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Abstract

This paper describes the first constructions of identity-based broadcast encryption (IBBE) using
Type-3 pairings which can be proved secure against adaptive-identity attacks based on the SXDH as-
sumption (which is a static, if not a standard, assumption) achieving a security degradation which is
not exponential in the size of the target identity set. The constructions are obtained by extending the
currently known most efficient identity-based encryption scheme proposed by Jutla and Roy in 2013. The
new constructions fill both a practical and a theoretical gap in the literature on efficient IBBE schemes.
Keywords: broadcast encryption, identity-based broadcast encryption, Type-3 pairings, dual-system
encryption, standard assumptions.

1 Introduction

Broadcast encryption (BE) enables broadcasting encrypted data to a set of users so that only a subset of
these users, called privileged users, are able to decrypt. Users who are unable to decrypt the broadcasted
information are called revoked users. The sets of privileged and revoked users form a partition of the set
of all users and these sets can vary with each broadcast. A BE system is said to be collusion resistant if
no information of the encrypted data is leaked even if all revoked users collude. BE has a wide range of
applications including pay-TV, copyright protection of digital content and encrypted file systems.

At a broad level, there are two settings for BE. In symmetric key BE, there is a centre which pre-
distributes key material to the users. During a broadcast, the actual message is encrypted with a session
key and the session key undergoes several encryptions using a subset of keys corresponding to the privileged
users. In such a scenario, it is not possible for an entity other than the centre to broadcast an encrypted
message. BE in the public key setting (PKBE) addresses this problem. Users have public and private
keys. Anybody can encrypt and broadcast a message but only the intended recipients (privileged users) can
decrypt.

Identity-based broadcast encryption (IBBE) is an extension of PKBE. As in the case of identity-based
encryption (IBE), there is a private key generator (PKG) which issues decryption keys to entities against
their identities. A message can be encrypted to a set of privileged identities. The motivation of IBBE is to
reduce the communication overhead when the same message is to be sent to a group of identities. Further,
anyone can broadcast given just the public parameters of the PKG. The focus of this work is the construction
of IBBE schemes.

1.1 Issues Regarding the Construction of IBBE Schemes

There are several important issues to be considered for IBBE schemes. Below we briefly discuss some of
these issues.
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Security model: The security model for IBBE allows an adversary to specify a target set of identities
such that the adversary can compromise the security of an encryption to this target set. The model also
allows the adversary to corrupt entities and obtain the decryption keys corresponding to their identities with
the restriction that the corrupted set of identities is disjoint from the target set of identities. Depending
on when the adversary specifies the target set leads to two different security notions. The weaker notion,
called selective-identity security (abbreviated as sID), requires the adversary to specify the target set before
seeing the public parameters or corrupting any entity. The stronger notion, called adaptive-identity security
(abbreviated as aID), allows the adversary to specify the target set after it has corrupted a set of identities
(and also allows it to corrupt identities after specifying the target set). It is desirable to obtain schemes
which are secure against adaptive-identity attacks.

Security degradation: In reduction proofs, the security result is quantified in terms of a security bound.
Such a bound states that the advantage of breaking the scheme is upper bounded by the advantage of solving
some hard problem multiplied by a factor. This factor represents the security degradation. For some IBBE
schemes achieving security against adaptive-identity attacks, the degradation is exponential in the size of
the target set of identities. As a consequence, the security result becomes meaningless for even moderately
sized target identity set.

Hardness assumption: As in most public-key schemes, the proof of security of the primitive is based
on the assumption that some well formulated problem is computationally hard. There is a small subset of
such problems which are considered to be standard. Apart from standard hardness assumptions, designers
sometimes have to create new hard problems to effect a reduction. These problems are often parametrised
by a quantity arising either in the construction or the proof. If not, they are termed static. Since such
non-standard problems are less studied, a basic theme of research is to try and obtain schemes which can be
proved secure under standard and/or static assumptions.

Header size: In all BE schemes, the actual message undergoes a single encryption with a session key.
In addition to this, the ciphertext contains some additional information which allows a privileged user to
obtain the session key and recover the message. This additional information constitutes the header of the
ciphertext. To reduce the communication overhead it is desirable to reduce the size of the header as much
as possible. So, BE schemes with lower header sizes are preferable.

User key size: The amount of key material that a user has to store is an important parameter. Practical
deployment may require storing such material in smart cards. Consequently, it is of interest to try and
reduce the size of user keys as much as possible.

Type of pairing: Efficient constructions of IBBE fall in the general category of pairing-based cryptogra-
phy. Such constructions require a bilinear pairing e : G1 × G2 → GT where G1,G2 and GT are groups of
some prime order p. Three kinds of pairings are identified in the literature: Type-1, where G1 = G2; Type-2,
where an efficiently computable isomorphism from G2 to G1 is known; and Type-3, where there are no
known efficiently computable isomorphisms from G1 to G2 or vice versa. It has been reported in the litera-
ture [SV07, GPS08, CM11], that among the different types of pairings, it is the Type-3 pairings which provide
the most compact parameter sizes and the most efficient algorithms. Further, Type-1 pairings are usually
defined over low characteristics fields and recent advances [BGJT14, Jou13, GKZ14a, AMORH14, GKZ14b]
in algorithms for discrete log computations over such fields have raised serious question marks about the
security of Type-1 pairings [Gal14]. From both efficiency and security considerations, constructions based
on Type-3 pairings are desirable.
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1.2 Our Contributions

We present the first IBBE constructions using Type-3 pairings that achieve security against adaptive-
identity attacks under the Symmetric eXternal Diffie-Hellman (SXDH) assumption. All previously known
IBBE schemes either used Type-1 pairings, or achieved security against selective-identity attacks, or used
parametrised assumptions, or were obtained from dual pairing vector spaces making them quite inefficient.

A simple way to encrypt a single message to a set of identities is to use an IBE scheme to encrypt it
separately to each of the identities. Such a strategy, however, does not allow any savings in the header size.
The encryption algorithm of an IBE scheme results in a ciphertext which consist of several elements of G1

and/or G2. To obtain a non-trivial IBBE scheme, it is of interest to try and share some of the group elements
in the ciphertext across all the encryptions. This will lead to a reduction in the size of the ciphertext over
the trivial scheme of separate encryption to each identity.

Currently, the most efficient IBE scheme that is known is due to Jutla and Roy [JR13]1. In this work,
we investigate the possibility of converting this IBE scheme into an IBBE scheme. The intuitive idea is
to share the randomiser across all the identities. Doing this directly, however, does not admit a security
proof. To get around the problem, we need to put a bound on the size of the set of identities to which a
single message can be simultaneously encrypted and then let the size of the public parameters be determined
by this bound. The group elements in the public parameters allow the computation of polynomial hash
of each of the identities. These hashes vary with the identities whereas the group elements which do not
depend on the identity remain the same for all the identities. It is due to this feature that we are able to
get a substantial practical reduction in the size of the ciphertext. The resulting scheme, denoted IBBE1, can
be proved to be secure against adaptive-identity attacks using the dual-system proof technique introduced
by Waters [Wat09]. The underlying hardness assumption consists of the decisional Diffie-Hellman (DDH)
assumptions in the groups G1 and G2 (DDH1 and DDH2 respectively) collectively known as the SXDH
assumption.

Ciphertexts in IBBE1 contain ` Zp elements (called tags) where ` is the number of identities to which
encryption is to be done. Our second scheme, IBBE2, is a modification of IBBE1 which provides a method
whereby the number of tags in the ciphertext goes down and hence results in shorter ciphertexts. The proof
of security of this scheme can be reduced from the proof of security of IBBE1 using a hybrid argument. We
use a method from [GW09] whereby the tags can be generated using a hash function resulting in an even
further reduction in the size of the ciphertext. The reduction is more significant in the case of IBBE1 than in
the case of IBBE2. The trade-off for doing this is that the hash function needs to be modelled as a random
oracle for the security proof. User storage in both IBBE1 and IBBE2 consists of a constant number of group
elements of G2.

Naor, Naor and Lotspiech [NNL01] had provided a combinatorial framework called the complete subtree
(CS) scheme for symmetric key BE. Dodis and Fazio [DF03] had shown how to combine an IBE scheme with
the CS scheme to obtain a PKBE scheme. We build on this framework and show that combining an IBBE
scheme with the CS scheme leads to a PKBE scheme with even better parameters. Concretely, we discuss
the issue of combining the CS scheme with IBBE1. A previous work [BSNS05] had proposed a particular
IBBE obtained from the Boneh-Franklin IBE scheme [BF03] and had used an idea similar to ours to obtain
a PKBE scheme.

Discussion on the SXDH Assumption. For both the DDH and the DLin problems there are no known
efficient algorithms to solve these problems in a suitable subgroup of the points on an elliptic curve. The
situation changes when we move to pairing groups. For Type-1 pairings, i.e., in the case G1 = G2, DDH
becomes easy to solve, whereas DLin is still conjectured to be hard. On the other hand, for Type-3 pairings,
the situation is different. As mentioned earlier, for such pairings, there are no known efficiently computable
isomorphisms from G1 to G2 or from G2 to G1. A consequence of this is that the easy algorithm for solving

1In the scheme in [JR13] ciphertexts consist of elements of G2. A simple variant of this scheme has ciphertexts which consist
of elements of G1 [RS13]. This variant is the IBE of choice.
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DDH in Type-1 pairings no longer applies and for Type-3 pairings there are no known efficient algorithms
to solve DDH1 or DDH2.

The DDH1 (resp. DDH2) problem would become easy if one were able to find an efficiently computable
isomorphism from G1 to G2 (resp. G2 to G1). The non-existence of such isomorphisms is an underlying
assumption required for the SXDH assumption to hold. Presently, the isomorphism problem has perhaps
not been studied in detail and so, considering SXDH to be a standard assumption may not be universally
accepted. On the other hand, we do mention that there is evidence [Ver04, GR04] that SXDH is indeed
hard. Further, starting from Waters’ remarks about the possible efficiency improvements of his dual-system
IBE using the SXDH assumption, several schemes have been proposed whose security relies on this as-
sumption [CLL+12, CW13, JR13]. In view of the above discussion, we consider SXDH to be a ‘natural’
assumption which has been used earlier and has some evidence to support the assumption. In the current
state of knowledge, there is no evidence to suggest that for Type-3 pairings, SXDH problem is easier than
DLin.

1.3 Previous and Related Works

The notion of broadcast encryption was introduced by Fiat and Naor in [FN93]. They describe a symmetric
key scheme that achieves bounded collusion resistance. The first fully collusion secure BE (for stateless
receivers) was proposed by Naor, Naor and Lotspiech [NNL01]. They describe two symmetric key based
BE constructions. Dodis and Fazio [DF02] used techniques from (hierarchical) identity-based encryption
to instantiate the subset cover framework thereby leading to the first fully collusion resistant public key
broadcast encryption (PKBE) schemes. The ciphertext size in their constructions is linear in the number of
privileged users.

Boneh, Gentry and Waters [BGW05] proposed the first PKBE system achieving constant size ciphertexts.
The scheme can be proved secure without random oracles but in the weaker selective model. Delerablée,
Paillier and Pointcheval introduced dynamic broadcast encryption in [DPP07] and proposed two (partially)
adaptively secure constructions. In dynamic BE schemes, a (new) user can join at any point of time. The
confidentiality of a broadcasted message prior to joining of the new user must not be compromised after the
join. The join operation requires that the sender is made aware of the public key corresponding to the new
user.

The first adaptively secure schemes were proposed by Gentry and Waters [GW09] in both the public key
and identity-based settings. They describe two kinds of schemes – one achieving security without random
oracles with ciphertext size linear in the number of privileged users and the other consisting of constant
size ciphertexts with security relying on the use of random oracles. More recently, the case of adaptive
CCA-security was considered in [PPS11, PPSS12]. The construction proposed in the later work has the
constant-size ciphertext feature while the former allows users to join the system dynamically.

