
Anonymous Constant-Size Ciphertext HIBE
From Asymmetric Pairings

Somindu C. Ramanna and Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
e-mail: {somindu r,palash}@isical.ac.in

Abstract. We present a new hierarchical identity based encryption (HIBE) scheme with constant-size
ciphertexts that can be implemented using the most efficient bilinear pairings, namely, Type-3 pairings.
In addition to being fully secure, our scheme is anonymous. The HIBE is obtained by extending an
asymmetric pairing based IBE scheme due to Lewko and Waters. The extension uses the approach of
Boneh-Boyen-Goh to obtain constant-size ciphertexts and that of Boyen-Waters for anonymity. Security
argument is based on the dual-system technique of Waters. The resulting HIBE is the only known
scheme using Type-3 pairings achieving constant-size ciphertext, security against adaptive-identity
attacks and anonymity under static assumptions without random oracles.
Keywords: identity-based encryption(IBE), constant-size ciphertext hierarchical IBE, asymmetric
pairings, dual-system encryption

1 Introduction

The notion of identity-based encryption (IBE) was introduced by Shamir [18] and the first IBE schemes
appeared later [6, 3]. In IBE, a sender encrypts a message using the receiver’s identity itself as the public key
and a central authority called private key generator (PKG) generates and securely distributes decryption
keys corresponding to identities of different users. Hierarchical IBE (HIBE), proposed by [11, 12], reduces the
workload of the PKG by allowing it to delegate the key generation ability to lower-level entities. As a result,
an individual user can conveniently obtain a decryption key from a lower-level entity instead of obtaining it
from the PKG.

Type-3 Pairings: Most practical (H)IBE schemes are built using a bilinear pairing which maps G1×G2 to
GT , where G1,G2 and GT are groups of the same order. Well-known examples of such maps arise by suitably
choosing G1 and G2 to be groups of elliptic curve points and GT to be a subgroup of the multiplicative
group of a finite field. From an implementation point of view, it is most efficient to use bilinear maps where
the (common) group order is prime and it is computationally difficult to find an isomorphism from G1 to
G2 or vice versa. Such pairings are called Type-3 pairings [5, 19, 10]. Less efficient alternatives are when G1

and G2 are same (called Type-1 pairings) or when the common group order is a composite number (called
composite-order pairings). IBE or HIBE schemes based on Type-3 pairings would have the fastest algorithms
and the most compact representations of parameters.

Constant-Size Ciphertext HIBE: In HIBE, identities consist of tuples of varying lengths. Encryption
of a message is done for a specified identity tuple. In many HIBE schemes, as the length of the identity
tuple increases, so does the length of the resulting ciphertext. Consequently, the bandwidth requirement for
communicating the ciphertext also increases.

The solution to this issue is to require the ciphertext size to be independent of the length of the identity
tuple. Then, irrespective of the length of the identity tuple, the bandwidth required for the ciphertext would
be the same. Such a scheme is called a constant-size ciphertext HIBE. The first such HIBE scheme was
proposed by Boneh, Boyen and Goh [2]. While the scheme itself is quite elegant, its proof of security was in
a very restricted attack model, the so-called selective-identity model. Lewko and Waters [15] provided the
first constant-size ciphertext HIBE scheme which is secure against the usual adaptive-identity attacks. The
drawback, however, was that the scheme in [15] used pairings on composite order groups and could not be
instantiated with the more efficient Type-3 pairings.

In the following, we use the abbreviation CC-HIBE to denote HIBE schemes with constant-size cipher-
texts. We clarify that the constant size here only refers to the number of group elements in the ciphertext.
The size of representation of the group elements, however, needs to increase if the value of the security
parameter increases.

Anonymity: In (H)IBE schemes with anonymity, ciphertexts do not reveal any information about the
identity of the recipient. Abdalla et.al. [1] first formalised the notion of anonymity and used it to construct
public key encryption with keyword search (PEKS). PEKS enables search on encrypted documents based on
some keywords and this capability for search is delegateable. Anonymous HIBE schemes provide means to
extend PEKS to more sophisticated primitives such as public key encryption with temporary keyword search
(PETKS) and identity-based encryption with keyword search (IBEKS). The first construction of anonymous
HIBE without random oracles was given by [4] with security in the selective-id model. Later constructions
by [17, 7] could achieve security in the adaptive-id setting but were based on composite-order pairings. Two
other constructions [8, 16] used asymmetric pairings but with security in the selective-id model.

1.1 Our Contributions

Our main motivation in this work is to obtain a constant-size ciphertext HIBE which can be implemented
using Type-3 pairings. This allows the benefits of having constant-size ciphertexts to be combined with
the efficiency benefits of using Type-3 pairings. These efficiency considerations are attained while retaining
the usual provable guarantees, namely security against adaptive-identity attacks, use of static hardness
assumptions, no degradation of security with increase in the depth of the HIBE and the avoidance of random
oracles.

