡ will hold, thus providing no information to B2 about the semi-functionality of
SKidk

.

Guess: A returns its guess �0 of �.



B2 outputs 1 if A wins and 0 otherwise. Also, B2 simulates Gk�1,1 if � = 0 and Gk,0 if �
U � Zp.

Therefore, the advantage of B2 in solving the DDH2 instance is given by

AdvDDH2
G (B2) = |Pr[B2 returns 1|� = 0]� Pr[B2 returns 1|� U � Zp]|

= |Pr[� = �0|µ = 0]� Pr[� = �0|µ U � Zp]|
= |Pr[Xk�1,1]� Pr[Xk,0]|.

It now follows that |Pr[Xk�1,1] � Pr[Xk,0]|  "DDH2 from the fact that AdvDDH2
G (B)  "DDH2 for all t-

time adversaries B. What remains is to show that all the information provided to the adversary have the
correct distribution. The scalars b, u,�0

1, �
0
3, �

0
4, d1, d2, (ej,1, ej,2, �0

2,j)
h
j=1 chosen by B2 and r, c, � from the

instance are uniformly and independently distributed. As a consequence the following quantities have the
correct distribution.

– r1, �1 for the k-th key
– �4, �3

– d, (ej)h
j=1 and hence �1, (�2,j)h

j=1

The same scalars also determine ⇡, (⇡j)h
j=`+1 for k-th identity and ctag for challenge ciphertext which

are required to be uniform and independent quantities. We now argue that this is indeed the case. Let
idk = (id1, . . . , idh) and bid� = (bid1, . . . , bidh) where, for convenience we assume that id`+1 = · · · = idh =
bidb̀+1

= · · · bidh = 0. Without loss of generality, we consider the case ` = 1 since identity vectors are of
length at least 1. The quantities ⇡, (⇡j)h

j=2, ctag are given by the following equation.

0

BBBBB@

⇡
⇡2
...

⇡h
ctag

1

CCCCCA
=

0

BBBBBBB@

1 id1 id2 id3 id4 · · · idh

0 0 1 0 0 · · · 0
0 0 0 1 0 · · · 0
...

...
...

...
... . . . ...

0 0 0 0 0 · · · 1
�1 �bid1 �bid2 �bid3 �bid4 · · · �bidh

1

CCCCCCCA

0

BBBBBBB@

d2

e1,2

e2,2
...

eh�1,2

eh,2

1

CCCCCCCA

(1)

Observe that

– the first and last rows in the above matrix are linearly independent since identity components are in
Z⇥

p and idk 6= bid�. All other rows are linearly independent of these two rows. Hence the matrix has
rank h + 1.

– d2, e1,2, . . . , eh,2 are information theoretically hidden from A and also chosen from uniform and inde-
pendent distributions over Zp.

Conditioned on these observations, we conclude that ⇡, (⇡j)h
j=2, ctag are uniformly and independently dis-

tributed in A ’s view.

Lemma 3. |Pr[Xk,0]� Pr[Xk,1]|  "DDH2.

The proof is similar to that of Lemma 2. The di↵erence is that B2 creates a partial semi-functional key for
idk, the k-the identity queried by A , and then embeds the DDH2 instance in S2-portion of the key. B2

advantage in solving DDH2 will now depend on whether the A can determine whether SKidk
is partial or

fully semi-functional.



Lemma 4. |Pr[Xq,1]� Pr[Xfinal]|  (2q/p).

Proof. In Gq,1, all the keys returned to A are semi-functional and so is the challenge ciphertext. To argue
that Pr[Xq,1] = Pr[Xfinal]|, we modify the H1.Setup and H1.SFKeyGen algorithms so that the modifica-
tion results in Gfinal and the distribution of information provided to the adversary before and after the
modification are statistically indistinguishable except with probability 2q/p.

H1.Setup: Pick scalars �0
1, �

0
3, �

0
4, u, c, d, (ej , �0

2,j)
h
j=1

U � Zp and b
U � Z⇥

p and compute parameters as:

U1 = ��0
1P1, V1,j = ��0

2,jP1 for j = 1, . . . , h, W1 = ��0
3P1,

gT = e(P1, P2)��0
4

PP : (P1, bP1, U1, (V1,j)h
j=1, W1, gT )

setting

�1 =
�0

1 + d

b
, �3 =

�0
3 + c

b
, �4 =

�0
4 + u

b
,

�2,j =
�0

2,j + ej

b
for j = 1, . . . , h.

H1.SFKeyGen: Choose r1, r2, ⇡0, �0, (⇡0j , �
0
j)

h
j=`+1

U � Zp, �1, �2
U � Zp and compute the individual compo-

nents as follows.

K1 = r1P2, K2 = r1cP2 + �1P2, J1 = r2P2, J2 = r2(cP2) + �2P2,

K3 = ⇡0P2, J3 = �0P2,

K4 = �r1

✓
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3 + c

b
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⌘
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X̀

j=1

idj�2,j
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for j = ` + 1, . . . , h,

D1,j = ⇡0jP2, D2,j = �0jP2,

E1,j = �
✓

r1�0
2,j + ⇡0j
b

◆
P2, E2,j = �

✓
r2�0

2,j + �0j
b

◆
P2.