All the schemes mentioned so far are secure under some non-standard and parametrised assumptions.
The first BE scheme with a proof of security under static assumptions was proposed by Waters [Wat09]
using the dual system encryption method. The scheme has constant size ciphertexts but the user key size is
linear in the total number of users. A revocation system with constant sized keys was proposed in [LSW10]
with ciphertext size growing linearly in the number of revoked users and security from static assumptions.

The concept of identity-based broadcast encryption (IBBE) was formalised by Barbosa and
Farshim [BF05] and independently by Baek, Safavi-Naini and Susilo [BSNS05]. They called it multi-receiver
identity-based encryption (MR-IBE). The work [BSNS05] described a pairing based construction based on
the Boneh-Franklin IBE [BF03] that could be proved selectively secure in the random oracle model. A key
encapsulation scheme for multiple parties obtained by extending the OR-construction of Smart [Sma04] to
the identity-based setting was presented in [BF05]. Security relies on the use of random oracles.

The construction in [PKL08] (a corrected and improved version of [CS06b]) achieves a trade-off between
the ciphertext size and the user key size. Ciphertexts are of size |S|/N , and user secret keys are of size N
where N is a parameter of the protocol (representing the maximum number of identities that the adversary
is allowed to corrupt during simulation). This was the first scheme with sub-linear sized ciphertexts.
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Abdalla et al. [AKN07] provided a generic construction from “wicked IBE” with constant-sized ciphertexts
but user storage quadratic in m, the maximum number of recipients of a ciphertext. Both schemes ([PKL08]
and [AKN07]) are selectively secure without random oracles. In 2007, Delerablée [Del07] proposed an IBBE
construction with constant size ciphertexts and secret keys. The public parameters have size O(m). Security
was proved in the selective identity model.

Gentry and Waters [GW09] were the first to propose adaptively secure IBBE systems achieving linear and
sub-linear sized ciphertexts. However, their proofs were based on non-standard assumptions parameterised
by m.

The issue of anonymity in IBBE schemes was addressed by Fan, Huang and Ho [FHH10]. Ciphertexts
in anonymous BE schemes completely hide information about the set of privileged recipients. A secret
key for a privileged user’s identity allows decryption without knowledge of other privileged identities. The
construction proposed in [FHH10] was based on Boneh-Franklin IBE but only selectively secure in the
random oracle model. Later work by Ren et al. [RNZ14] proposed a similar construction based on Waters’
IBE [Wat05] that achieved adaptive security. This scheme is the most efficient among fully secure schemes
based on standard assumptions but the security degradation is O(n`) (where identities are n-bit strings and
` is the number of identities in the target group) thus making the reduction meaningful only for very small
values of `.
Note: A basic functionality of any identity-based system is that it is dynamic. The PKG should be able
to generate keys for any identity from the identity space; further, an identity-based system should allow
for encryption to be possible to an identity even before a key for that identity has been generated. By
extension, any proper identity-based broadcast encryption scheme should also be dynamic and this is true
of the schemes that we describe.

In the following section, we compare the various parameters of our constructions to that of the construc-
tions appearing in the literature. IBBE can be viewed as a special case of inner product encryption (IPE).
The constructions of adaptively secure IPE given in [LOS+10, OT11, OT12] use dual pairing vector spaces
and hence lead to very inefficient schemes. A construction of adaptively secure IPE is given in [AL10] which
is based on Waters’ IBE [Wat09].

Pair Encoding and Attribute-Based Encryption. Attrapadung [Att14] introduced a new primitive
called pair encoding schemes that lead to generic constructions of fully secure predicate encryption schemes.
Constructions were based on composite-order pairings and recently prime-order variants have been proposed
in [Att15]. One of the implications was a fully secure attribute-based encryption (ABE) scheme with con-
stant size ciphertexts. The ABE scheme can be specialised to obtain an IBBE system with constant sized
ciphertexts but public parameter and key sizes being proportional to m. Furthermore, the construction is
based on composite-order pairings and security is based on a non-standard parameterised assumption. In
the context of IBBE, the new scheme does not offer any improvements over the Gentry-Waters scheme in
terms of the underlying assumptions. We do not include this scheme in our comparison tables.

1.4 Comparison to Existing Schemes

Tables 1 and 2 provide comparison of IBBE1, IBBE2, IBBERO

1 and IBBERO

2 with previously known IBBE
systems secure with and without random oracles respectively. The ones derived as special cases of inner-
product encryption have been omitted due to reasons explained earlier. Apart from these, we have tried to
include all previously known IBBE schemes appearing in the literature.

We consider the following schemes for comparison: the early selectively secure constructions [BSNS05,
BF05] based on random oracles (ROs); constructions in [CS06a, CS06b] with selective security and with-
out ROs; constant-size ciphertext IBBE schemes selectively secure (with and without ROs) proposed by
Delerablée [Del07]; generic constructions of IBBE schemes from “wicked” IBE schemes by Abdalla-Kiltz-
Neven [AKN07] instantiated with BBG-HIBE (without ROs) and GS-HIBE (with ROs); two adaptively
secure IBBE constructions proposed by Gentry and Waters [GW09] – one with linear size (in number of
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privileged users) ciphertexts and the other with sub-linear size ciphertexts referred to as (a) and (b) respec-
tively and a variant of scheme (a) based on ROs.

The basis for comparison are the following parameters – type of pairing, number of group elements in
PP (denoted #pp) from G1 and GT , number of elements in Hdr (#hdr) from G1 and {0, 1}n (the key space
of a DEM scheme as part of the KEM-DEM framework), number of elements in a user key (#ukey) from G2

and Zp, efficiency of encryption/encapsulation (#enc) measured in terms of number of scalar multiplications
in G1 (denoted M1) and number of multiplications in Zp (denoted Mp), number of pairings required for
decryption/decapsulation (#dec), security model and computational assumptions. The quantity m denotes
the maximum size of the privileged users’ set and ` (≤ m) is the size of the intended recipient set chosen
during encryption. In construction [GW09]-(b) as well as scheme IBBE2, the maximum number of privileged
users is given by m = m1m2. The size of the set of users chosen during encryption is given by ` = `1`2
where `1 ≤ m1 and `2 ≤ m2. In [RNZ14], n denotes the length of an identity. In the comparison, we ignore
descriptions of hash functions, pseudorandom functions (PRFs) and other parameters that do not have any
significant effect on the space-efficiency.

In the paper by Gentry and Waters [GW09], construction (b) consists of `1 separate symmetric encryp-
tions of the message under the `1 keys generated by calls to the encapsulation algorithm of construction (a).
In practice, the `1 keys would be used to mask a single session key via a KDF and there would be single
encryption of the message under the session key. We take this into account in the comparison tables.

‘CCA’ stands for chosen ciphertext attack whereas ‘CPA’ stands for chosen plaintext attacks. Apart
from [BF05] all other schemes, including ours, have been proved secure against CPA. While CCA-security
is the final desired goal, the first challenge in the design of IBBE schemes is to be able to handle adaptive-
identity attacks. Most of the research works on this topic have focussed on this goal. Given that our
constructions provide satisfactory solutions to the first problem, adapting known techniques to efficiently
achieve CCA-security should form the focus of future work. In addition to CPA-security, the constructions
in [RNZ14, FHH10] also achieve anonymity based on DBDH and DBDH-M respectively. Since we do not
deal with anonymity in our constructions, this property is not included in our comparisons.

The assumptions mentioned in the tables are as follows: decisional bilinear Diffie-Hellman (DBDH), Gap
bilinear DH (Gap-BDH), decisional bilinear DH exponent (DBDHE), generalised decisional DH exponent
(GDDHE), DBDHE sum (DBDHES), modified DBDH (DBDH-M), security of a pseudorandom function
(PRF) and SXDH. Recall that SXDH assumption is a single name for the two decisional Diffie-Hellman
(DDH) assumptions in the groups G1 and G2.

Scheme Pairing #pp #hdr #ukey #enc #dec Security Assumptions
G1 GT G1 {0, 1}κ G2 Zp M1 Mp

[BSNS05] Type-1 3 – `+ 1 – 1 – O(`) – 2 sID-CCA Gap-BDH
[BF05] Type-1 3 – 3` – 1 – O(`) O(1) 2 sID-CCA Gap-BDH
[AKN07] (from GS-HIBE) Type-1 m+ 2 1 `+ 1 – O(m) – O(m) – `+ 1 sID-CPA DBDH
[Del07]-ROM Type-1 m+ 2 1 2 – 1 1 O(`) O(2`) 2 sID-CPA GDDHE
[GW09]-(a)-ROM Type-1 4m+ 2 – 4 – 1 1 O(`) O(2`) 2 aID-CPA m-DBDHES
[FHH10] Type-1 3 – `+ 2 O(1) 1 – O(`2) O(`2) 2† sID-CPA co-DBDH

IBBERO

1 Type-3 m+ 4 1 `+ 2 1 5 – O(m`) O(1) 3 aID-CPA SXDH
IBBERO

2 Type-3 m2 + 4 1 `+ 2`1 `1 + 1 5 – O(m2
2`1) O(1) 3 aID-CPA SXDH

†: Additionally, ` map-to-point computations are required.

Table 1: Comparison of IBBERO

1 and IBBERO

2 with previously known IBBE systems in the random oracle
model. In the case of Type-1 pairings, G2 is the same as G1.

Based on Tables 1 and 2, we have the following observations.

1. The new constructions use Type-3 pairings whereas the other constructions in the tables used Type-1
pairings. This leads to significantly smaller sizes for G1 which in turn leads to smaller ciphertexts and
faster encryption and decryption algorithms.
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Scheme Pairing #pp #hdr #ukey #enc #dec Security Assumptions
G1 GT G1 {0, 1}κ Zp G2 Zp M1 Mp

[CS06a] Type-1 m+ 4 – `+ 1 – – 2 – O(m`) O(1) 2 sID-CPA DBDH
[CS06b] Type-1 m+ 4 – 2` – – m+ 2 – O(`) O(1) 2 sID-CPA (m+ 1)-DBDHE
[AKN07] (from BBG-HIBE) Type-1 m+ 4 – 2 – – `+ 1 – O(`) O(1) 2 sID-CPA (`− 1)-DBDHE
[Del07] Type-1 m+ 2 1 2 – – 1 – O(`) O(2`) 2 sID-CPA GDDHE
[GW09]-(a) Type-1 4m+ 2 – 4 – ` 1 1 O(`) O(2`) 2 aID-CPA m-DBDHES, PRF
[GW09]-(b) Type-1 4m2 + 2 – 4`1 `1 `2 1 1 O(`) O(2`2`1) 2 aID-CPA m-DBDHES, PRF
[RNZ14] Type-1 n+ 3 1 `+ 1 1 – 2 – O(`2) O(`2) 2 aID-CPA† DBDH
[AL10] Type-1 m+ 11 1 9 – 1 m+ 6 m− 1 12 +m m+ 1 8‡ aID-CPA DLIN, DBDH

IBBE1 Type-3 m+ 4 1 `+ 2 – ` 5 – O(m`) O(1) 3 aID-CPA SXDH
IBBE2 Type-3 m2 + 4 1 `+ 2`1 `1 m2 5 – O(m2

2`1) O(1) 3 aID-CPA SXDH

†: The security degradation is exponential in the size of the target identity set.
‡: Additional m− 1 multiplications in M1 are required.

Table 2: Comparison of IBBE1 and IBBE2 with existing IBBE systems without random oracles. In the case
of Type-1 pairings, G2 is the same as G1.

2. Apart from IBBE1, IBBERO

1 , IBBE2, IBBERO

2 ; the constructions of Gentry and Waters [GW09] (denoted
(a), (b), (a)-ROM); the construction by Ren et al. [RNZ14]; and the construction by Attrapadung and
Libert [AL10]; all other schemes listed in the tables are secure only in the weaker selective identity
model.

