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Abstract. We present an adaptively secure functional encryption (FE) scheme based on deterministic
finite automata (DFA). The construction uses composite-order bilinear pairings and is built upon
the selectively secure DFA-based FE scheme of Waters (Crypto 2012). The scheme is proven secure
using the dual system methodology under static assumptions. A dual system proof requires generating
semi-functional components appropriately during simulation. In addition, these components must be
shown to be properly distributed in an attacker’s view. This can be ensured by imposing a restriction
on the automata and strings over which the scheme is built i.e., every symbol can appear at most
once in a string and in the set of transition tuples of an automata. First a basic construction with the
aforementioned constraint is obtained and proved to be adaptively secure. With the restrictions, our
system supports a finite subset of regular languages. We then show how to extend this basic scheme to
a full scheme where the restrictions can be relaxed by placing a bound on the number of occurrences of
any symbol in a string and in the set of transitions. With the relaxed restrictions, our system supports
functionality defined by a larger subset of regular languages.

Keywords: functional encryption; deterministic finite automata; regular languages; dual system en-
cryption.

1 Introduction

Functional encryption (FE) is a sophisticated form of public key encryption that provides access control
on secret data based on certain policies. A more general form of FE also provides the ability to compute
functions over encrypted data (formalised in [BSW12]). In a functional encryption (FE) scheme that provides
access control (also called attribute-based encryption)1, a ciphertext encrypts a message m and an associated
attribute or index Ψ that describes the user’s credentials. In the public index model, the quantity Ψ is revealed
in the ciphertext. A key encodes a predicate or an access policy Φ. Decryption succeeds and outputs m if
relation R(Ψ,Φ) holds. User secret keys are issued by a trusted authority called the private key generator
(PKG). The form of FE described above is called key-policy functional encryption since the policy is encoded
in the key. A complementary form called ciphertext-policy FE is also studied where the policy is embedded
in the ciphertext and index in the key.

Functional encryption schemes supporting different kinds of functionalities have been studied using both
bilinear maps and lattices. There have been several constructions of functional encryption schemes based on
bilinear maps – attribute-based encryption (ABE) [SW05,GPSW06,OSW07,BSW07,Wat11,LW12], inner-
product encryption [KSW08,OT09,OT10] and many others in both the ciphertext-policy and key-policy
settings. Lattice-based constructions include ABE of [Boy13] for formulas and [GVW13,GGH+13] for circuits.
We are mostly interested in constructions based on bilinear maps.

1 Some authors refer to this form of encryption as attribute-based encryption or predicate encryption. While these
may be more appropriate, we choose to use the term functional encryption.



Most of the known bilinear-map-based schemes have one property in common – the functions only deal
with fixed-size inputs. Moreover, only a few ABE constructions [LOS+10,OT10,LW12,OT12] are known to
have adaptive security without random oracles. Waters [Wat12] went beyond fixed-size inputs and proposed
a functional encryption scheme that operates over arbitrary-sized inputs. In this system, a secret key is
associated with a deterministic finite automaton (DFA) M and the index Ψ is a string w over the input
alphabet of the DFA. Decryption succeeds if M accepts w. As a result, the system supports the class of
regular languages. This construction was shown to be selectively secure without random oracles based on
the eXpanded Decisional Bilinear Diffie-Hellman Exponent (XDBDHE) assumption parametrised by `, the
length of the challenge string. Over arbitrary sized inputs, there are no known schemes that achieve adaptive
security.

Our Contribution. We construct a DFA-based key-policy FE scheme with bounded functionality in the
public index model that achieves adaptive security without random oracles. The scheme is built upon com-
posite order pairings that have natural structure (orthogonality and parameter hiding) suitable for dual
system proofs. Using the dual system technique, the scheme is proved secure under three static subgroup
decision assumptions over composite-order pairings.

First of all, let us see why a direct adaptation of dual system method fails for regular language. Consider
a system with Σ as the alphabet. Since most DFAs used in practice have small alphabets, we can pick a
group element Hσ corresponding to each symbol σ ∈ Σ and include these elements in the public parameters.
Let w = w1⋯w` be a string over Σ to which a ciphertext C is encrypted and SKM, a secret key for an
automaton M = (Q,Σ, q0, qf , δ). String w is encoded in C in such a way that the order of symbols is also
maintained. Suppose that we attempt defining semi-functional components in the usual way. In the dual
system method, semi-functional components for ciphertexts and keys usually mimic the structure of the
normal ciphertexts and keys respectively. But these are generated using some secret elements so that their
distribution is statistically hidden from the adversary. Since there is a single group element (hash Hσ) for
each symbol σ, there will be a corresponding scalar in the semi-functional portion for each symbol during
simulation. If symbols are repeated, then so are these scalars. But giving out too many copies of these values
will reveal them information theoretically to the attacker which defeats the dual system proof. This holds
for both strings and automata.

The solution to this problem is to restrict the number of occurrences of symbols in transitions and strings
during system setup. We adapt a technique previously used by Lewko et.al. [LOS+10] in the context of
attribute-based encryption over monotone access structures. A string w can contain at most one occurrence
of each σ ∈ Σ. Similarly, at most one transition can contain a symbol σ. We call the resulting construction
the basic construction, denoted BFE . This scheme supports only an extremely small class of languages.
For instance, consider the alphabet {0,1}. With the single-use restriction, then the scheme works for only
4 strings - 0,1,01,10! Nevertheless, this restriction can be relaxed and we show this via our next (full)
construction, FFE . This scheme is obtained by putting a bound on the number of occurrences of each symbol
in strings as well as transitions at setup. Suppose a symbol can appear at most smax times in a string and at
most tmax times in the set of transitions. Then our public parameters will contain smax × tmax group elements
corresponding to each symbol. Essentially Hσ is replaced by a matrix Hσ of order smax × tmax. Ciphertext
and key are defined for w and M (respectively) in such a way that only one acceptance path and hence
decryption sequence exists ifM accepts w. Also, ifM rejects w, then there is no way to decrypt. Since each
entry in Hσ is distinct, simulating semi-functional components will no longer be a problem. If we assume
smax and tmax to be linear in κ, the security parameter, then this scheme supports a significantly large class of
functionalities. Although the selectively secure scheme of [Wat12] supports unbounded functionality, security
is only limited to bounded functionality for otherwise the `-XDBDHE assumption becomes meaningless2.
On the other hand, our system is limited to bounded functionality in the construction itself and in addition
is adaptively secure.

2 As ` increases the assumption becomes stronger. In addition, the number of powers of a group element given out
in the problem instance also increases. It has been reported in [Che06] that such instances are prone to attacks.