The provable properties are achieved using the extremely useful idea of dual-system encryption introduced
by Waters [20]. This technique was used by Lewko and Waters [15] to construct an IBE and a CC-HIBE
scheme based on composite-order pairings. The authors in [15] went on to convert their composite-order
pairing based IBE scheme to one which can be instantiated using Type-3 pairings. However, no such con-
version was done for the HIBE scheme in [15] and the authors do not make any remark on whether this can
be done or how difficult it would be to do so.

The starting point of our work are the IBE schemes in [15]. Two IBE schemes are given in [15] where the
first one is in the setting of composite order groups and the second one is in the Type-3 setting. The IBE in
the composite order setting is not anonymous (shown in [7]) due to the following reason – the identity-hash
in both the ciphertext and key live in the same subgroup; moreover, elements used to create the hash are
public thus providing a test for the recipient identity for any ciphertext. On the other hand, the Type-3
variant, which we refer to as “LW-IBE”, is anonymous. This is because ciphertexts live in G1, keys in G2

and the elements required to create the hash in G2 are kept secret. Hence there would be no way to test
whether a given ciphertext is encrypted to a particular identity or not. However, there has been no proof
of anonymity in any follow-up work. The first contribution of the current work is to show that the LW-IBE
is anonymous. Two static (though non-standard) computational assumptions (which we denote as LW1 and
LW2) along with decision bilinear Diffie-Hellman (DBDH) assumption are used in [15] to show the security

2

of LW-IBE. For proving anonymity, we need to introduce a new computational assumption, called A1, which
is again static, but, non-standard.

The second contribution of this paper is to extend the LW-IBE to a constant-size ciphertext HIBE. At
a very basic level, the idea for obtaining constant-size ciphertexts is to use the identity hashing technique
suggested in [2] over existing IBE schemes. We will refer to this as BBG-hash or BBG-extension. We do not
take the path of converting the composite-order pairing based HIBE of [15]. Techniques for such conversions
have been proposed by Freeman [9] and Lewko [14]. The latter uses dual pairing vector spaces (DPVSs)
constructed over pairing groups to simulate features of composite order pairings. But it seems hard to
retain the constant size of ciphertexts using these conversion techniques. Instead, we start with LW-IBE
and extend it to a CC-HIBE by plugging in the BBG-hash. One complication in doing so arises. In the
dual-system technique, two kinds of ciphertexts and keys are defined – normal and semi-functional. Semi-
functional components are required only for proving secuirty and are generated using some secret elements
during simulation. The main elements of a dual system proof would be appropriately defining semi-functional
components and generating them using a problem instance in the reduction ensuring correct distribution of
all elements provided to the attacker. Extending the decryption key of LW-IBE to the decryption key of a
HIBE in a straightforward manner does not retain the structure required for a dual-system proof. Our way
of tackling this is to add additional components to the decryption key. On the face of it, this complicates the
key generation and delegation mechanisms. However, somewhat counter-intuitively, adding this extra level
of complication allows the security reductions to go through.

An offshoot of the extension is that the scheme becomes anonymous. This is because in LW-IBE, the semi-
functional space (for both ciphertexts and keys) is created using some secret elements (part of the master
secret). The same elements are implicitly used in creating ciphertexts and keys. In case of a direct extension
to HIBE, all these elements may have to be revealed in the public parameters to facilitate re-randomisation
during delegation of keys. This makes the scheme non-anonymous but at the same time affects dual system
arguments for which keeping the elements secret is essential. The way out is to make the scheme anonymous.
We also provide a proof of anonymity based on a static assumption.

The computational assumptions required to obtain CPA-security are those used in [15] along with the
new assumption required to show that the LW-IBE is anonymous. The last assumption is used to prove the
anonymity of the HIBE scheme.

2 Preliminaries

Some basic notation, definitions and the complexity assumptions used in our proofs are presented in this
section.

2.1 Notation

For a set X , the notation x1, . . . , xk ∈R X (or x1, . . . , xk
R←− X) indicates that x1, . . . , xk are elements of X

chosen independently at random according to some distribution R. We use two notations interchangeably.
The uniform distribution is denoted by U. For a (probabilistic) algorithm A, x ←− A(·) means that x is
chosen according to the output distribution of A (which of course may be determined by its input). For two
integers a < b, the notation [a, b] represents the set {x ∈ Z : a ≤ x ≤ b}. Let G be a finite cyclic group and
G× denote the set of generators of G. Fix a generator P1 ∈ G×. The discrete logarithm of an element Q ∈ G
to base P1 is written as dlogP1

Q.

3

2.2 Bilinear pairings

A bilinear pairing is given by a 7-tuple G = (p,G1,G2,GT , e, P1, P2) where G1 = 〈P1〉, G2 = 〈P2〉 are written
additively and GT , a multiplicatively written group, all having the same order p and e : G1 ×G2 → GT is a
map with the following properties.