3. The scheme in [RNZ14] has a security degradation of O(n`) (where n is the length of identities) thus
making the reduction meaningful only for very small values of `.

4. The schemes in [GW09] achieve adaptive security but, are based on non-static and (also non-standard)
assumptions. Apart from IBBE1, IBBE2, the other scheme which achieves adaptive security based on
standard assumptions is [AL10].

5. The constructions in [GW09] have better ciphertext sizes whereas our constructions have better public
parameter sizes. The trade-off is the use of a non-static assumption, i.e., the hardness assumption
is parameterised by m. Another trade-off is provided by the constructions in [AL10] which provide
ciphertexts consisting of a constant number of group elements while the number of group element in
the decryption keys is O(m).

6. Observe that our schemes require more scalar multiplications in G1 during encryption compared to the
schemes of Gentry and Waters [GW09]. On the other hand, the number of multiplications in Zp for
the schemes in [GW09] is exponential in ` and becomes inefficient even for moderate values of `.

2 Preliminaries

In this section, we define some notation, then review pairings, complexity assumptions required for the
proofs, and formal definitions related to identity-based broadcast encrytion.

2.1 Notation

The notation x1, . . . , xk
R←− X indicates that elements x1, . . . , xk are sampled independently from the set

X according to some distribution R. We use U to denote the uniform distribution and so in particular, the

notation x1, . . . , xk
U←− X denotes the independent and uniform random choice of x1, . . . xk from X .

For a (probabilistic) algorithm A, y
R←− A(x) means that y is chosen according to the output distribution

of A on input x. A probabilistic algorithm A requires internal random coins for its execution. The notation
A(x; r) denotes that A is run on input x with its internal random coins set to r.

7



For two integers a < b, the notation [a, b] represents the set {x ∈ Z : a ≤ x ≤ b}. If G is a finite cyclic
group, then G× denotes the set of generators of G. For p a prime, considering Zp as an additive cyclic group,
the set Z×p denotes the set of all generators of Zp which is the set of all non-zero elements of Zp.

2.2 Asymmetric Pairings and Hardness Assumptions

A bilinear pairing ensemble is a 7-tuple G = (p,G1,G2,GT , e, P1, P2) where G1 = 〈P1〉, G2 = 〈P2〉 are written
additively and GT is a multiplicatively written group, all having the same order p and e : G1 ×G2 → GT is
a map with the following properties.

1. Bilinear: For P1, Q1 ∈ G1 and P2, Q2 ∈ G2, the following holds:
e(P1, P2 +Q2) = e(P1, P2)e(P1, Q2) and e(P1 +Q1, P2) = e(P1, P2)e(Q1, P2).

2. Non-degenerate: If e(P1, P2) = 1T , the identity element of GT , then either P1 is the identity of G1 or
P2 is the identity of G2.

3. Efficiently computable: The function e should be efficiently computable.

Three main types of pairings have been identified in the literature [SV07, GPS08].

Type-1 In this type, the groups G1 and G2 are the same.

Type-2 G1 6= G2 and an efficiently computable isomorphism ψ : G2 → G1 is known.

Type-3 Here, G1 6= G2 and no efficiently computable isomorphisms between G1 and G2 are known.

The constructions we provide are based on Type-3 pairings. The computational assumptions on which the
security of our constructions are based are the decision Diffie-Hellman (DDH) assumptions in groups G1

and G2, called DDH1 and DDH2 assumptions respectively. We do not directly use the DDH1 assumption.
Instead, we use a variant which we call the DDH1∗ assumption. Below, we describe these assumptions and
show that if the DDH1 assumption holds then so does the DDH1∗ assumption also holds.

Let G = (p,G1,G2,GT , e, P1, P2) be a Type-3 bilinear pairing ensemble.

DDH1. Let A be a probabilistic algorithm which takes as input (G, Q1, R1, S1) and returns a bit; where

Q1, R1 and S1 are elements of G1. Let a, b, c
U←− Zp. The advantage of A in solving the problem DDH1 is

defined to be

AdvDDH1
G (A ) = |Pr[A (G, aP1, bP1, abP1) = 1]− Pr[A (G, aP1, bP1, (ab+ c)P1) = 1]|.

The probabilities are over uniform random choices of a, b, c and the internal random bits of A . The (ε, t)-
DDH1 assumption is that, for any t-time algorithm A , AdvDDH1

G (A ) ≤ ε.

DDH2. Let A be a probabilistic algorithm which takes as input (G, Q2, R2, S2) and returns a bit; where

Q2, R2 and S2 are elements of G2. Let a, b, c
U←− Zp. The advantage of A in solving the problem DDH2 is

defined to be

AdvDDH2
G (A ) = |Pr[A (G, aP2, bP2, abP2) = 1]− Pr[A (G, aP2, bP2, (ab+ c)P2) = 1]|.

The probabilities are over uniform random choices of a, b, c and the internal random bits of A . The (ε, t)-
DDH2 assumption is that, for any t-time algorithm A , AdvDDH2

G (A ) ≤ ε.
In our security reduction, we will require a slightly different form for the DDH1 problem. This is defined

below.
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DDH1∗. Let A be a probabilistic algorithm that takes as input a tuple (G, Q1, S1, R1) and outputs a bit;

where Q1, S1 and R1 are elements of G1. Let a
U←− Z×p and s, µ

U←− Zp. The advantage of A in solving the
DDH1∗ problem is defined to be

AdvDDH1∗

G (A ) = |Pr[A (G, aP1, asP1, sP1) = 1]− Pr[A (G, aP1, asP1, (s+ µ)P1) = 1]|.

The probabilities are over uniform random choices of a in Z×p and s, µ in Zp and the internal random
bits of A . The (ε, t)-DDH1∗ assumption holds in G if for any adversary A running in time at most t,

AdvDDH1∗

G (A ) ≤ ε.

Note. In the above, the bound ε on the advantage depends on the size of p and the sizes of the groups
G1 and G2. In practical situations, it will be required to set up the pairing ensemble G based on the target
security level of the IBBE scheme.

Proposition 2.1. 1. If the (ε, t)-DDH1 assumption holds in G and ε ≤ (p− 1)/p, then the (ε, t)-DDH1∗

assumption also holds in G.

2. If the (ε, t)-DDH1∗ assumption holds in G, then the (ε, t)-DDH1 assumption holds in G.

A detailed proof of the proposition is provided in Appendix A. The implication from DDH1 assumption to
DDH1∗ assumption (i.e., the first part of the equivalence) would be sufficient for our security proofs. For
the sake of completeness, we also include the other way implication and show equivalence between the two
assumptions.

2.3 Identity-Based Broadcast Encryption (IBBE)

Identity-based broadcast encryption (IBBE) is usually defined following the hybrid encryption (KEM-DEM)
paradigm. The IBBE key encapsulation mechanism (KEM) produces a session key along with a header. This
session key is used to encrypt the message via the data encapsulation mechanism (DEM). The DEM could
be instantiated, for instance, to a (IND-CPA secure) symmetric key encryption scheme. The security of the
IBBE would then rely on the security of the KEM. Our main interest is designing secure IBBE-KEMs. The
details of the DEM are omitted and also not considered in the security proofs. Furthermore, for the sake of
simplicity, we use the term IBBE in place of IBBE-KEM.

Definition 2.1 (IBBE). An IBBE scheme is defined by four probabilistic algorithms – Setup, Encap, KeyGen
and Decap. The identity space is denoted I and the key space for the DEM is denoted by K .

Setup(κ,m) Takes as input a security parameter κ, the maximum number m of identities in a privileged
recipient group and generates the public parameters PP and the master secret MSK. The algorithm
also defines the identity space I and key space K for the DEM.

KeyGen(MSK, id) Input is an identity id and master secret MSK; output is a secret key SKid for id.

Encap(PP, S ⊆ I ) Takes as input a set of identities S that are the intended recipients of the message. If
|S| ≤ m, the algorithm outputs a pair (Hdr,K) where Hdr is the header and K ∈ K is the session key.

Decap(PP, S, id,SKid,Hdr) Inputs the public parameters, a set S = {id1, . . . , id`}, an identity id, a secret
key SKid corresponding to id, a header Hdr and outputs the session key K if id ∈ S.

The message to be broadcast is encrypted using a DEM Sym = (Sym .Encrypt, Sym .Decrypt) with key space

K . Let C R←− Sym .Encrypt(K,M) where M is the message to be broadcast and K is the session key returned
by Encap algorithm. The broadcast consists of the triple (S,Hdr, C). The full header is given by (S,Hdr).
During decryption, the key K output by the Decap algorithm is used to decrypt C to obtain the message M
as M = Sym .Decrypt(K, C).
Correctness. The IBBE scheme satisfies the correctness condition if for all sets S ⊆ I with |S| ≤ m, for

all idi ∈ S, if (PP,MSK)
R←− Setup(κ,m), SKidi

R←− KeyGen(MSK, idi), (Hdr,K)
R←− Encap(PP, S), then

Pr[K = Decap(PP, S, idi,SKidi ,Hdr)] = 1.
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Notes:

1. We have provided m as an input to the setup algorithm. This is because of the fact that in the schemes
that we describe later, the public parameters and the master secret key will depend on m. For a general
IBBE scheme, it is not necessarily required for the setup algorithm to take m as an input.

2. The setup algorithm also takes as input a security parameter κ. This indicates the security level of
the scheme that is to be set up which in turn will determine the sizes of the various components of the
pairing ensemble G.

Definition 2.2 (IBBE Security). Adaptive security against chosen plaintext attacks in identity-based broad-
cast encryption systems is defined via the following game ind-cpa between an adversary A and a challenger.
Setup: The challenger runs the Setup algorithm of the IBBE and gives the public parameters to A .
Key Extraction Phase 1: A makes a number of key extraction queries adaptively. For a query on an
identity vector id, the challenger responds with a key SKid.
Challenge: A provides a challenge set Ŝ with the restriction that if id is queried in the key extraction

phase 1, then id /∈ Ŝ. The challenger computes (Ĥdr,K0)
R←− Encap(PP, Ŝ) and chooses K1

U←− K . It then

chooses a bit β uniformly at random from {0, 1} and returns (Ĥdr,Kβ) to A .
Key Extraction Phase 2: A makes more key extraction queries with the restriction that it cannot query
a key for any identity in Ŝ.
Guess: A outputs a bit β′.

If β = β′, then A wins the game. The advantage of A of the IBBE scheme in winning the ind-cpa game
is given by

Advind-cpa
IBBE (A ) =

∣∣∣∣Pr[β = β′]− 1

2

∣∣∣∣ .
The IBBE scheme is said to be (ε, t, q)-IND-ID-CPA secure if every t-time adversary making at most q key

extraction queries has Advind-cpa
IBBE (A ) ≤ ε.

3 IBBE – A First Construction

Our IBBE constructions are based on a variant of the Jutla-Roy IBE [JR13] defined in [RS13] referred to as
JR-IBE-D described in the following section.

3.1 Variant of Jutla-Roy IBE

In the dual system proof strategy, there are two kinds of decryption keys and ciphertexts called normal and
semi-functional. The normal keys and ciphertexts are those which are defined in the actual scheme, while
the semi-functional keys and ciphertexts are defined as part of the proof and will not be used in the actual
scheme. More details on how the semi-functional keys and ciphertexts are used in the proof are given below.

For the description of the JR-IBE-D, we use a compact notation to denote normal and semi-functional
ciphertexts and keys. The group elements shown in curly brackets { } are the semi-functional components.
To get the scheme itself, these components should be ignored.
Parameters: Choose P1

U←− G×1 , P2
U←− G×2 , α1, α2,∆1,∆2,∆3, c, d, f

U←− Zp, b
U←− Z×p , and set U1 =

(−∆1b+d)P1, V1 = (−∆2b+ f)P1, W1 = (−∆3b+ c)P1, gT = e(P1, P2)α1+bα2 . The parameters are given by
PP : (P1, bP1, U1, V1,W1, gT )
MSK : (P2, cP2, α1, α2,∆1,∆2,∆3, d, f)

Encryption:
tag, s

U←− Zp, {µ
U←− Zp}

C0 = m · (gT )s{×e(P1, P2)uµ},
C1 = sP1{+µP1}, C2 = sbP1, C3 = s(U1 + idV1 + tagW1){+µ(d+ id · f + tag · c)P1}.