Pair Encoding and Predicate Encryption. In a recent work, Attrapadung [Att14] proposes the notion
of pair encoding schemes and uses it to generically construct predicate encryption (PE) schemes. The con-
structions are based on composite-order pairings. Furthermore, the work provides new insights into the dual
system methodology and how to employ these in proving adaptive security of the generic PE constructions.
As a result, PE for a large class of predicates are shown to have full security. This includes the DFA-based
predicate i.e., the predicate encompassing the class of all regular languages. While the adaptive security is
obtained without imposing any restrictions as in our constructions, the proof relies on parametrised assump-
tions such as the one used in [Wat12]. Our proof, on the other hand, is based on static assumptions. Also,
the construction considers large universe alphabets i.e., the alphabet size for the DFAs are of size super-
polynomial or exponential in the security parameter. Some languages may have more efficient DFAs over
small alphabets in comparison to large alphabets. Therefore, it is important to consider adaptive secruity in
the case of DFAs over small alphabets.

Independent Work by Pandit and Barua [PB14]. Pandit and Barua [PB14] have independently
obtained constructions of adaptively secure DFA-based FE over finite regular languages achieving similar
functionality as ours. While our constructions are based on composite-order bilinear pairings, they take the
path of dual pairing vector spaces [OT08,OT09] and obtain security from decisional linear (DLin) assumption.

2 Preliminaries

This section provides basic notation, definitions and complexity assumptions in composite-order pairings.

Definition 1 (Deterministic Finite Automaton). A deterministic finite automaton (DFA) M is a 5-
tuple (Q,Σ, q0, F, δ) where Q ≠ ∅ is a finite set of states, Σ ≠ ∅ denotes the input alphabet, q0 ∈ Q is the
start state, ∅ ≠ F ⊆ Q is the set of final states and δ ∶ Q ×Σ → Q is called the transition function.

An automaton M is said to accept a string w = w1⋯w` ∈ Σ∗ if there is a sequence of states p0, . . . , p`
such that p0 = q0, δ(pi−1,wi) = pi for each i ∈ {1, . . . , `} and p` ∈ F . The set L = {w ∈ Σ∗ ∶ M accepts w} is
the language accepted by M. Languages accepted by DFAs are called regular languages.

It is well-known [HMU00] that any DFAM, one can constructM′ such thatM′ has a unique final state
and both M and M′ accept the same set of languages. This is achieved by introducing a special symbol $
at the end of the string and adding a transition from each final state in M to a new unique final state in
M′ based on the $. More precisely, if M = (Q,Σ, q0, F, δ), then M′ = (Q′,Σ′, q0, f, δ′) where Q′ = Q ∪ {f},
Σ′Σ ∪{$} and the new transition function δ′ is given by δ′(q, σ) = δ(q, σ) for each (q, σ) ∈ Q×Σ, δ′(f, σ) = f
for all σ ∈ Σ, δ′(q,$) = f for q ∈ F and δ′(q,$) = q for q ∈ Q′ ∖ F . Note that the states in F are not final
states in M′. Also observe that on input w ∈ Σ∗ to M′, f is not reachable (even in an intermediate step) if
M does not accept w.

2.1 Notation

A composite order pairing is represented as a tuple (p1, p2, p3,G,GT , e,G) where p1, p2, p3 prime, ∣G∣ =
∣GT ∣ = N = p1p2p3, G = ⟨G⟩ and e ∶ G × G → GT is the pairing function. Define Gpub = (N,G,GT , e,G)
where N = p1p2p3. Also let GB denote the subgroup of order B of G. This representation is particular to
those pairings where the group order is a product of three distinct primes. In general, the order could be
any composite number that is hard to factor. We denote elements of groups Gp2 ,Gp3 with subscripts 2 and
3 respectively. Elements of Gp1 and G are written without a subscript. The meaning will be clear from the
context.

Our construction is based on DFAs that have a unique final state. We thus use the notation M =
(Q,Σ, q0, qf , δ) with qf being the final state. Transitions of an automatonM= (Q,Σ, q0, qf , δ) are represented
as 3-tuples of the form t = (qx, qy, σ) where δ(qx, σ) = {qy}. Let T denote the set of all transition tuples t.



The notation [a, b] represents the set {a, a+1, a+2, . . . , b} for two integers a < b. For a set X , the notation

x1, . . . , xk
R←Ð X symbolises x1, . . . , xk being sampled independently from X according to distribution R. The

uniform distribution is denoted by U. For a (probabilistic) algorithm A, x ←Ð A(⋅) means that x is chosen
according to the output distribution of A (which of course may be determined by its input).

2.2 DFA-Based Functional Encryption

The definition of DFA-based functional encryption described in [Wat12] is provided here. A functional
encryption (FE) scheme over DFA’s consists of four probabilistic algorithms - Setup, KeyGen, Encrypt and
Decrypt.

– Setup: takes as input a security parameter κ, generates the public parameters PP and the master secret
MSK based on λ and the input alphabet Σ. Σ is part of PP.

– KeyGen: receives the description of a DFA M and master secret MSK and outputs a secret key SKM
corresponding to M.

– Encrypt: inputs a message m, a string w = w1w2⋯w` over Σ and returns a ciphertext C (which also
contains w).

– Decrypt: inputs a ciphertext C and secret key SKM. If Accept(M,w) = 1, the algorithm returns m;
otherwise, returns � indicating failure.

This is a key-policy functional encryption scheme. One can also define a ciphertext-policy scheme but we do
not consider it since the techniques will be more or less similar.

2.3 Security

Security is modelled based on the notion of indistinguishability of ciphertexts under a chosen plaintext attack
(CPA). It is defined via a game ind-cpa between an adversary A and a challenger consisting of several stages.

Setup: The challenger runs the Setup algorithm of the FE scheme and gives the public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on automaton M, the
challenger runs the KeyGen algorithm of the FE scheme and returns its output SKM to A .

Challenge: A provides two messages pairs m0,m1 and a challenge string w∗ = w∗
1w

∗
2⋯w∗

` subject to the
condition that A does not request keys for any automaton that accepts w∗ in Phase 1 or Phase 2. The

challenger then picks β
U←Ð {0,1} and returns an encryption C∗ of mβ under the string w∗ to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that none of the automata
that are queried accept w∗.

Guess: A outputs a bit β′.

In the selective model, there is a stage Initialise before Setup in which the adversary commits to the
input alphabet Σ and the challenge string w∗. Call this game ind-s-cpa.

If β = β′, then A wins the game. The advantage of A in breaking the security of the FE scheme in the
ind-cpa game is given by

Advind-cpaFE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The FE scheme is said to be (ε, t, ν)-IND-STR-CPA secure3 (secure under chosen plaintext attack) if for every
adversary A making at most ν queries and whose running time is t, it holds that AdvIND-STR-CPA

FE (A ) ≤ ε.
3 The abbreviation “STR” stands for string. “sSTR” denotes that the challenge string is chosen selectively.