The setting of K3 = ⇡0P2 fixes the product �1⇡ that appears in its semi-functional form i.e.,⇣
u + r1

⇣
d +

P`
j=1 idjej

⌘
+ �1⇡

⌘
P2. The other component where ⇡0 is used is K5 that also fixes �1⇡ in its

semi-functional term. It is necessary to ensure that these two are equal. We show below that K5 is indeed



well-formed in this sense.
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A

1
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= �1
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0

@(�0
4 + u) + r1

0

@(�0
1 + d) +
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j=1

idj(�0
2,j + ej)
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@�1 +
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A

1
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Similarly, setting D1,j = ⇡0jP2 fixes �1⇡j since D1,j has the form r1ej + �1⇡j . E1,j is computed using ⇡0j
and we justify below that is is properly formed.

E1,j = �
✓

r1�0
2,j + ⇡0j
b

◆
P2

= �
✓

r1�0
2,j + r1ej + �1⇡j

b

◆
P2
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✓
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�1⇡j

b
P2

= �r1�2,jP2 �
�1⇡j

b
P2

The scalars ⇡0, (⇡0j)
h
j=1 define the products �1⇡, (�1⇡j)h

j=1 respectively. Since �1 is chosen uniformly from
Zp, ⇡, (⇡j)h

j=1 are uniformly and independently distributed in Zp except when �1 = 0. Similarly, it is
possible to show that J5, (E2,j)h

j=`+1 are well-formed and �, (�j)h
j=1 have the proper distribution given that

�2 6= 0. Furthermore, all elements of the key are generated independent of u, d, (ej)h
j=1 that determines the

independence of the ciphertext from the key. Let us now take a look at the challenge ciphertext:
bC0 = M� · gs

T · e(P1, P2)uµ,
bC1 = sP1 + µP1,
bC2 = sbP1,
bC3 = �s

⇣
�0

1 +
Pb̀

j=1
bidj�0

2,j + ctag�0
3

⌘
P1 + µ

⇣
d +

Pb̀
j=1

bidjej + ctag · c
⌘

P1,

where ctag, µ, s
U � Zp. Recall that u, d, (ej)h

j=1 are chosen independently and uniformly at random from Zp.
Consequently, components bC0 and bC1 are randomly distributed in GT and G1 respectively. Also these two
components are independent of all other information (including keys and public parameters) provided to
A . Therefore the bit � is information theoretically hidden from the adversary implying that the resulting
game (obtained by modifying H1.SFKeyGen) is Gfinal. The distribution of public parameters remains the
unchanged. Let Fi denote the event that �1 = 0 or �2 = 0 for an extract query on idi (for i 2 [1, q]). Clearly
Pr[Fi]  2/p. The keys have the correct distribution unless the event F = [q

i=1Fi occurs. Thus we have
|Pr[Xq,1]� Pr[Xfinal]|  Pr[F] 

Pq
i=1 Pr[Fi] = 2q/p.



D Security of H2 - An Overview

The security of H2 is very similar to that of H1. We only highlight the main di↵erences and omit the details
of the proof.

The definition of semi-functional ciphertexts remains the same. The semi-functional components in keys
are defined as for S1 in H1. Keys in H2 do not contain the second set of components S2. Hence, the notion
of partial semi-functionality is not required.

The game sequence is Greal, G0, (Gk)
q
k=1, Gfinal, where Greal is the actual HIBE CPA-security game

ind-cpa (defined in Section A).In G0, challenge ciphertext is semi-functional and all keys are normal. Gk,
0  k  q is similar to G0 except that the first k keys are semi-functional and the rest are normal. In Gfinal,
challenge ciphertext is a semi-functional encryption of a random message and all keys are semi-functional.
The theorem below summarises the exact security guarantee obtained for H2.

Theorem 3. If ("DDH1, t1)-DDH1 and ("DDH2, t2)-DDH2 assumptions hold in G1 and G2 respectively, then

H2 is (", t)-IND-ID-CPA-secure where "  "DDH1 + q · "DDH2 + (q/p), t1 = t + O(h⇢) and t2 = t + O(h⇢). ⇢
is the maximum time required for one scalar multiplication in G1 and G2.

Since the structure of the ciphertext in H2 and H1 are identical, so is the first reduction (based on
DDH1). The second reduction is also similar; it is only needed to show that the elements in G2 that are
made public can indeed be generated. The third reduction has one di↵erence. We no longer need to argue
about the independence of all information provided to the attacker with respect to the elements d, (ej)j2[1,h].
In H1, this was required to show anonymity i.e, the hash of the identity is masked by a random quantity.
We only need to show that the message to be masked by a random quantity in the last game and this is
done by arguing that the adversary’s view (excluding the challenge ciphertext) is independent of the scalar
u.