Key Generation:
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r
U←− Zp, {γ, π

U←− Zp}
K1 = rP2, K2 = rcP2{+γP2}, K3 = (α1 + r(d+ idf))P2{+γπP2},
K4 = −r∆3P2{−γbP2}, K5 = (α2 − r(∆1 + id∆2))P2{−γπb P2}.

Decryption: Given ciphertext C = (C0, C1, C2, C3, tag) and key SKid = (K1, . . . ,K5), the message is
recovered as follows:

m = C0 ·
e(C3,K1)

e(C1,K2 + tag ·K3)e(C2,K4 + tag ·K5)
.

3.2 Overview of the IBBE Construction

We start by providing a brief overview of our first IBBE construction – IBBE1. The starting point is JR-
IBE-D that achieves adaptive-identity security from the DDH assumptions in G1 and G2. Let N1, N2, NT
and Np denote the sizes of representation of elements in G1,G2,GT and Zp respectively. A ciphertext in
JR-IBE-D consists of the three elements C1, C2 and C3 from G1; the element C0 from GT ; and the element
tag from Zp. The size of one ciphertext is NT + 3N1 +Np.

Now consider the setting of identity-based broadcast encryption. Suppose that S = {id1, . . . , id`} ⊆ I is
a set of identities corresponding to the intended recipients of a message. A natural way to extend the IBE
scheme to the broadcast setting is as follows. The user keys will be the usual IBE decryption keys and the
public parameters will also remain the same. Components C1, C2 would still remain the same since they are
independent of the identity. The mask (gT )s used to encrypt the message in C0 will now play the role of the
session key i.e., K = (gT )s. Introduce separate identity-hashes for each identity but randomised with the
same scalar. In particular, C3 is replaced by C3,i = s(U1 + idiV1 + tagiW1), i ∈ [1, `].

We would like to emphasise that having separate hashes for each identity requires the use of separate
tags for the different hashes. Otherwise, one can get hold of sV1 by just taking the difference between C3,i

and C3,j for some i 6= j. With sV1, an attacker can construct a header for S′ = S ∪ {id} for any id of its
choice. This header when decapsulated using a secret key for id, results in the same session key that the
header for S encapsulates. So, not having separate tags makes the scheme insecure.

For the scheme with separate tags as described above the header size will be (2+`)N1+`Np. This is better
than performing separate IBE encryptions for each identity resulting in header size of `(NT + 3N1 + Np).
However, the scheme as described does not seem to admit a security proof. Defining C3,i as above leads to
problems during simulation within the dual system framework. To see why the above method fails, we take
a look at the dual system proof of JR-IBE-D.

The structure of dual-system proof: In a dual system proof for IBE, two types of ciphertexts and
keys are defined – one is normal (as generated in the scheme) and the other is semi-functional (defined using
some secret information possibly available only in the master secret). The proof is organised as a hybrid
over a sequence of games where the challenge ciphertext and the secret keys returned as responses to key
extraction queries are changed to semi-functional form. Once this is done, a final game is defined where
the message encrypted by the challenge ciphertext is switched to random. This is mainly to argue about
indistinguishability of ciphertexts. The security guarantee is obtained by showing that any two successive
games are indistinguishable based on the hardness of some problems (DDH1, DDH2 in case of JR-IBE-D).

To this end, an important step is to show that a normal key is computationally indistinguishable from
a semi-functional key. When the attacker requests a key for an identity id, a DDH2 instance is embedded
in the key SKid in such a way that the power of the attacker in determining whether SKid is normal or
semi-functional can be used to solve the particular instance. At the same time, it is required to create
a valid semi-functional ciphertext for the challenge identity îd. One must also ensure any semi-functional
ciphertext that is created for id cannot provide any extra advantage in solving the problem instance. All this
is achieved by embedding a degree one polynomial f(x) = Ax + B in both the t̂ag in the ciphertext for îd
and the scalar π in the semi-functional components of SKid. Moreover, A and B are programmed into the
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public parameters in such a way that they are information theoretically hidden from an attacker’s viewpoint.
Specifically, they are embedded in parameters V1 and U1 in the PP.

First of all, a degree one polynomial in random variables A,B provides pairwise independence when
evaluated at two different points (A,B are uniformly and independently distributed). This ensures correct

distribution of π = f(id) and tag = f(îd). Secondly, the only way of creating a semi-functional ciphertext for
an identity id′ is by setting tag′ = f(id′) implying that any attempt to create a semi-functional ciphertext
for id will set tag = π. As a result, decryption is successful and no information is gained regarding the
semi-functionality of SKid.

Independence issue for IBBE scheme: In the extension to the broadcast setting discussed above, we
need to argue about the independence of ̂̀ tags tag1, . . . , taĝ̀ in the challenge header for Ŝ = {îd1, . . . , îd̂̀},
plus the scalar π in the secret key for some id /∈ Ŝ. Also we need to argue about the joint distribution of all
the tags in a single step since they all share the same randomiser. A degree one polynomial does not provide
sufficient amount of randomness to do so. This is exactly where the dual system argument fails.

To overcome this problem, we introduce the restriction that the maximum size of a privileged users’
should be at most m. Then we replace the JR-IBE-D identity hash by a degree-m polynomial hash in
the identity. Such a polynomial provides (m + 1)-wise independence. Since one needs to argue about the
independence of at most m tags and one π, this hash will suffice for a dual system proof.

The coefficients of the polynomial are determined by the public parameters. So instead of U1, V1, PP will
now contain elements U1,j for j = 0, . . . ,m. Define component C3,i as C3,i = s(

∑m
j=0(idi)

jU1,j + tagiW1)
for idi ∈ S. Also, as in JR-IBE-D, U1,j ’s and W1 are created using linear combinations of certain scalars in
the master secret i.e., U1,j = (ej + b∆j)P1 for j = 0, . . . ,m and W1 = (c + b∆)P1. So the secret key for
an identity id will now consist of the two sub-hashes

∑m
j=0(id)jej and

∑m
j=0(id)j∆j . These sub-hashes are

combined using b in C2 during decryption to cancel out the hash in C3,i if id = idi.
The technique of using polynomials to hash identities has been used earlier by Chatterjee and Sarkar

in [CS06a] in the context of IBBE. However, they only obtain weaker security against selective-identity
attacks.

3.3 Construction of IBBE1

Our first IBBE construction is IBBE1 = (IBBE1.Setup, IBBE1.Encrypt, IBBE1.KeyGen, IBBE1.Decrypt) whose
description is given in Figure 1.

Correctness: Let S = {id1, . . . , id`} ⊆ I with ` ≤ m. Let (Hdr,K) ←− IBBE1.Encap(PP, S; s) where

Hdr = (C1, C2, (C3,i, tagi)
`
i=1) and let SKidi

R←− IBBE1.KeyGen(MSK, idi; r) for some idi ∈ S.

e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)

e(C3,i, D1)

=
e(sP1, tagi · rcP2 + (α1 + r(

∑m
j=0(idi)

jej))P2) · e(sbP1, tagir∆P2 + (α2 + r(
∑m
j=0(idi)

j∆j))P2)

e(s(
∑m
j=0(idi)jU1,j + tagiW1), rP2)

=
e(sP1, α1P2) · e(sP1, P2)tagirc+r(

∑m
j=0(idi)

jej) · e(sP1, bα2P2)e(sP1, P2)tagi·r∆b+r(
∑m
j=0(idi)

j∆jb)

e((
∑m
j=0(idi)j∆jb+ tagi∆b+

∑m
j=0(idi)jej + tagic)P1, P2)rs

=
e(P1, (α1 + bα2)P2)s · e((

∑m
j=0(idi)

j∆jb+ tagi∆b+
∑m
j=0(idi)

jej + tagic)P1, P2)rs

e((
∑m
j=0(idi)j∆jb+ tagi∆b+

∑m
j=0(idi)jej + tagic)P1, P2)rs

= gsT .

Header size and user storage: The header consists of (2 + `) elements of G1, ` elements of Zp and one
element of GT . Using the previous notation, the size of the header is (2 + `)N1 + `Np +NT . The number of
keys to be stored by each user consists of 5 elements of G2.
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Figure 1: Construction of IBBE1.

IBBE1.Setup(κ,m)

1. Generate G = (p,G1,G2,GT , e, F1, F2) based on κ.
2. Set I = Zp and K = GT .

3. Set P1
U←− G×1 , P2

U←− G×2 .

4. Choose α1, α2, c,∆, (ej ,∆j)
m
j=0

U←− Zp.
5. Choose b

U←− Z×p .
6. For j = 0, . . . ,m

set U1,j = (∆jb+ ej)P1.
7. Set W1 = (∆b+ c)P1.
8. Set gT = e(P1, P2)α1+bα2 .
Define PP : (P1, bP1, (U1,j)

m
j=0,W1, gT ).

Define MSK : (P2, cP2, α1, α2,∆, (ej ,∆j)
m
j=0).

IBBE1.KeyGen(MSK, id)

1. Choose r
U←− Zp.

2. Set D1 = rP2.
3. Set D2 = rcP2.

4. Set D3 =
(
α1 + r(

∑m
j=0(id)jej)

)
P2.

5. Set D4 = r∆P2.

6. Set D5 =
(
α2 + r(

∑m
j=0(id)j∆j)

)
P2.

Return SKid = (D1, D2, D3, D4, D5).

IBBE1.Encap(PP, S = {id1, . . . , id`}).

1. If ` ≤ m, pick s, (tagi)
`
i=1

U←− Zp.
2. Compute the session key as K = gsT .
3. Set C1 = sP1, C2 = sbP1.
4. For i = 1, . . . , `

set C3,i = s(
∑m
j=0(idi)

jU1,j + tagiW1).

5. Hdr = (C1, C2, (C3,i, tagi)
`
i=1).

Return (Hdr,K).

IBBE1.Decap(PP, S, id,SKid,Hdr)

1. Let S = {id1, . . . , id`}.
2. If id ∈ S, find i ∈ [1, `] such that id = idi.
3. Compute

A = e(C1, tagiD2 +D3)e(C2, tagiD4 +D5).
B = e(C3,i, D1).
K = A/B.

4. Else K =⊥.
Return K.
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Use of random oracles. Let H : {0, 1}κ × [1,m] → Zp be a hash function that takes a seed (say z)
of length κ, an index i ∈ [1,m] as input and produces a value in Zp as output. We show how to apply a
technique from [GW09] to reduce the header size. If H is modelled as a random oracle, then for distinct
inputs, the outputs will be independent and uniformly distributed in Zp. Such an H can be used to reduce
the header size in the following manner. In the IBBE1 header, the tags are replaced by a uniform random
κ-bit quantity z. The actual tags are generated by evaluating H on inputs (z, i) for each i ∈ [1, `] where
|S| = `. The size of the resulting header will be NT + (2 + `)N1 + κ. In practical terms, the efficiency gain
over IBBE1 is quite significant. The modified scheme which we call IBBERO

1 (RO denotes random oracle),
can be shown to be secure via a reduction from an adversary breaking its security to an adversary against
scheme IBBE1. Essentially, the tags that the adversary against IBBE1 obtains as part of the challenge header
are returned as answers to the random oracle queries that the adversary against IBBERO

1 makes. Note that
the use of random oracles is “minimal”. It may be possible to use ROs more effectively to further reduce
the header size.