2.4 Complexity Assumptions

We state two Decisional SubGroup (DSG) assumptions followed by an assumption that we term SubGroup
Diffie Hellman (SGDH) in composite order groups equipped with a bilinear pairing. Each of the following
problems is defined based on a composite order pairing G = (p1, p2, p3,G,GT , e,G) generated according to
some distribution, with Gpub = (N,G,GT , e,G) where N = p1p2p3.

Assumption DSG1

Define a distribution D as follows: P
U←Ð Gp1 , P3

U←Ð Gp3 ,D = (Gpub, P,P3). For an algorithm A that returns
a bit, define its advantage in solving the DSG1 problem as

AdvDSG1
G (A ) = ∣Pr[A (D, T1) = 1] −Pr[A (D, T2) = 1]∣ ,

where T1
U←Ð Gp1 and T2

U←Ð Gp1p2 . The (t, ε)-DSG1 assumption is said to hold if for every algorithm A
running in time at most t,

AdvDSG1
G (A ) ≤ ε.

Assumption DSG2
Define a distribution D as follows:

P,X
U←Ð Gp1 , P2,X2

U←Ð Gp2 , P3,X3
U←Ð Gp3 ,

D = (Gpub, P,P3,X + P2,X2 +X3).

For an algorithm A that returns a bit, define its advantage in solving the DSG2 problem as

AdvDSG2
G (A ) = ∣Pr[A (D, T1) = 1] −Pr[A (D, T2) = 1]∣ ,

where T1
U←Ð Gp1p3 and T2

U←Ð G. The (t, ε)-DSG2 assumption is said to hold if for every algorithm A
running in time at most t,

AdvDSG2
G (A ) ≤ ε.

Assumption SGDH
Define a distribution D as follows:

α, s
U←Ð ZN , P

U←Ð Gp1 , P2,X2, Y2
U←Ð Gp2 , P3

U←Ð Gp3 ,

D = (Gpub, P,P2, P3, αP +X2, sP + Y2).

For an algorithm A that returns a bit, define its advantage in solving the SGDH problem as

AdvSGDH
G (A ) = ∣Pr[A (D, e(P,P )αs) = 1] −Pr[A (D,XT ) = 1]∣ ,

where XT
U←Ð GT . The (t, ε)-SGDH assumption is said to hold if for every algorithm A running in time at

most t,

AdvSGDH
G (A ) ≤ ε.



3 Basic Construction

Described here is a basic construction of DFA-based functional encryption scheme BFE =
(BFE .Setup,BFE .KeyGen,BFE .Encrypt,BFE .Decrypt) in the composite order pairing setting. We impose the
following restrictions on automata and strings over which the scheme is built.

Restriction 1: Keys are created only for automata with a unique final state and a single transition corre-
sponding to each symbol

Restriction 2: Input string (part of the ciphertext) can contain only a single occurrence of each symbol

These restrictions are required for the proof to go through. In Section 5, we describe how to extend the basic
scheme BFE to a full scheme FFE with relaxed restrictions and similar security guarantee.

The construction is similar to that of Waters [Wat12]. Encryption is done in the group Gp1 but the
structure is different from that of [Wat12]. Components of the key are elements of Gp1p3 and have the same
structure as the keys in [Wat12] except that they are additionally randomised by elements of Gp3 . The group
Gp2 forms the semi-functional space.

BFE .Setup(Σ,κ): Generate a composite order pairing G = (p1, p2, p3,G,GT , e,G) according to the security

parameter κ. Choose elements P,Hstart,Hend, (Hσ, Uσ)σ∈Σ
U←Ð Gp1 , P3

U←Ð Gp3 and α
U←Ð ZN . The public

parameters and master secret are given by

PP : (Gpub,Σ,P,Hstart,Hend,Hλ, (Hσ, Uσ)σ∈Σ , e(P,P )α),
MSK: (−αP,P3).

In [Wat12], only a single element U was uses to maintain the link between consecutive symbols but here
we require a separate group element Uσ corresponding to each symbol σ. This is helpful in the dual system
proof.

BFE .Encrypt(PP,w = w1⋯w`,m): Choose randomisers s0, s1, . . . , s`
U←Ð ZN . Compute the ciphertext ele-

ments as follows.

Cm =m ⋅ e(P,P )αs` ,

C0,1 = Cstart,1 = s0P, Cstart,2 = s0Hstart,

For i = 1, . . . , `,
Ci,1 = siP, Ci,2 = siHwi + si−1Uwi ,

Cend,1 = C`,1 = s`P, Cend,2 = s`Hend.

The ciphertext is given by C = (Cm,Cstart,1,Cstart,2, (Ci,1,Ci,2)i∈[1,`],Cend,1,Cend,2,w).

BFE .KeyGen(MSK,M= (Q,Σ, q0, qf , δ)): For each x ∈ Z∣Q∣, pick Dx
U←Ð Gp1 . Choose elements rstart, for all

t ∈ T , rt and rend uniformly and independently at random from ZN . Let Rstart,1,Rstart,2, (Rt,1,Rt,2,Rt,3)t∈T
and Rend,1,Rend,2 be randomly chosen elements of Gp3 . Compute the elements of the key as follows.

Kstart,1 =D0 + rstartHstart +Rstart,1, Kstart,2 = rstartP +Rstart,2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = −Dx + rtUσ +Rt,1, Kt,2 = rtP +Rt,2, Kt,3 =Dy + rtHσ +Rt,3,

Kend,1 = −αP +Df + rendHend +Rend,1, Kend,2 = rendP +Rend,2.

Here Df corresponds to the final state qf . The secret key for automaton M is given by SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2).



BFE .Decrypt(C,SKM): Suppose that Accept(M,w) = 1 and w = w1⋯w`. Then there exists a sequence of
transitions t1, t2, . . . , t` with ti = (qxi−1 , qxi ,wi) where x0 = 0 and x` = f . Decryption consists of several stages
of computation. First compute

A0 = e(Cstart,1,Kstart,1)e(Cstart,2,Kstart,2)−1

= e(P,D0)s0

Then compute intermediate values Ai (for i = 1, . . . , `) as follows.

Ai = Ai−1 ⋅ e(Ci−1,1,Kti,1)e(Ci,2,Kti,2)−1e(Ci,1,Kti,3)
= e(P,Dxi)si

The last intermediate A`+1 is computed as

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)−1 = e(P,P )−αs`e(Df , P )s` .

Using A` and A`+1 the message is unmasked as shown below.

m = Cm ⋅A`+1 ⋅A−1
` .

Correctness. To show that decryption is correct, we need to show that the intermediate values A0,A`+1
and Ai for i ∈ [1, `] have the claimed structure. It is enough to show that if Ai−1 has the right structure,
then so does Ai. By induction on i, it follows that A` = e(P,Dx`

)s` for i ∈ [1, `].
A0 = e(Cstart,1,Kstart,1)e(Cstart,2,Kstart,2)

−1

= e(s0P,D0 + rstartHstart +Rstart,1)e(soHstart, rstartP +Rstart,2)
−1

= e(P,D0)
s0e(P,Hstart)

s0rstarte(Hstart, P )
−s0rstart

= e(P,D0)
s0

Ai = Ai−1 ⋅ e(Ci−1,1,Kti,1)e(Ci,2,Kti,2)
−1e(Ci,1,Kti,3)

= e(P,Dxi−1)
si−1e(si−1P,−Dxi−1 + rtiUwi +Rti,1)e(siHwi + si−1Uwi , rtiP +Rti,2)

−1

e(siP,Dxi + rtiHwi +Rti,3)

= e(P,Dxi−1)
si−1e(P,Dxi−1)

−si−1e(P,Uwi)
si−1rti e(Hwi , P )

−sirti e(Uwi , P )
−si−1rti e(P,Dxi)

sie(P,Hwi)
sirti

= e(P,Dxi)
si

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)
−1

= e(s`P,−αP +Df + rendHend +Rend,1)e(s`Hend, rendP +Rend,2)
−1

= e(P,P )−αs`e(P,Df)
s`e(P,Hend)

s`rende(Hend, P )
−s`rend

= e(P,P )−αs`e(Df , P )
s`

Note that Gp3 components get cancelled due to the orthogonality property of composite order groups.

Ciphertext-Policy FE. It is possible to obtain a ciphertext-policy FE scheme by constructing a dual of
the above scheme. The structure of the ciphertext and key get interchanged. A key will encode a string w
and a ciphertext will encode an automaton M. Also, randomisation in Gp3 is done only for the key (i.e.,
components corresponding to the input string w). The same assumptions can also be used for the proof of
security.

4 Security Proof

We prove security of BFE using the method of dual system encryption [Wat09]. This requires defining semi-
functional ciphertexts and keys.



4.1 Defining Semi-Functionality

Two types of semi-functional keys need to be defined for our proof of security – Type-1 and Type-2. Let P2

be a random generator of the group Gp2 and

πstart, (πh,σ, πu,σ)σ∈Σ
U←Ð ZN .

These scalars are common to both semi-functional keys and ciphertexts.

Semi-functional Ciphertext

Pick γ0, . . . , γ`, πend
U←Ð ZN . Semi-functional ciphertext is obtained by modifying normally generated cipher-

text C = (Cm,Cstart,1,Cstart,2, (Ci,1,Ci,2)i∈[1,`],Cend,1,Cend,2,w) as:

Cstart,1 ← Cstart,1 + γ0P2, Cstart,2 ← Cstart,2 + γ0πstartP2,

For i = 1, . . . , `,
Ci,1 ← Ci,1 + γiP2, Ci,2 ← Ci,2 + (γiπh,wi + γi−1πu,wi)P2,

Cend,1 ← Cend,1 + γ`P2, Cend,2 ← Cend,1 + πendP2.

Cm remains unchanged. Restriction 2 mentioned in Section 3 is required here to ensure that only one value
of πh,σ or πu,σ is revealed for any σ ∈ Σ in the challenge ciphertext. Keeping value of π⋅,σ statistically hidden
is very essential for the security argument. On the other hand, providing too many copies of π⋅,σ would
information theoretically reveal its value to the adversary.

Type-1 Semi-functional Key

Let µstart, µend, (µt)t∈T , τend
U←Ð ZN , (zx)qx∈Q

U←Ð ZN and SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2) be a normal key generated by the BFE .KeyGen
algorithm. Its components are modified as:

Kstart,1 ←Kstart,1 + (z0 + µstartπstart)P2, Kstart,2 ←Kstart,2 + µstartP2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 ←Kt,1 + (zx + µtπu,σ)P2, Kt,2 ←Kt,2 + µtP2, Kt,3 ←Kt,3 + (zy + µtπh,σ)P2 ,

Kend,1 ←Kend,1 + (zf + τend)P2, Kend,2 ←Kend,2 + µendP2.

The first restriction plays a crucial role here. It ensures that the π-values are statistically hidden from the
adversary.

Type-2 Semi-functional Key
Type 2 semi-functional keys are similar to Type-1 except that the components
Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T will no longer have any semi-functional terms. Also, Kend,1 does
not contain the scalar zf .

In the proof, it is ensured that at most one key can be Type-1 semi-functional at any point in the hybrid
sequence of games. The rest of the semi-functional keys are Type-2. Otherwise, multiple copies of the π-values
would have to be provided to the adversary and the whole purpose of imposing the two restrictions would
be defeated.

Consider decryption of a ciphertext C for message m and string w = w1⋯w` by a key SKM where
Accept(M,w) = 1. Decryption succeeds unless both C and SKM semi-functional. This is because Gp2 (semi-
functional) components get cancelled when paired with elements of Gp1 (by orthogonal property of composite
order pairing groups). When both C and SKM are semi-functional, the message is masked by an extra factor -



e(P2, P2)(µendπend−γ`τend). To see this, note that all other semi-functional components get cancelled since they
only mimic the structure of the ciphertext and key, in addition to having π-values common. Decryption will
succeed only if µendπend = γ`τend. We will call such a pair of ciphertext and key as nominally semi-functional.

We require algorithms ReRandCT and ReRandK for randomising ciphertexts and keys respectively in
the proof to ensure correct distribution of components. Essentially, these algorithms additively rerandomise
ciphertexts and keys.

4.2 Algorithms for Rerandomisation

We describe the rerandomisation algorithms here. Except for the Gp3 components of the keys the algorithms
are identical to those in [Wat12].

ReRandCT(C): This algorithm picks s′0, s
′
1, . . . , s

′
`

U←Ð ZN and modifies the ciphertext elements as shown
below.

Cm ← Cm ⋅ e(P,P )αs′` ,

Cstart,1 ← Cstart,1 + s′0P, Cstart,2 ← Cstart,2 + s′0Hstart,

For i = 1, . . . , `,
Ci,1 ← Ci,2 + s′iP, Ci,2 ← Ci,2 + s′iHwi + s′i−1P1,

Cend,1 ← Cend,1 + s′`P, Cend,2 ← Cend,2 + s′`Hend.

The new randomisers for the ciphertext will be si + s′i (i = 0, . . . , `). The string w remains the same.

ReRandK(SKM): Choose uniform and independent random scalars r′start, for all t ∈ T , r′t and r′end from ZN .

Also choose D′
x

U←Ð Gp1 for every qx ∈ Q and R′
start,1,R

′
start,2,{R′

t,1,R
′
t,2,R

′
t,3}t∈T ,R′

end,1,R
′
end,2

U←Ð Gp3 .
Reconstruct components of the key as follows.