Getting rid of tags? It would be nice to be able to completely get rid of the tags. These tags play a
crucial role in the dual system proof. Lewko and Waters [LW10] proposed a different type of dual system
encryption where the role of the tags is shifted to some scalars in the semi-functional components (similar
to the scalar π in a IBBE1 secret key). However, one must also ensure that a semi-functional component can
be decrypted by a normal key which in turn requires that these scalars in the semi-functional components
cancel out during decryption. This can be done with multiple copies of the identity hash (as in [LW10]) in
the ciphertext. In the context of broadcast encryption, having multiple copies of the identity hash in the
ciphertext increases the header size. So, it does not seem likely that the technique of [LW10] will help reduce
the header size any further.

Restriction on the size of the identity set: In the encapsulation algorithm we have assumed that
the number of identities ` to which the message is to be encrypted is at most m, the parameter of the
IBBE scheme. If it turns out that ` > m, then the set of identities will be divided into d`/me groups and
the encapsulation algorithm will be applied separately to each group. The resulting header size will be
d`/me((m + 2)N1 + mNp + NT ). Since this is quite routine, we will simply analyse the scheme under the
assumption that ` ≤ m.

3.4 Security of IBBE1

The scheme IBBE1 is proved secure in the sense of IND-ID-CPA (Section 2.3, Definition 2.2) via the dual
system technique. The following theorem formally states the security guarantee we prove for the scheme
IBBE1.

Theorem 3.1. If (εDDH1, t1)-DDH1 and (εDDH2, t2)-DDH2 assumptions hold in G, then IBBE1 is (ε, t, q)-
IND-ID-CPA-secure where ε ≤ εDDH1 + q · εDDH2 + 1/p, t1 = t+O(m2ρ) and t2 = t+O(m2ρ). Here ρ is the
maximum time required for one scalar multiplication in G1 or G2.

Proof. By Proposition 2.1, since the (εDDH1, t1)-DDH1 assumption holds in G, the (εDDH1, t1)-DDH1∗ as-
sumption also holds in G. In our proof, we will use the later assumption.

We start by appropriately defining semi-functional headers and user keys for IBBE1. Let IBBE1.SFEncap
and IBBE1.SFKeyGen be algorithms that generate semi-functional headers and user keys (respectively) de-
scribed as follows.
IBBE1.SFEncap(PP,MSK, S, (Hdr,K)): Takes as input a header-session key pair (Hdr,K) created by
IBBE1.Encap algorithm on a set S and modifies it to obtain semi-functional header and session key. Let

S = {id1, . . . , id`} and Hdr = (C1, C2, (C3,i, tagi)
`
i=1). Pick µ

U←− Zp and modify K and the components of
Hdr as follows.

K ← K · e(P1, P2)α1µ, C1 ← C1 + µP1, C2 ← C2,
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C3,i ← C3,i + µ

 m∑
j=0

(idi)
jej + tagi · c

P1 for i = 1, . . . , `.

Return the modified session key K along with the header Hdr = (C1, C2, (C3,i, tagi)
`
i=1).

IBBE1.SFKeyGen(MSK,SKid): This algorithm takes in a normal secret key SKid = (D1, . . . , D5) for identity
id and generates a semi-functional key as follows.

γ, π
U←− Zp,

D1 ← D1, D2 ← D2 + γP2, D3 ← D3 + γπP2,

D4 ← D4 −
(γ
b

)
P2, D5 ← D5 −

(γπ
b

)
P2.

The resulting key SKid = (D1, . . . , D5) is returned.
We need to show that all the semi-functionality properties are satisfied. Let

(Hdr = (C1, C2, (C3,i, tagi)
`
i=1),K) be a header-key pair for the set S = {id1, . . . , id`} and let SKidi

be a user key for an identity idi ∈ S. Consider the following cases.

SKidi is semi-functional and (Hdr,K) is normal: Let SK′idi be a normally generated key for idi and
SKidi ←− IBBE1.SFKeyGen(MSK,SK′idi ; γ, π). The requirement is that when Hdr is decapsulated
with SKid, the result is K. The following calculation shows that this requirement is satisfied.

e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)

e(C3,i, D1)

= K · e(sP1, tagiγP2 + γπP2)e(sbP1,−tagi(γ/b)P2 − (γπ/b)P2)

= K · e(sP1, tagiγP2 + γπP2)e(sP1,−tagiγP2 − γπP2)

= K.

The second step follows from the correctness condition i.e., a normal header when decapsulated with
a normal user key gives the corresponding normal session key.

SKidi is normal and (Hdr,K) is semi-functional: Let (Hdr′,K ′) be a normally generated
header-key pair and let (Hdr,K)←− IBBE1.SFEncap(PP,MSK, S, (Hdr′,K ′);µ). We have

e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)

e(C3,i, D1)

= K · e(µP1, tagiD2 +D3)

e(µ(
∑m
j=0(idi)jej + tagi · c)P1, D1)

= K ·
e(µP1, r(

∑m
j=0(idi)

jej + tagi · c)P2)

e(µ(
∑m
j=0(idi)jej + tagi · c)P1, rP2)

= K,

as required.

Both SKidi and (Hdr,K) are semi-functional: Let (Hdr′,K ′) be a normally generated header-key pair
and SK′idi a normal key for idi. Let SKidi ←− IBBE1.SFKeyGen(MSK,SK′idi ; γ, π) and (Hdr,K) ←−
IBBE1.SFEncap(PP,MSK, S, (Hdr′,K ′);µ). In this case, the key obtained by running the IBBE1.Decap
algorithm is masked by a factor of e(P1, P2)µγ(tagi+π) as shown below.

e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)

e(C3,i, D1)

= K · e(µP1, tagiγP2 + γπP2)

= K · e(P1, P2)µγ(tagi+π).
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In the second step we retain only pairings between semi-functional components since all other pairings
involving semi-functional components get cancelled.

Note that the masking factor vanishes when tagi = −π. Then SKidi and the i-th component of Hdr
are called nominally semi-functional.

Now, given that semi-functional algorithms are defined, consider a sequence of games Greal, G0, (Gk)qk=1,
Gfinal between an adversary A and a challenger with the games defined as follows. Recall that q is the
number of key extraction queries made by the adversary.

• Greal: the actual IBBE security game ind-cpa (described in Section 2.3).

• Gk, 0 ≤ k ≤ q: challenge header is semi-functional; K0 is semi-functional; first k user keys are semi-
functional.

• Gfinal: challenge header is semi-functional and the adversary’s advantage in guessing the bit β is at
most 1/p.

Let X� denote the event that A wins in G�. In Lemmas 3.1, 3.2 and 3.3, we show that

• |Pr[Xreal]− Pr[X0]| ≤ εDDH1∗ ≤ εDDH1,

• |Pr[Xk−1]− Pr[Xk]| ≤ εDDH2,

• Pr[Xq] = Pr[Xfinal] and |Pr[Xfinal]− 1/2| ≤ 1/p.

Hence, the advantage of A in breaking the security of IBBE1 is thus given by

Advind-cpa
IBBE1

(A ) = |Pr[Xreal]−
1

2
|

≤ |Pr[Xreal]− Pr[Xfinal]|+ |Pr[Xfinal]−
1

2
|

≤ |Pr[Xreal]− Pr[X0]|+
q∑

k=1

(|Pr[Xk−1]− Pr[Xk]|)

+ |Pr[Xq]− Pr[Xfinal]|+
1

p

≤ εDDH1 + qεDDH2 +
1

p
.

In the sequel, B1 (resp. B2) is a DDH1∗-solver (resp. DDH2-solver). We argue that B1, using the
adversary’s ability to distinguish between Greal and G0, can solve DDH1∗. Similarly, A ’s power to distinguish
between Gk−1 and Gk for k ∈ [1, q], can be leveraged to build a DDH2-solver B2.

Lemma 3.1. |Pr[Xreal]− Pr[X0]| ≤ εDDH1.

Proof. Let (G, bP1, sbP1, P2, (s + µ)P1) be the instance of DDH1∗ that B1 has to solve i.e., decide whether
µ = 0 or µ ∈U Zp. Note that by the definition of the DDH1∗ problem, b 6= 0. The phases of the game are
simulated by B1 as described below.
Setup: Choose α1, α2, c,∆, (ej ,∆j)

m
j=0

U←− Zp and set parameters as:
U1,j = ∆j(bP1) + ejP1 for j = 0, . . . ,m, W1 = ∆(bP1) + cP1,
gT = e(P1, P2)α1e(bP1, P2)α2

PP : (P1, bP1, (U1,j)
m
j=0,W1, gT )
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All the secret scalars present in the MSK are known. B1 can thus create normal keys. However, B1’s lack
of knowledge of the scalar b or its encoding in G2 does not allow it to create semi-functional keys.
Key Extraction Phases 1 & 2: B1 answers all of A ’s queries with normal keys generated by the
IBBE1.KeyGen algorithm.

Challenge: A sends a challenge set Ŝ = {îd1, . . . , îd̂̀}. B sets (Ĥdr,K0) as follows.

For i = 1, . . . , ̂̀, choose t̂agi
U←− Zp,

K0 = e(sbP1, P2)α2e((s+ µ)P1, P2)α1 = gsTe(P1, P2)α1µ,

Ĉ1 = (s+ µ)P1 = sP1 + µP1,

Ĉ2 = sbP1,

For i = 1, . . . , ̂̀,
Ĉ3,i = (

∑m
j=0 ∆j(îdi)

j + t̂agi ·∆)(sbP1) + (
∑m
j=0 ej(îdi)

j + t̂agi · c)(s+ µ)P1

= (
∑m
j=0(îdi)

j(∆jb+ ej) + t̂agi(∆b+ c))(sP1) + (
∑m
j=0 ej(îdi)

j + t̂agi · c)(µP1)

= s(
∑m
j=0(îdi)

jU1,j + t̂agiW1) + µ(
∑m
j=0 ej(îdi)

j + t̂agi · c)P1.

B1 sets Ĥdr = (Ĉ1, Ĉ2, (Ĉ3,i, t̂agi)
̂̀
i=1). It then samples K1

U←− GT , β
U←− {0, 1} and returns the pair

(Ĥdr,Kβ) to A . Observe that (Ĥdr,K0) is normal if µ = 0 and semi-functional when µ ∈U Zp.
Guess: A outputs its guess β′ and halts.

B returns 1 if A ’s guess is correct i.e., β = β′; otherwise B1 returns 0. The advantage of B1 in solving
the DDH1∗ instance is given by

AdvDDH1∗

G (B1) = |Pr[B1 returns 1|µ = 0]− Pr[B1 returns 1|µ ∈U Zp]|
= |Pr[β = β′|µ = 0]− Pr[β = β′|µ ∈U Zp]|
= |Pr[A wins in Greal]− Pr[A wins in G0]|
= |Pr[Xreal]− Pr[X0]|.

Since AdvDDH1∗

G (B1) ≤ εDDH1∗ ≤ εDDH1 (from Propostion 2.1), we have |Pr[Xreal]− Pr[X0]| ≤ εDDH1.

Lemma 3.2. |Pr[Xk−1]− Pr[Xk]| ≤ εDDH2.

Proof. B2 is given an instance (G, rP2, cP2, (rc+γ)P2) of DDH2 and has to decide whether γ = 0 or γ ∈U Zp.
It simulates the game as described below.

Setup: Pick scalars α1, α
′
2,∆

′, (ej,1, ej,2,∆
′
j)
m
j=0

U←− Zp and b
U←− Z×p and (implicitly) set

α2 =
α′2 − α1

b
, ∆ =

∆′ − c
b

,

ej = ej,1 + cej,2, ∆j =
∆′j − ej

b
for j = 0, . . . ,m.

Parameters are generated as follows.
U1,j = ∆′jP1 for j = 0, . . . ,m, W1 = −∆′P1,

gT = e(P1, P2)α
′
2

PP : (P1, bP1, (U1,j)
m
j=0,W1, gT )

The elements ∆,∆j , ej that are part of the MSK are not available to B2. Even without these, B2 can
generate keys as explained in the simulation of the key generation phases.
Key Extraction Phases: A queries on identities id1, id2, . . . , idq. B responds to the ν-th query (ν ∈ [1, q])
considering three cases.