Kstart,1 ←Kstart,1 +D′
0 + r′startHstart +R′

start,1, Kstart,2 ←Kstart,2 + r′startP +R′
start,2

For t ∈ T with t = (qx, qy, σ) and σ ∈ Σ ,
Kt,1 ←Kt,1 −D′

x + r′tP1 +R′
t,1, Kt,2 ←Kt,2 + r′tP +R′

t,2, Kt,3 ←Kt,3 +D′
y + r′tHσ +R′

t,3,

Kend,1 ←Kend,1 +D′
f + r′endHend +R′

end,1 ,

Kend,2 ←Kend,2 + r′endP +R′
end,2.

4.3 Reductions

We prove IND-STR-CPA-security of BFE under the three assumptions DSG1, DSG2 and SGDH.

Theorem 1. If the (ε1, t′)-DSG1, (ε2, t′)-DSG2, (ε3, t′)-SGDH assumptions hold, then BFE is (ε, t, ν)-
IND-STR-CPA secure where

ε ≤ ε1 + 2νε2 + ε3
and t = t′ −O(ν∣Σ∣ρ), where ρ is an upper bound on the time required for one scalar multiplication in G.

Proof. The proof is organised as a hybrid argument over a sequence of 2ν + 3 games –
Gamereal,Game0,1, (Gamek,0,Gamek,1)νk=1,Gamefinal. Gamereal denotes the actual CPA-security game for
DFA-based FE ind-cpa. Game0,1 is just like Gamereal except that the challenge ciphertext is semi-functional.
In Gamek,0 (for 1 ≤ k ≤ ν), challenge ciphertext is semi-functional, the first k − 1 keys returned to the



adversary are Type-2 semi-functional, k-th key Type-1 semi-functional and the rest are normal. Gamek,1
(1 ≤ k ≤ ν) is such that first k keys are Type-2 semi-functional and rest are normal. Gamefinal is similar to
Gameν,1 except that now the challenge ciphertext is a semi-functional encryption of a random message. Let
E◻ denote the events that the adversary wins in Game◻. Note that, in Gamefinal, the challenge ciphertext is
an encryption of a random message and hence bit β is statistically hidden from the adversary’s view implying
that Pr[Efinal] = 1/2.

The advantage of an t-time adversary A in winning the ind-cpa against the FE scheme in the ind-cpa, is
given by

Advind-cpaFE (A ) = ∣Pr[Eactual] −
1

2
∣ .

We have

Advind-cpaBFE (A ) = ∣Pr[Eactual] −Pr[Efinal]∣

≤ ∣Pr[Eactual] −Pr[E0,1]∣ +
ν

∑
k=1

(∣Pr[Ek−1,1] −Pr[Ek,0]∣ + ∣Pr[Ek,0] −Pr[Ek,1]∣)

+ ∣Pr[Eν] −Pr[Efinal]∣
≤ εDSG1 + 2νεDSG2 + εSGDH

The last inequality follows from the lemmas 1, 2, 3 and 4. ⊓⊔
In all the lemmas, A is a t-time adversary against the FE scheme and B is an algorithm running in time

t′ that interacts with A and solves one of the three problems DSG1, DSG2 or SGDH.

Lemma 1. ∣Pr[Eactual] −Pr[E0,1]∣ ≤ ε1.

Proof. B receives an instance of problem DSG1, (Gpub, P,P3, T ), where T = θP + θ2P2 and its task is to

decide whether θ2 = 0 or θ2
U←Ð Zp2 . The different phases of the game are simulated as described below.

Setup: B picks α, vstart, vend,{vh,σ, vu,σ}σ∈Σ
U←Ð ZN , sets Hstart = vstartP , Hend = vendP , Hσ = vh,σP and

Uσ = vu,σP . It provides PP to A and computes MSK.

Key extraction queries: For a query on automatonM, B runs the BFE .KeyGen algorithm with inputM
and returns the output to A . No generator of Gp2 is provided to B and hence semi-functional keys cannot
be generated.

Challenge: A provides two messages m0,m1, challenge string w∗
1⋯w∗

`∗ . B chooses β
U←Ð {0,1},

s′0, . . . , s
′
`∗

U←Ð ZN and encrypts mβ to w∗ as follows.

Cm =mβ ⋅ e(P,T )αs′`∗ ,

C0,1 = s′0T, Cstart,2 = s′0vstartT,

For i = 1, . . . , `∗,
Ci,1 = s′iT, Ci,2 = (s′ivh,wi + s′i−1vu,wi)T,

Cend,1 = C`,1, Cend,2 = s′`vendT.
Randomiser si is inherently set to s′iθ for i = 0, . . . , `∗. Let C∗ =
(Cm,Cstart,1,Cstart,2,{Ci,1,Ci,2}i∈[1,`],Cend,1,Cend,2,w). B returns ReRandCT(C∗) to A .

Guess: A returns its guess β′.

If θ2 = 0, then C∗ is a normal encryption of mβ . Otherwise θ2
U←Ð Zp2 making C∗ a semi-functional

ciphertext for mβ with γi = s′iθ2 for i = 1, . . . , `∗, πstart = vstart, πend = s`′vend, πu,σ = vu,σ and πh,σ = vh,σ for



all σ ∈ Σ. The ciphertext is well-formed. For instance,

Ci,2 = (s′ivh,wi + s′i−1vu,wi)T
= s′ivh,wiθP + s′i−1vu,wiθP + s′ivh,wiθ2P2 + s′i−1vu,wiθ2P2

= siHwi + si−1Uwi + (γiπh,wi + γi−1πu,wi)P2

The rest of the components can be shown to be well-formed in a similar way. The v’s are embedded in the
public parameters and hence their values modulo p1 are revealed to the adversary in an information theoretic
sense. However their values modulo p2 remain hidden (by Chinese remainder theorem) thus resulting in the
proper distribution of the π’s. The si’s are merely scaled by θ2 to obtain γi’s and hence the γi’s are uniformly
and independently distributed. The randomisers for the ciphertext’s normal components are also properly
distributed since it is rerandomised.

If the adversary wins the game then B returns 1; otherwise it returns 0. Therefore, we have

ε1 ≥ AdvDSG1
G (B) = ∣Pr[B returns 1 ∣ T U←Ð Gp1] −Pr[B returns 1 ∣ T U←Ð Gp1p2]∣

= ∣Pr[A wins ∣ T U←Ð Gp1] −Pr[A wins ∣ T U←Ð Gp1p2]∣
= ∣Pr[A wins in Gameactual] −Pr[A wins in Game0,1]∣
= ∣Pr[Eactual] −Pr[E0,1]∣

as required. ⊓⊔

Lemma 2. ∣Pr[Ek−1,1] −Pr[Ek,0]∣ ≤ ε2 for 1 ≤ k ≤ ν.

Proof. An (Gpub, P,P3,X+P2,X2+X3, T ) of DSG2 is given to B and the goal is to decide whether T
U←Ð Gp1p3

or T
U←Ð G. In other words, if T = θP + θ2P2 + θ3P3 then B has to determine whether θ2 = 0 or θ2

U←Ð Zp2 .