Case 1: ν > k
B2 returns a normal key, SKidν = (D1, . . . , D5). The master secret is not completely available to B2

and hence the IBBE1.KeyGen needs a modification. The components of the key are computed as shown
below.
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rν
U←− Zp,

D1 = rνP2, D2 = rν(cP2),

D3 =

α1 + rν

 m∑
j=0

(idν)jej,1

P2 + rν

 m∑
j=0

(idν)jej,2

 (cP2)

=

α1 + rν

 m∑
j=0

(idν)jej

P2,

D4 = b−1rν(∆′P2 − cP2) = rν

(
∆′ − c
b

)
P2 = rν∆P2,

D5 = b−1

α′2 − α1 + rν

 m∑
j=0

(idν)j(∆′j − ej,1)

P2 − b−1rν

 m∑
j=0

(idν)jej,2

 (cP2)

= b−1

α′2 − α1 + rν

 m∑
j=0

(idν)j(∆′j − ej,1 − cej,2)

P2

=

α′2 − α1

b
+ rν

 m∑
j=0

(idν)j
(

∆′j − ej
b

)P2

=

α2 + rν

 m∑
j=0

(idν)j∆j

P2.

Case 2: ν < k
In this case, B2 first creates a normal key SKidν and runs IBBE1.SFKeyGen on SKidν . This is possible
because the only scalar used in IBBE1.SFKeyGen is b which is known to B2.

Case 3: ν = k
B2 embeds the DDH2 instance (consisting of rP2, cP2, (rc+γ)P2) in the key SKidk = (D1, . . . , D5) for
idk by generating the components as shown below.

D1 = rP2, D2 = (rc+ γ)P2,

D3 = α1P2 +

 m∑
j=0

(idk)jej,1

 (rP2) +

 m∑
j=0

(idk)jej,2

 (rc+ γ)P2

= α1P2 + r

 m∑
j=0

(idk)j(ej,1 + cej,2)

P2 + γ

 m∑
j=0

(idk)jej,2

P2

=

α1 + r

 m∑
j=0

(idk)jej

P2 + γ

 m∑
j=0

(idk)jej,2

P2,

D4 = b−1(∆′rP2 − (rc+ γ)P2) = r

(
∆′ − c
b

)
P2 −

(γ
b

)
P2 = r∆P2 −

(γ
b

)
P2,

D5 = b−1

 m∑
j=0

(idk)j(∆′j − ej,1)

 (rP2)− b−1

 m∑
j=0

(idk)jej,2

 (rc+ γ)P2
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= b−1r

 m∑
j=0

(idk)j(∆′j − ej)

P2 − b−1γ

 m∑
j=0

(idk)jej,2

P2

= r

 m∑
j=0

(idk)j
(

∆′j − ej
b

)P2 −
(γ
b

) m∑
j=0

(idk)jej,2

P2

= r

 m∑
j=0

(idk)j∆j

P2 −
(γ
b

) m∑
j=0

(idk)jej,2

P2,

implicitly setting rk = r and γk = γ. When γ = 0, SKidk is normal; otherwise, it is semi-functional
with πk =

∑m
j=0(idk)jej,2 set implicitly.

Challenge: B2 obtains the challenge set Ŝ = {îd1, . . . , îd̂̀} from A . It then picks s, µ
U←− Zp and generates

semi-functional key K0 and header Ĥdr = (Ĉ1, Ĉ2, (Ĉ3,i, t̂agi)
̂̀
i=1) as follows.

t̂agi = −
m∑
j=0

(îdi)
jej,2,

K0 = gsT · e(P1, P2)α1µ,

Ĉ1 = sP1 + µP1,

Ĉ2 = sbP1,

For i = 1, . . . , ̂̀,
Ĉ3,i = s

(∑m
j=0(îdi)

jU1,j + t̂agiW1

)
+ µ

(∑m
j=0(îdi)

jej,1

)
P1

= s
(∑m

j=0(îdi)
jU1,j + t̂agiW1

)
+µ
(∑m

j=0(îdi)
j(ej,1 + cej,2) + t̂agi · c

)
P1 − µ

(∑m
j=0(îdi)

jcej,2

)
P1 − t̂agi · cµP1

= s
(∑m

j=0(îdi)
jU1,j + t̂agiW1

)
+µ
(∑m

j=0(îdi)
jej + t̂agi · c

)
P1 − cµ

(∑m
j=0(îdi)

jej,2 + t̂agi

)
P1

= s
(∑m

j=0(îdi)
jU1,j + t̂agiW1

)
+ µ

(∑m
j=0(îdi)

jej + t̂agi · c
)
P1.

The last step follows due to the fact that t̂ag = −
∑m
j=0(îdi)

jej,2. B2 chooses K1
U←− GT , β

U←− {0, 1}
and returns (Ĥdr,Kβ) to A . Note that Ĥdr and K0 are properly formed. Also, this is the only way B2 can
generate a semi-functional header-key pair since no encoding of c is available in the group G1. An implication
is that B2 can only create a nominally semi-functional header component with index i for a set of intended
recipients containing idk as the i-th identity. This is because the relation tagi = −πk will hold. This provides
no information to B2 about the semi-functionality of SKidk .
Guess: A returns its guess β′ of β.

B2 outputs 1 if A wins and 0 otherwise. Also, B2 simulates Gk−1 if γ = 0 and Gk if γ ∈U Zp. Therefore,
the advantage of B2 in solving the DDH2 instance is given by

AdvDDH2
G (B2) = |Pr[B2 returns 1|γ = 0]− Pr[B2 returns 1|γ ∈U Zp]|

= |Pr[β = β′|µ = 0]− Pr[β = β′|µ ∈U Zp]|
= |Pr[A wins in Gk−1]− Pr[A wins in Gk]|
= |Pr[Xk−1]− Pr[Xk]|.

It now follows that |Pr[Xk−1] − Pr[Xk]| ≤ εDDH2 from the fact that AdvDDH2
G (B) ≤ εDDH2 for all t-time

adversaries B. What remains is to show that all the information provided to the adversary have the correct
distribution. The scalars b, α1, α

′
2,∆

′, (ej,1, ej,2,∆
′
j)
m
j=0 chosen by B2 and r, c, γ from the instance are uni-

formly and independently distributed in their respective domains. These scalars determine the distribution
of the following quantities.
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• α2,∆

• (ej)
m
j=0 and hence (∆j)

m
j=0

• rk, γk

• πk

• t̂ag1, . . . , t̂aĝ̀
(α2,∆) are uniquely determined by (α′2,∆

′). Scalars rk, γk have the correct distribution since they are
set to r, γ respectively. Also, all other information is independent of r, γ. We will now argue that πk and
t̂ag1, . . . , t̂aĝ̀ are properly distributed. They are given by the following equation.

πk
t̂ag1

t̂ag2
...

t̂aĝ̀

 =


1 idk (idk)2 · · · (idk)m

1 îd1 (îd1)2 · · · (îd1)m

1 îd2 (îd2)2 · · · (îd2)m

...
...

...
. . .

...

1 îd̂̀ (îd̂̀)2 · · · (îd̂̀)m



e0,2

e1,2

...
em,2

 (1)

One can make the following observations.

• idk, îd1, . . . , îd̂̀ are all distinct since idk /∈ Ŝ. Also ̂̀≤ m. Hence the above matrix of order (̂̀+ 1) ×
(m+ 1) over Zp is a Vandermonde matrix and has rank ̂̀+ 1.

• e0,2, e1,2, . . . , em,2 are information theoretically hidden from A and also chosen uniformly and inde-
pendently over Zp.

From these observations, it follows that πk, t̂ag1, . . . , t̂aĝ̀ are uniformly and independently distributed in
A ’s view.

The scalars (∆j)
m
j=0 are uniquely determined by (∆′j)

m
j=0 and (ej)

m
j=0. So all that we need to show is that

the quantities ej = ej,1 + cej,2 for j ∈ [0,m] have the right distribution conditioned on πk and tags being
determined by (ej,2)mj=0. This follows from the fact that ej,1’s are uniformly and independently distributed
in Zp thus making the ej ’s uniform random quantities in Zp.

Lemma 3.3. Pr[Xq] = Pr[Xfinal] and |Pr[Xfinal]− 1/2| ≤ 1/p.

Proof. In Gq, all the user keys returned to A are semi-functional and so is the challenge header and key. We
now modify the setup and key extraction phases so that the modification results in Gfinal and then argue
that the resulting game is indistinguishable from Gq except for probability q/p.

Setup: Pick scalars α1, α
′
2,∆

′, c, (∆′j , ej)
m
j=0

U←− Zp and b
U←− Z×p and compute parameters as:

U1,j = ∆′jP1 for j = 0, . . . ,m, W1 = ∆′P1,

gT = e(P1, P2)α
′
2

PP : (P1, bP1, (U1,j)
m
j=0,W1, gT )

setting

α2 =
α′2 − α1

b
, ∆ =

∆′ − c
b

,

∆j =
∆′j − ej

b
for j = 0, . . . ,m.

Although α1 is sampled during setup, it has no effect on the distribution gT and hence that of PP. This is
because gT is created using α′2 which is chosen independent of α1.

Key Extraction: On a key extract query for id, choose r, π′, γ
U←− Zp, and compute the individual

components as follows.
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D1 = rP2, D2 = rcP2 + γP2, D3 = π′P2 + r

 m∑
j=0

(id)jej

P2,

D4 = r

(
∆′ − c
b

)
P2 −

(γ
b

)
P2,

D5 =

(
α′2 − π′

b

)
+ r

 m∑
j=0

(id)j∆j

P2.

We define π in the following manner: if γ = 0, choose π independently and uniformly at random from Zp;
and if γ 6= 0, then set π = (π′ − α1)/γ. In both cases, π is uniformly distributed over Zp and can be shown
to be independent of α1 and all other scalars. Note that this manner of defining π ensures that D3 and D5

have the proper semi-functional forms. We show below that D5 is indeed well-formed in this sense.

D5 =

(
α′2 − π′

b

)
P2 + r

 m∑
j=0

(id)j∆j

P2

=

(
α′2 − α1 − γπ

b

)
P2 + r

 m∑
j=0

(id)j∆j

P2

=

(
α′2 − α1

b

)
P2 + r

 m∑
j=0

(id)j∆j

P2 −
(γπ
b

)
P2

=

α2 + r

 m∑
j=0

(id)j∆j

P2 −
(γπ
b

)
P2.

Furthermore, D3 and D5 are generated using π′ which is chosen independent of α1, thus making the key
independent of α1.
Challenge: The challenge header and K0 for the challenge privileged users’ set Ŝ = {id1, . . . , id̂̀} are
computed as:

s, µ
U←− Zp, (tagi)

̂̀
i=1

U←− Zp,
K0 = gsT · e(P1, P2)α1µ,

Ĉ1 = sP1 + µP1,

Ĉ2 = sbP1,

For i = 1, . . . , ̂̀,
Ĉ3,i = s

(∑m
j=0(îdi)

j∆′j + t̂agi∆
′
)
P1 + µ

(
d+

∑m
j=0(îdi)

jej + t̂agi · c
)
P1.

From this it follows that the adversary’s view in Game Gq is identical to the view in Game Gfinal and so
Pr[Xq] = Pr[Xfinal] which proves the first part of the lemma.

Recall that Xfinal denotes the event that the adversary wins in Game Gfinal which is the event that the
adversary’s guess β′ equals β.

K0 is computed as gsT · e(P1, P2)α1µ where α1 is independent of all other scalars and has not been used
to compute any other component either of the public parameters, or the decryption keys of the challenge
ciphertext. So, if µ 6= 0, then K0 is uniformly distributed and is independent of all other components. Note
that K1 is uniformly distributed and is independent of all other components. So, if µ 6= 0, then adversary’s
view for β = 0 is the same as that for β = 1. This in particular means that Pr[β′ = 0|β = 0, µ 6= 0] =
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Pr[β′ = 0|β = 1, µ 6= 0]. We now compute as follows.

Pr[Xfinal] = Pr[β′ = β]

≤ 1/p+ Pr[β′ = β|µ 6= 0]

≤ 1/p+ Pr[β′ = 0, β = 0|µ 6= 0] + Pr[β′ = 1, β = 1|µ 6= 0]

≤ 1/p+
1

2
(Pr[β′ = 0|β = 0, µ 6= 0] + Pr[β′ = 1|β = 1, µ 6= 0])

≤ 1/p+
1

2
(Pr[β′ = 0|β = 1, µ 6= 0] + Pr[β′ = 1|β = 1, µ 6= 0])

= 1/p+ 1/2.

This proves the second part of the lemma.

4 Towards Shorter Headers Without Random Oracles

The header size in IBBE1 is (` + 2)N1 + `Np for a recipient set of size ` (≤ m). As discussed earlier, we
cannot do much with the identity hashes and neither can the tags be completely eliminated. One way of
tackling the tags is to use a random oracle as has also been mentioned earlier. The question that we address
here is whether the issue of increase in the ciphertext size due to the use of tags can be alleviated without
resorting to random oracles.

In this section, we provide an answer to this question which results in a trade-off between the number
of tags and the number of session key encapsulations. The resulting scheme, which we call IBBE2, operates
as follows. Partition the privileged users’ set and encapsulate the session key separately to each subset
in the partition by applying the encapsulation algorithm of IBBE1. These separate encapsulations are not
completely independent. The tags are reused across encapsulations. Below, we provide an overview of the
scheme followed by the formal details.

Let the maximum size of the privileged users’ set be m = m1m2. Initialise an IBBE1 system with m2 as
the input to the Setup algorithm. Suppose we want to encrypt to a set S of size ` ≤ m.

1. Express ` as ` = (`1 − 1)m2 + `2 where 1 ≤ `1 ≤ m1 and 1 ≤ `2 ≤ m2.

2. Partition S into `1 disjoint subsets S1, . . . , S`1 so that |Sj | = m2 for j = 1, . . . `1 − 1 and |S`1 | = `2.

3. Choose random tags tag1, . . . , tagm2
from Zp. (We need m2 tags since each subset Sj is of size at most

m2.)

4. Run IBBE1.Encap on each Sj (for j ∈ [1, `1]) separately with the tags set to tag1, . . . , tagm2
.

This results in `1 IBBE1 headers (referred to as sub-headers) with each sub-header consisting of at most m2

elements of G1. The IBBE2 header consists of these sub-headers and the m2 tags used to construct all the
`1 sub-headers in addition to `1 elements of GT each masking the session key.

The above idea is made concrete as the scheme

IBBE2 = (IBBE2.Setup, IBBE2.Encrypt, IBBE2.KeyGen, IBBE2.Decrypt)

which is defined in Figure 2. The encapsulation algorithm makes the call
IBBE1.Encap(PP ′, Sj ; sj , tag1, . . . , tagm2

). Recall from Section 2.1 that the notation A(·;R) denotes
running the probabilistic algorithm A(·) with its random bits set to R. Also, recall that in the description
of IBBE1.Encap(), the randomiser s and the tags are chosen independently and uniformly at random and
these constitute the entire random choices of the algorithm. So, the encapsulation algorithm of IBBE2 runs
the encapsulation algorithm of IBBE1 for particular choices of its internal randomness.
Correctness. It is straightforward to verify that the correctness of decapsulation follows from that of IBBE1.
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Figure 2: Construction of IBBE2.

IBBE2.Setup(κ,m)

1. Let (PP ′,MSK′) R←− IBBE1.Setup(κ,m2).
Define PP = (PP ′,m2).
Define MSK =MSK′.

IBBE2.KeyGen(MSK, id)

1. SKid
R←− IBBE1.KeyGen(MSK, id).

Return SKid.

IBBE2.Encap(PP, S = {id1, . . . , id`}).

1. Write ` = (`1 − 1)m2 + `2
with 1 ≤ `1 ≤ m1 and 1 ≤ `2 ≤ m2.

2. Partition S into `1 disjoint subsets S1, S2, . . . , S`1
where |Sj | = m2 for j ∈ [1, `1 − 1] and |S`1 | = `2.

3. Choose (sj)
`1
j=1, (tagi)

m2
i=1

U←− Zp.
4. For j = 1, . . . , `1

(Hdrj ,Kj)←− IBBE1.Encap(PP ′, Sj ; sj , (tagi)
m2
i=1).

5. Choose K ′
U←− GT .

6. For j = 1 to `1
Compute C0,j = K ′ ·Kj .

7. Set ~Hdr = ((Hdrj , C0,j)
`1
j=1, (tagi)

m2
i=1).

Return ( ~Hdr,K ′).

IBBE2.Decap(PP, S, id,SKid,Hdr)

1. Parse S as (S1, . . . , S`1).
2. If id ∈ Sj for some j ∈ [1, `1]
3. Let P = (PP ′, Sj , id,SKid,Hdrj , (tagi)

m2
i=1).

4. Kj = IBBE1.Decap(P).
5. Compute K ′ = C0,j ·K−1

j .

6. Else K ′ =⊥.
Return K ′.

Masked copies of the session key: The message is encrypted using the session key K ′ and C0,j , 1 ≤
j ≤ `1, are the masked copies of K ′. In the above description, K ′ is from GT since this is convenient for
the security analysis. In practice, however, K ′ will be the key for a DEM and hence will be a κ-bit string,
where κ is the security parameter. In this case, the quantities C0,j will be generated as KDF(Kj)⊕K ′, where
KDF is a key derivation function which maps an element of GT to a κ-bit string. As a result, C0,1, . . . , C0,`1

consists of `1 κ-bit strings. While considering the efficiency of IBBE2, we will consider the C0,j ’s to be
κ-bit strings. For the security analysis, on the other hand, we will proceed with considering the C0,j ’s to be
elements of GT . Modifying this security analysis to consider C0,j ’s to be κ-bit strings will require considering
the security of KDF. This is quite routine and hence we skip it.

Header size for IBBE2: The total size of the IBBE2 header is (`+ 2`1)N1 +m2Np + `1κ (assuming C0,j ’s
to be κ-bit strings). In comparison, the header size for IBBE1 is (`+ 2)N1 + `Np. A reasonable estimate of
the group sizes is N1 = 2Np and Np = 2κ. Also, assume that m1 and m2 are around

√
m. For small `, the

header sizes of the two IBBE schemes are comparable. For ` around m, the header size of IBBE2 is smaller
for m ≥ 25.

Generating tags using a random oracle. As in the case of IBBE1, it is possible to construct a variant
IBBERO

2 of IBBE2 that is adaptively secure with random oracles. The tags used in encryption are generated
using a random oracle as in IBBERO

1 . The construction IBBERO

2 can be obtained by just replacing IBBE1

by IBBERO

1 in the description of IBBE2 above. Moreover, IBBERO

2 can be shown to be secure based on the
assumption that IBBERO

1 is secure. The header for IBBERO

2 consists of (`+ 2`1) elements of G1 and `1 κ-bit
masked versions of the session key and a single κ-bit quantity from which the m2 tags are generated using
the random oracle. In contrast, the header for IBBERO

1 consists of (`+ 2) elements of G1 and a single κ-bit
quantity from which the m2 tags are generated. As a result, the header size for IBBERO

2 is greater than
the header size for IBBERO

1 . So, if the tags are to be generated using a hash function, which is modelled as
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a random oracle, then it is more advantageous to use IBBERO

1 than IBBERO

2 . We note that the PP size of
IBBERO

2 is lower than that of IBBERO

1 , but, this is of lesser significance.

Restriction on the size of the identity set: As in the case of IBBE1, in the encapsulation algorithm
we have assumed that the number of identities ` to which the message is to be encrypted is at most m. In
case ` > m, then the comment made in the context of IBBE1 also applies for IBBE2.

4.1 Security of IBBE2

The security of IBBE2 follows from that of IBBE1. More precisely, we show that IBBE2 is secure if IBBE1 is
secure as formalised in the theorem below.

Theorem 4.1. If IBBE1 is (ε, t, q)-IND-ID-CPA-secure then IBBE2 is (ε′, t′, q)-IND-ID-CPA-secure where
ε′ ≤ 2m1ε and t′ = O(m1t).

Proof. The proof is via a simple hybrid argument over the session key encryptions. Let A be a t-time
IND-ID-CPA adversary against IBBE2. We show how to build IND-ID-CPA adversaries B1, . . . ,B ̂̀

1
(wherề

1 ≤ m1 is the size of the partition of the challenge set) all running in time t against IBBE1 such that

Advind-cpa
IBBE2

(A ) ≤
∑ ̂̀

1

ν=1 Adv
ind-cpa
IBBE1

(Bt). Since ̂̀1 ≤ m1, the statement of the theorem follows.

Define the following game sequence: G0,G1, . . . ,G ̂̀
1

where G0 is the real ind-cpa game; in Gν (ν ∈ [1, ̂̀1]),
the first ν encryptions of the session key are random and the rest are normally formed. Let Y� denote the
probability that A wins in G�.
Transition from Gν−1 to Gν for ν ∈ [1, ̂̀1]: Bν receives the public parameters PP ′ of IBBE1 from its
challenger and returns PP = (PP,m2) to A . A key extraction query on an identity id that A makes is
answered with the secret key that Bν receives from its challenger on the same identity. In the challenge
phase, Bν receives a set Ŝ from A and paritions it as (Ŝ1, . . . , Ŝ ̂̀

1
) with each |Ŝj | = m2 for j ∈ [1, ̂̀1 − 1]

and |Ŝ̀
1
| = ̂̀

2. Bν provides Ŝν to its challenger and obtains a pair (Ĥdr,Kβ). It then extracts the tags in

Ĥdr, denoted (t̂agi)
m̂2
i=1, picks a random bit δ

U←− {0, 1} and sets

(Hdrj ,Kj)
R←− IBBE1.Encap(PP ′, Sj ; (tagi)

m̂2
i=1), for j ∈ [1, ̂̀1] \ {ν},

K ′0,K
′
1

U←− GT ,

C0,j
U←− GT for j ∈ [1, ν − 1], C0,j ← K ′δ ·Kj for j = [ν + 1, ̂̀1],

Hdrν = Ĥdr, C0,ν ← K ′δ ·Kβ ,

~̂Hdr =
(

(Hdrj , C0,j)
̂̀
1
j=1, (tagi)

m̂2
i=1

)
.

Bν returns ~̂Hdr,K ′δ to A . The adversary A returns its guess δ′ of δ. Bν sets β′ = 1 if δ = δ′; else it sets
β′ = 0 and returns β′ to its challenger.
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We have

Advind-cpa
IBBE1

(Bν) =

∣∣∣∣Pr[β = β′]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[β′ = 1|β = 1] Pr[β = 1] + Pr[β′ = 0|β = 0] Pr[β = 0]− 1

2

∣∣∣∣
=

1

2
|Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]|

=
1

2
|Pr[δ = δ′|β = 1]− Pr[δ = δ′|β = 0]|

=
1

2
|Pr[δ = δ′ in Gν ]− Pr[δ = δ′ in Gν−1]|

=
1

2
|Pr[Yν ]− Pr[Yν−1]| .

Since Pr[Ŷ̀
1
] = 1/2, we have Advind-cpa

IBBE2
(A ) = |Pr[Y0] − Pr[Ŷ̀

1
]| ≤

∑̂̀
1

ν=1 |Pr[Yν−1] − Pr[Yν ]| =

2
∑̂̀

1

ν=1 Adv
ind-cpa
IBBE1

(Bν), as required.