Setup: Scalars α, vstart, vend,{vu,σ, vh,σ}σ∈Σ are chosen from ZN independently according to the uniform
distribution. Parameters are set as follows: Hstart = vstartP , Hend = vendP , Hσ = vh,σP and Uσ = vu,σP . PP
is given to A and B keeps MSK.

Key extraction queries: Suppose A makes key extraction queries on M1, . . . ,Mν . B generates key for
Mi depending on i as follows.

Case i > k : B runs the BFE .KeyGen algorithm and returns the resulting (normal) key to A .
Case i < k : B first obtains SKMi ←Ð BFE .KeyGen(MSK,Mi) and then modifies its components to obtain

a Type-2 semi-functional key forMi as follows. Since a generator of Gp2 is not available, B uses element
X2 +X3 to construct the semi-functional components.

µ′end, τ
′
end

U←Ð ZN ,
Kend,1 ←Kend,1 + τ ′end(X2 +X3), Kend,2 ←Kend,2 + µ′end(X2 +X3).

The term µendP2 is set to µ′endX2. Similarly, τendP2 = τ ′endX2. The components Kend,1,Kend,2 already
have uniform random elements of Gp3 embedded in them. Hence adding multiples of X3 will not change
the distribution of the Gp3 components.

Case i = k : B computes SKMk
embedding the challenge T from the instance.

For each x ∈ Z∣Q∣, dx
U←Ð ZN

r′start, r
′
end,{r′t}t∈T

U←Ð ZN

Kstart,1 = (d0 + r′startvstart)T, Kstart,2 = r′startT,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = (−dx + r′tvu,σ)T, Kt,2 = r′tT, Kt,3 = (dy + r′tvh,σ)T ,

Kend,1 = −αP + (df + r′endvend)T, Kend,2 = r′endT.



Let SKM = (Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T ,Kend,1,Kend,2). B returns ReRandK(SKMk
) to A .

We have T = θP + θ2P2 + θ3P3 where θ2 could be zero. Hence every component is made up of elements
of Gp1 , Gp3 and possibly elements of Gp2 . The Gp1 and Gp3 elements are properly distributed due to

the invocation of ReRandK algorithm. If θ2 = 0, SKMk
is normal. Otherwise, θ2

U←Ð Gp2 making SKMk

Type-1 semi-functional. The randomisers for the semi-functional components are set as: zx = dxθ2 for all
qx ∈ Q, µstart = r′startθ2, µend = r′endθ2, µt = r′tθ2 for all t ∈ T ; πstart = vstart, πu,σ = vu,σ, πh,σ = vh,σ for
each σ ∈ Σ and τend = r′endvendθ2. Although v’s are provided to the adversary via the public parameters,
their values modulo p2 remain hidden from the adversary (by Chinese remainder theorem). The µ’s are
uniformly distributed by the choice of r′’s. Hence the π’s and τend are uniformly distributed in A ’s view.

Challenge: B receives messages m0,m1 and challenge string w∗ = w∗
1⋯w∗

`∗ from A . It chooses β
U←Ð {0,1}

and constructs ciphertext C∗ as follows.

γ0, . . . , γ`∗
U←Ð ZN

Cm =mβ ⋅ e(P,X + P2)αγ`∗ ,

C0,1 = γ0(X + P2), Cstart,2 = γ0vstart(X + P2),

For i = 1, . . . , `∗,
Ci,1 = γi(X + P2), Ci,2 = (γivh,wi + γi−1vu,wi)(X + P2),

Cend,1 = C`,1, Cend,2 = γ`∗vend(X + P2),
setting si = θγi for i ∈ [0, `∗]. The output of ReRandCT(C∗) is returned to A . The π values (except πend) are
set to the corresponding v’s modulo p2. These are equal to the π-values of the k-th key thus satisfying the
requirements for Type-1 semi-functionality. Note that after calling ReRandCT the randomisers for the Gp1
components will have the proper distribution.

Guess: A sends B its guess β′.

We now show that the challenge ciphertext and k-th key are properly distributed in A ’s view with all
but negligible probability. The following holds for the k-th key and the challenge ciphertext.

µendπend − τendγ`∗ = (r′endθ2)(γ`∗vend) − (r′endvendθ2)γ`∗ = 0 (mod p2).

The ciphertext-key pair will turn out to be nominally semi-functional. This is to ensure that B itself cannot
create a semi-functional ciphertext for a string w′ accepted byMk that assists in determining whether SKMk

is semi-functional or not. Decryption succeeds and provides no information to B about the distribution of
SKMk

and hence T . On the other hand, it is required to prove that this relation between the k-key and C∗
is hidden from the adversary. The argument follows from three facts:

1. A cannot request keys for any automaton M that accepts w∗

2. the final state of any automatonM on which a query is made is not reachable on input w∗ (any automaton
that is queried has a unique final state and hence a special symbol $ based on which a transition to the
final state is made only in case of acceptance)

3. each symbol appears at most once in strings or descriptions of automata

Consider a transition t = (qx, qy, σ) inM and suppose the i-th set of components in C∗ are for the symbol σ
(i.e., w∗

i = σ). Then Ci,⋅ and Kt,⋅ components will share the same π-values. Assume that the µt and γi, γi−1
values are statistically revealed to the adversary. It essentially gets hold of 3 equations (corresponding to
semi-functional components of Kt,1,Kt,3,Cw,2) in 4 unknowns (πh,σ, πu,σ, zx, zy). Using these the adversary
cannot gain any information about these quantities. Thus they appear uniformly distributed in A ’s view.
What remains is to show that the relation between πend and τend remains information-theoretically hidden



from the adversary. Observe that πend is set to γ`∗vend and τend to r′endvendθ2. The scalar γ`∗ has the right
distribution due to its choice and so is µend except when θ2 = 0 (mod p2) which occurs with negiligible
probability. Given that τend and πend share the value of vend modulo p2, their value must be shown to be
hidden from A . Since Mk does not accept w∗, the (unique) final state is never reached (see fact 2 above).
As a result the adversary cannot get hold of any equation that involves τend and any of the π-values. This
especially holds for πend. Furthermore, the single-occurrence restriction on each symbol implies that there
is at most one equation involving πend. Hence the k-th key and C∗ remain properly distributed in A ’s view
except with negligible probability.

If the adversary wins the game then B returns 1; otherwise it returns 0. Therefore, we have

ε2 ≥ AdvDSG2
G (B) = ∣Pr[B returns 1 ∣ T U←Ð Gp1p3] −Pr[B returns 1 ∣ T U←Ð G]∣

= ∣Pr[A wins ∣ T U←Ð Gp1P3] −Pr[A wins ∣ T U←Ð G]∣
= ∣Pr[A wins in Gamek−1,1] −Pr[A wins in Gamek,0]∣
= ∣Pr[Ek−1,1] −Pr[Ek,0]∣

as required. ⊓⊔

Lemma 3. ∣Pr[Ek,0] −Pr[Ek,1]∣ ≤ ε2 for 1 ≤ k ≤ ν.