5 From IB(B)E to PKBE: Dodis-Fazio Revisited

Dodis and Fazio [DF02] described a method to build a public-key broadcast encryption scheme from an
identity-based encryption scheme. The core idea behind this conversion is a combinatorial structure called
complete subtree (CS) symmetric key revocation scheme introduced by Naor, Naor and Lotspeich [NNL01].

In the CS scheme, the number of users n is assumed to be a power of 2 and the users are organized as
the leaves of a complete binary tree T of height log n. If v is a node of T , define Sv to be the set of all leaf
nodes in the subtree rooted at v. Further, let C be the collection of Sv for all v in T . A centre assigns keys
to subsets in C . During a pre-distribution phase, a user corresponding to a leaf node u receives keys for all
subsets in C which contains u. During an actual broadcast, the centre identifies a set of r revoked users. A
partition of the other n−r users is created using subsets from C . Suppose the partition consists of h subsets
S1, . . . ,Sh. The actual message is encrypted using a session key and the session key is then encrypted using
the keys corresponding to the h subsets S1, . . . ,Sh. The encryptions of the session key constitute the header.
It has been shown in [NNL01] that each user has to store logn keys and the size of the header is at most
r log(n/r).

Dodis and Fazio [DF02] presented a method to combine the CS scheme with an IBE scheme to obtain a
PKBE scheme. The idea is as follows. The role of the centre in the CS scheme is played by the PKG of the
IBE scheme. Set-up of the PKBE scheme consists of the following steps:

• the PKG runs the Setup algorithm of an IBE scheme;
• assigns an identity idS to each subset S in the collection C ;
• generates corresponding keys SKidS using the KeyGen algorithm of the IBE scheme;
• provides each user u with SKidS for each S to which it belongs;
• publishes PP and the structure T as the public key of the PKBE scheme.

Here PP consists of the public parameters of the IBE scheme.
For an actual broadcast, an entity forms a partition of the set of privileged users as in the CS scheme.

As before, suppose that the partition consists of h sets S1, . . . ,Sh from C . Let the corresponding identities
be idS1 , . . . , idSh . As in the CS scheme, the actual message is encrypted using a session key. Using PP, the
session key is encrypted h times to the identities idS1 , . . . , idSh . These encryptions of the session key form
the header. A user in any of the S’s has a secret key SKidS corresponding to idi. This allows the user to
decrypt the corresponding encryption of the session key. The security of the scheme follows from the security
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of the IBE scheme. A user needs to store log n IBE keys and a header consists of at most r log(n/r) IBE
encryptions of the session key.

Developing upon the Dodis-Fazio agenda described above, we suggest that the CS scheme be combined
with an identity-based broadcast encryption scheme to obtain a PKBE scheme. Most of the details will
remain unchanged. The only difference will be in the encryption. Suppose as above that S1, . . . ,Sh is
the partition of the set of all privileged users and let {idS1 , . . . , idSh} be the set of identities corresponding
these sets. The Dodis-Fazio transformation mentions that encryptions are to be made individually to these
identities. Using an IBBE scheme, on the other hand, one can make a single encryption to the set of identities
{idS1 , . . . , idSh}. Decryption will be as before. The advantage is that the header size will go down. It is
routine to argue that the security of the scheme will follow from the security of the IBBE scheme.

To illustrate the trade-offs, suppose that the Dodis-Fazio transformation is instantiated with the JR-
IBE-D. The resulting PKBE will have headers consisting of at most 3r log(n/r), r log(n/r), r log(n/r) ele-
ments from G1,GT ,Zp respectively. If on the other hand, we use IBBE1 as the IBBE scheme to obtain a
PKBE scheme from the CS scheme, the maximum header size will be 2 + r log(n/r), 1, r log(n/r) elements
from G1,GT ,Zp respectively. The trade-off is that the size of the public parameters will go up. Since
public parameters is a static quantity and needs to be downloaded once, the savings in the size of the
ciphertext will far outweigh the increase in the size of the public parameters. In arriving at the figures
2 + r log(n/r), 1, r log(n/r), we have assumed that the number of elements h in the header is at most m, the
parameter in the IBBE1 scheme. If, on the other hand, h is more than m, then this would lead to a header
consisting of encryptions to dh/me sets of identities as mentioned earlier.

Naor, Naor and Lotspeich [NNL01] described another symmetric key BE scheme called the subset dif-
ference (SD) scheme. Dodis and Fazio [DF02] showed how to use a HIBE to convert the SD scheme to a
PKBE scheme. This is not relevant in the current context and hence, we do not discuss this any further.

6 Conclusion

In this paper, we have presented new IBBE schemes which achieve both theoretically satisfying security
(i.e, security against adaptive-identity attacks based on simple assumptions) and practical efficiency at the
same time. The new schemes are obtained by developing on the currently known most efficient IBE scheme
due to Jutla and Roy [JR13]. As with most prior work, the new schemes are proved secure against chosen-
plaintext attacks. It is of interest to obtain efficient variants of these schemes which are secure against chosen
ciphertext attacks. Also, actual implementation studies will take the works further along the path of actual
deployment.
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A Proof of Proposition 2.1

Suppose that O1 is the identity element of G1.
To prove the first point, we show that an algorithm A ∗ to solve DDH1∗ can be used to build an algorithm

A to solve DDH1 such that A and A ∗ require the same time and AdvDDH1∗

G (A ∗) ≤ AdvDDH1
G (A ). The

construction of A is the following:

A (G, Q1, R1, S1):
if Q1 = O1

if S1 = O1 return 1; else return 0;
else

return A ∗(G, Q1, S1, R1).

Clearly, A takes the same time as A ∗. We now consider the advantage of A .
The input to A is (G, Q1 = aP1, R1 = bP1, S1 = zP1) where z is either ab or z = ab + c with c being

a random element of Zp. In the later case, z is also uniformly distributed over Zp. Note that Q1 = O1 if
and only if a = 0. In this case, z = ab if and only if S1 = O1. So, if a = 0, then A correctly solves the
corresponding DDH1 instance without making a call to A ∗.

Let us now consider the case a 6= 0, an event which occurs with probability (p− 1)/p. For any α ∈ Z×,
Pr[a = α, a 6= 0] = Pr[a = α] and the conditional probability Pr[a = α|a 6= 0] = Pr[a = α, a 6= 0]/Pr[a 6=
0] = Pr[a = α]/Pr[a 6= 0] = 1/(p − 1), i.e., conditioned on the event a 6= 0, a is uniformly distributed over
Z×p .

The call to A ∗ is on the input (G, Q1, S1, R1). Let µ = b − a−1z = a−1c and s = b − µ. If c = 0, i.e.,
z = ab, then µ = 0 and (Q1, R1, S1) = (aP1, sP1, asP1). Suppose that c is uniformly distributed over Zp.
In this case, (Q1, R1, S1) = (aP1, (s+ µ)P1, asP1). The following calculations show that conditioned on the
event a 6= 0, the distribution of µ is uniform over Zp and that µ and a are conditionally independent. For
any β ∈ Zp,

Pr[µ = β|a 6= 0] = Pr[a−1c = β|a 6= 0]

= Pr[c = aβ|a 6= 0]

=
∑
γ∈Z×p

Pr[c = aβ|a 6= 0, a = γ]× Pr[a = γ|a 6= 0]

= 1/(p− 1)×
∑
γ∈Z×p

Pr[c = γβ|a 6= 0]

= 1/(p− 1)× (p− 1)/p (since c and a are independent)

= 1/p.

For α ∈ Z×p and β ∈ Zp,

Pr[µ = β|a = α, a 6= 0] = Pr[a−1c = β|a = α, a 6= 0]

= Pr[c = aβ|a = α, a 6= 0]

= Pr[c = αβ|a 6= 0]

= 1/p (since a and c are independent).
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The above calculations show that conditioned on the event a 6= 0, the call to A ∗ on the input (Q1, S1, R1)
determines whether µ = 0 (corresponding to z = ab) or whether µ is a random element of Zp (corresponding
to c being a random element of Zp) which is independent of a. An easier calculation proves that µ is also
independent of b.

Let the internal random bits of A ∗ be denoted by r. Since A does not use any extra internal randomness,
the internal random bits of A are also r. To relate the advantages of A and A ∗ we need to compute some
probabilities. The first calculation is for z = ab.

Pr
a,b,r

[A (G, aP1, bP1, abP1) = 1]

= Pr
a,b,r

[A (G, aP1, bP1, abP1) = 1|a = 0]× Pr
a

[a = 0] + Pr
a,b,r

[A (G, aP1, bP1, abP1) = 1|a 6= 0]× Pr
a

[a 6= 0]

= 1/p+ (p− 1)/p× Pr
a,s,r

[A ∗(G, aP1, asP1, sP1) = 1].

Next consider that z = ab+ c, where c is an independent uniform element of Zp.

Pr
a,b,c,r

[A (G, aP1, bP1, (ab+ c)P1) = 1]

= Pr
a,b,c,r

[A (G, aP1, bP1, (ab+ c)P1) = 1|a = 0]× Pr[a = 0]

+ Pr
a,b,c,r

[A (G, aP1, bP1, (ab+ c)P1) = 1|a 6= 0]× Pr[a 6= 0]

= 1/p

(
Pr

a,b,c,r
[A (G, aP1, bP1, (ab+ c)P1) = 1|a = 0, c = 0]× Pr[c = 0]

+ Pr
a,b,c,r

[A (G, aP1, bP1, (ab+ c)P1) = 1|a = 0, c 6= 0]× Pr[c 6= 0]

)
+(p− 1)/p× Pr

a,s,µ,r
[A ∗(G, aP1, asP1, (s+ µ)P1) = 1]

= 1/p2 + (p− 1)/p× Pr
a,s,µ,r

[A ∗(G, aP1, asP1, (s+ µ)P1) = 1].

The relation between the advantages is obtained as follows.

AdvDDH1
G (A )

=

∣∣∣∣ Pr
a,b,r

[A (G, aP1, bP1, abP1) = 1]− Pr
a,b,c,r

[A (G, aP1, bP1, (ab+ c)P1) = 1]

∣∣∣∣
= (p− 1)/p2

+(p− 1)/p×
∣∣∣∣ Pr
a,s,r

[A ∗(G, aP1, asP1, sP1) = 1]− Pr
a,s,µ,r

[A ∗(G, aP1, asP1, (s+ µ)P1) = 1]

∣∣∣∣
= (p− 1)/p2 + (p− 1)/p× AdvDDH1∗

G (A ∗).

From this we obtain,

AdvDDH1∗

G (A ∗) = p/(p− 1)× AdvDDH1
G (A )− 1/p.

If AdvDDH1
G (A ) ≤ (p− 1)/p, then we get AdvDDH1∗

G (A ∗) ≤ AdvDDH1
G (A ) as required.

Consider the second point of the proposition. This is proved by showing that any algorithm A to solve
DDH1 can be used to build an algorithm A ∗ to solve DDH1∗ such that A and A ∗ require the same time
and AdvDDH1

G (A ) = AdvDDH1∗

G (A ∗). The construction of A ∗ is the following:

A ∗(G, Q1, R1, S1):
return A (G, Q1, S1, R1).
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Clearly, A ∗ takes the same time as A . We now consider the advantage of A ∗.
The input to A ∗ will be a tuple (G, aP1, asP1, dP1) where d is either s or s+ µ for an independent and

random µ. Also, note that by the definition of the DDH1∗ problem a 6= 0. Let b = s + µ and c = −aµ so
that a(b − µ) = ab − aµ = ab + c and since a 6= 0, for a uniform random µ, c is also distributed randomly
over Zp and is independent of a and b. If µ = 0, then (Q1, R1, S1) = (aP1, abP1, bP1) and if µ is a random
element of Zp, then (Q1, R1, S1) = (aP1, (ab+ c)P1, bP1).

A ∗ returns 1 on input (G, Q1, R1, S1) if and only if A returns 1 on input (G, Q1, S1, R1). Consequently,
the advantages of A and A ∗ are equal.
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