The proof is similar to that of Lemma 2 except for the simulation of the k-key. The end components of this
key are additionally rerandomised in Gp2 to ensure that it remains semi-functional with its type depending
on whether the instance is real or random. The proof is provided in Appendix A.

Lemma 4. ∣Pr[Eν,1] −Pr[Efinal]∣ ≤ ε3.

The idea of the proof is as follows. Let (Gpub, P,P2, P3, αP +X2, sP + Y2, T ) be the instance of SGDH using
which the game needs to be simulated. α from the instance is the α of the system master secret. The scalar
s from the instance will be mapped to the randomiser that is used to mask the message i.e., s`∗ , where `∗

is the length of the challenge string. Since generators of subgroups corresponding to all three primes are
known, (semi-functional) keys and ciphertexts can be generated. The main trick lies in generating the Kend,1

components of the keys since they have α embedded in them and also in computing the ciphertext terms
corresponding to the randomiser s`∗ . Due to lack of space, the proof details are given in Appendix B.

5 Full Construction

The restrictions on BFE scheme confines the functionality support to a small subclass of regular languages.
It is possible to expand the supported class of languages via an extension of BFE . The extension provides the
ability to deal with multiple occurrences of symbols both in the input string and transitions of the automata.
The number of occurrences is however bounded at setup time. As a result, the sizes of public parameters,
keys and ciphertexts increase by a factor proportional to these bounds.

We shall first define some notation. For a matrix A ∈ ZNm×n, A[i, j] denotes the entry in i-th row and
j-column of A. Let w = w1 . . .w` be a string over the alphabet Σ and T be the (ordered) set of transitions
of an automaton M.

– smax: bound on the number of occurrences of each symbol in a string
– tmax: the maximum number of transitions on any particular symbol
– nc[w, i]: contains k if position i is the k-occurrence of the symbol wi in w
– nk[σ, t]: contains k if t is the k-transition on σ



The extended construction FFE = (FFE .Setup,FFE .Encrypt,FFE .KeyGen,FFE .Decrypt) is described below.

FFE .Setup(Σ,κ): Generate a composite order pairing G = (p1, p2, p3,G,GT , e,G) according to the security

parameter κ. Choose elements P,Hstart,Hend
U←Ð Gp1 , P3

U←Ð Gp3 , α
U←Ð ZN and

Hσ,Uσ
U←Ð (ZN)smax×tmax for all σ ∈ Σ.

The public parameters and master secret are given by

PP : (Gpub,Σ,P,Hstart,Hend,Hλ, (Hσ,Uσ)σ∈Σ , e(P,P )α),
MSK: (−αP,P3).

FFE .Encrypt(PP,w = w1⋯w`,m): Choose randomisers s0, s1, . . . , s`
U←Ð ZN . Compute the ciphertext ele-

ments as follows.

Cm =m ⋅ e(P,P )αs` ,

C0,0 = Cstart,1 = s0P, Cstart,2 = s0Hstart,

For i = 1, . . . , `,
Ci,0 = siP, (Ci,j = siHwi[nc[w, i], j] + si−1Uwi[nc[w, i], j])j∈[1,tmax],

Cend,1 = C`,0 = s`P, Cend,2 = s`Hend.

The ciphertext is given by C = (Cm,Cstart,1,Cstart,2, (Ci,0,Ci,j)i∈[1,`],j∈[1,tmax],Cend,1,Cend,2,w).

FFE .KeyGen(MSK,M= (Q,Σ, q0, qf , δ)): For each x ∈ Z∣Q∣, pick Dx
U←Ð Gp1 . Choose elements rstart, for all

t ∈ T , rt and rend uniformly and independently at random from ZN . Let Rstart,1,Rstart,2, (Rt,1,Rt,2,Rt,3)t∈T
and Rend,1,Rend,2 be randomly chosen elements of Gp3 . Compute the elements of the key as follows.

Kstart,1 =D0 + rstartHstart +Rstart,1, Kstart,2 = rstartP +Rstart,2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,2 = rtP +Rt,2,
(Kt,1,i = −Dx + rtUσ[i,nk[σ, t]] +Rt,1, Kt,3,i =Dy + rtHσ[i,nk[σ, t]] +Rt,3)i∈[1,smax],

Kend,1 = −αP +Df + rendHend +Rend,1, Kend,2 = rendP +Rend,2.

Here Df corresponds to the final state qf . The secret key for automaton M is given by SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2).
FFE .Decrypt(C,SKM): Suppose that Accept(M,w) = 1 and w = w1⋯w`. Then there exists a sequence of
transitions t1, t2, . . . , t` with ti = (qxi−1 , qxi ,wi) where x0 = 0 and x` = f . Decryption consists of several stages
of computation. First compute

A0 = e(Cstart,1,Kstart,1)e(Cstart,1,Kstart,2)−1

= e(P,D0)s0

Then compute intermediate values Ai (for i = 1, . . . , `) as follows. Pick Ci,nk[wi,ti] and
Kti,1,nc[wi,i],Kti,3,nc[wi,i]. Such components exist and are unique.

Ai = Ai−1 ⋅ e(Ci−1,0,Kti,1,nc[wi,i])e(Ci,nk[wi,ti],Kti,2)−1e(Ci,0,Kti,3,nc[wi,i])
= e(P,Dxi)si

With any other pair of Ci,j and Kti,1,k,Kti,3,k it is not possible to cancel out e(P,Dxi−1)si−1 . The last
intermediate A`+1 is computed as

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)−1 = e(P,P )−αs`e(Df , P )s` .



Using A` and A`+1 the message is unmasked as shown below.

m = Cm ⋅A`+1 ⋅A−1
` .

Discussion. The construction essentially converts a DFA and string to a basic form by mapping each
occurrence of a symbol σ to a different representation in the group. Consider a ciphertext for string w
and automaton M. In the full FE scheme, w and M are encoded so that there exists a unique sequence
of decryption operations that result in the correct message if M accepts w. Given this, correctness of
decryption follows. While arguing about security, the existence of smax × tmax distinct representations for a
symbol σ ensures that the semi-functional components for all occurrences of σ are independent of each other.
Furthermore, the same rerandomisation technique can be employed to ensure proper distribution of keys and
ciphertexts in the proof. Stated formally below is the security guarantee we obtain for FFE .

Theorem 2. If the (ε1, t′)-DSG1, (ε2, t′)-DSG2, (ε3, t′)-SGDH assumptions hold, then FFE is (ε, t, ν)-
IND-STR-CPA secure where

ε ≤ ε1 + 2νε2 + ε3
and t = t′ −O(ν∣Σ∣ρ ⋅max(smax, tmax)), where ρ is an upper bound on the time required for one scalar multi-
plication in G.

6 Conclusion

Using the dual system technique, we have obtained a DFA-based functional encryption scheme that has
adaptive security under static assumptions in composite order pairings. The cost of achieving this is an
increase in the sizes of the ciphertext and keys along with bounded functionality. It would be interesting to
obtain adaptive security without restricting the number of occurrences of symbols in either the strings or
transitions of automata based on static assumptions.
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A Proof of Lemma 3

Let (Gpub, P,P3,X +P2,X2 +X3, T ) be the instance of DSG2 that B has to solve i.e., decide whether θ2 = 0

or θ2
U←Ð Zp3 where T = θP + θ2P2 + θ3P3.

Setup: Scalars α, vstart, vend,{vu,σ, vh,σ}σ∈Σ are chosen from ZN independently according to the uniform
distribution. Parameters are set as follows: Hstart = vstartP , Hend = vendP , Hσ = vh,σP and Uσ = vu,σP . PP
is given to A and B keeps MSK.

Key extraction queries: For key extraction queries on Mi for i ≠ k, B answers the query as in proof of
Lemma 2. The secret key for Mk is generated as follows.



For each x ∈ Z∣Q∣, dx
U←Ð ZN

r′start, r
′
end,{r′t}t∈T , µ1, µ2

U←Ð ZN

Kstart,1 = (d0 + r′startvstart)T, Kstart,2 = r′startT,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = (−dx + r′tvu,σ)T, Kt,2 = r′tT, Kt,3 = (dy + r′tvσ)T ,

Kend,1 = −αP + (df + r′endvend)T + µ1(X2 +X3), Kend,2 = r′endT + µ2(X2 +X3).
Let SKM = (Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T ,Kend,1,Kend,2). B returns ReRandK(SKMk

) to A . If

θ2
U←Ð Gp2 , then SKMk

is Type-1 semi-functional; otherwise it is a Type-2 semi-functional key. Both τend
and µend are set to random quantities in either cases to prevent B from generating a nominally semi-
functional ciphertext to test SKMk

’s type of semi-functionality. The randomisers for the Type-1 semi-
functional components are set as: µstart = r′startθ2, µt = r′tθ2 for all t ∈ T ; πstart = vstart, πu,σ = vu,σ and
πh,σ = vσ for each σ ∈ Σ. Furthermore, since the key is rerandomised, its Gp1 and Gp3 components are
properly distributed.

The Challenge and Guess phases are identical to Lemma 2. If the adversary wins (β ≠ β′), then B
returns 1; otherwise it returns 0. Therefore, we have ε2 ≥ ∣Pr[Ek,0] −Pr[Ek,1]∣.

B Proof of Lemma 4

Given an instance (Gpub, P,P2, P3, αP +X2, sP +Y2, T ) of SGDH, B has to decide whether T = e(P,P )αs or

T
U←Ð GT . The game is simulated as follows.

Setup: Randomisers vstart, vend,{vu,σ, vh,σ}σ∈Σ are sampled uniformly and independently from ZN . Then
set Hstart = vstartP , Hend = vendP , for all σ ∈ Σ, Hσ = vh,σP , Uσ = vu,σP and e(P,P )α = e(αP +X2, P ). The
public parameters PP are provided to A . Note that the simulator does not know the master secret key.

Key extraction queries: Since αP is masked with an element of Gp2 , B can generate only Type-2 semi-
functional keys. For a query on an automaton M= (Q,Σ, q0, qf , δ), a key is constructed as follows. Sample

Dx
U←Ð Gp1 for all qx ∈ Q. Construct the components Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T just as in the

BFE .KeyGen algorithm. The master secret α is embedded only the term Kend,1 and the main trick lies in
generating this component. The encoding of α in Gp1 is masked by Gp2 -component and hence B cannot

prevent Kend,1 from having semi-functional components. B chooses µend, rend
U←Ð ZN , Rend,1,Rend,2

U←Ð Gp3 ,

Z2
U←Ð Gp2 and computes

Kend,1 = −(αP +X2) +Df + rendHend +Rend,1 +Z2, Kend,2 = rendP +Rend,2 + µendP2

implicitly setting τendP2 =X2+Z2. Scalars µend and Z2 are freshly chosen for each key. Therefore, the values
of τend for the keys remain properly distributed.

Challenge: B receives two messages m0,m1 along with a string w∗ = w∗
1⋯w∗

`∗ from A ; chooses β
U←Ð {0,1}

and constructs a ciphertext for mβ and w∗ as described below.

s0, . . . , s`∗−1, γ0, . . . , γ`∗−1
U←Ð ZN ;

πstart
U←Ð ZN , πu,σ

U←Ð ZN for all σ ∈ Σ;

for all σ ∈ Σ ∖ {w∗
`∗}, πh,σ

U←Ð ZN , set πh,w∗

`∗
= vh,w∗

`∗
,

Cm =mβ ⋅ T,



C0,1 = s0P + γ0P2, Cstart,2 = s0Hstart + γ0πstartP2,

For i = 1, . . . , `∗ − 1,
Ci,1 = siP + γiP2, Ci,2 = siHwi + si−1Uσ + (γiπwi + γi−1πu,wi)P2,

C`∗,1 = sP + Y2, C`∗,2 = vw∗

`∗
(sP + Y2) + si−1Uσ + γi−1πu,wiP2,

Cend,1 = C`∗,1, Cend,2 = vend(sP + Y2).
implicitly setting s`∗ = s, γ`∗P2 = Y2 and πendP2 = vendY2. The values of vh,w∗

`∗
and vend modulo p2 are

hidden from the adversary and hence πh,w∗

`∗
, πend are uniformly and independently distributed in A ’s view.

B returns C∗ consisting of the above components to A .

Guess: A makes its guess β′ of β.

If T = e(P,P )αs then we have Cm = mβ ⋅ T = mβ ⋅ e(P,P )αs`∗ making C∗ a semi-functional encryption

of mβ and thus playing Gameν,1. Otherwise T
U←Ð GT and (Cm = mβ ⋅ T ) U←Ð GT . In this case, C∗ will be

a semi-functional encryption of a random message and B simulates Gamefinal. If the adversary wins the
game then B returns 1; otherwise it returns 0. We therefore have,

ε3 ≥ AdvSGDH
G (B) = ∣Pr[B returns 1 ∣ T = e(P,P )αs] −Pr[B returns 1 ∣ T U←Ð GT ]∣

= ∣Pr[A wins ∣ T = e(P,P )αs] −Pr[A wins ∣ T U←Ð GT ]∣
= ∣Pr[A wins in Gameν,1] −Pr[A wins in Gamefinal]∣
= ∣Pr[Eν,1] −Pr[Efinal]∣

as required.