1. Bilinear: For P1, Q1 ∈ G1 and P2, Q2 ∈ G2, the following holds:
e(P1, P2 +Q2) = e(P1, P2)e(P1, Q2) and e(P1 +Q1, P2) = e(P1, P2)e(Q1, P2).

2. Non-degenerate: If e(P1, P2) = 1T , the identity element of GT , then either P1 is the identity of G1 or
P2 is the identity of G2.

3. Efficiently computable: The function e should be efficiently computable.

Three main types of pairings have been identified in the literature [19, 10].

Type-1 In this type, the groups G1 and G2 are the same.
Type-2 G1 6= G2 and an efficiently computable isomorphism ψ : G2 → G1 is known.
Type-3 Here, G1 6= G2 and no efficiently computable isomorphisms between G1 and G2 are known.

It has been reported [5, 19, 10] that from an implementation point of view, Type-3 pairings are the fastest
to compute and further provide the most compact description of group elements. So, building functionalities
which can be instantiated with such pairings is of practical interest. This work is entirely based on Type-3
pairings. The terms ‘Type-3 pairing’ and ‘asymmetric pairing’ are used interchangeably in the rest of the
paper.
Note: We introduce some notation: fix P1 ∈ G×1 and P2 ∈ G×2 ; for elements R1 ∈ G1 and R2 ∈ G2, the
notation R1 ∼ R2 indicates that dlogP1

R1 = dlogP2
R2. The fixed generators P1 and P2 will be clear from

the context.

2.3 Complexity Assumptions

Here, we define certain hardness assumptions in Type-3 setting that are needed for the security reductions.
In all the assumptions stated below, G = (p,G1,G2,GT , e, P1, P2) is an asymmetric pairing and A is a
probabilistic polynomial time (PPT) algorithm A that outputs 0 or 1.

Assumption LW1 [15]. Define a distribution D as follows: F1
U←− G×1 ; F2

U←− G×2 , a, b, s
U←− Zp,

Y1
U←− G1;

D = (G, F1, bsF1, sF1, aF1, ab
2F1, bF1, b

2F1, asF1, b
2sF1, b

3F1, b
3sF1, F2, bF2).

The advantage of A in solving the LW1 problem is given by

AdvLW1
G (A) = |Pr[A (D, ab2sF1) = 1]− Pr[A (D, Y1) = 1]|.

The (ε, t)-LW1 assumption holds in G if for any adversary A running in time at most t, AdvLW1
G (A) ≤ ε.

Assumption LW2 [15]. Let distribution D be defined as follows: F1
U←− G×1 ; F2

U←− G×2 , d, b, c, x
U←− Zp,

Y2
U←− G2;

D = (G, F1, dF1, d
2F1, bxF1, dbxF1, d

2xF1, F2, dF2, bF2, cF2).

A ’s advantage in solving the LW2 problem is given by

AdvLW2
G (A) = |Pr[A (D, bcF2) = 1]− Pr[A (D, Y2) = 1]|.

The (ε, t)-LW2 assumption is that, for any t-time algorithm A , AdvLW2
G (A) ≤ ε.

4

Decisional Bilinear Diffie-Hellman in Type-3 pairings (DBDH-3) [5]. Let F1
U←− G×1 , F2

U←− G×2 ,

x, y, z
U←− Zp and YT

U←− GT . Denote by D, the distribution (G, F1, xF1, yF1, zF1, F2, xF2, yF2). Define A ’s
advantage in solving the DBDH-3 problem as follows.

AdvDBDH-3
G (A) = |Pr[A (D, e(F1, F2)xyz) = 1]− Pr[A (D, YT) = 1]|.

We say that the (ε, t)-DBDH-3 assumption holds in G if AdvDBDH-3
G (A) ≤ ε for every algorithm A running

in time at most t.

Assumption A1. Let F1
U←− G×1 , F2

U←− G×2 , a, z, d, s, x
U←− Zp and

D = (G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz − ax)F2).

The A1 problem is to decide, given (D, Y1), whether Y1 = sdzF1 or Y1 ∈U G1. The advantage of algorithm
A in solving A1 is defined as

AdvA1
G (A) = |Pr[A (D, sdzF1) = 1]− Pr[A (D, Y1) = 1]|,

where Y1 ∈U G1. The (ε, t)-A1 assumption is that any t-time algorithm A has AdvA1
G (A) ≤ ε.

Discussion. We introduce assumption A1 to show anonymity of LW-IBE as well as our HIBE scheme. The
challenge in A1 is an element Z1 ∈ G1; the task is to decide whether Z1 = sdzF1 or random. Suppose we
can successfully create e(F1, F2)sdzδ (for some δ such that δF2 is given in the instance) using elements in the
instance, then the problem becomes easy to solve – just check for equality with e(Z1, δF2). If they are equal
then Z1 is real; otherwise Z1 is random. Since s and d appear in separate elements in G1, the only possible
way is to compute e(Z1, zF2) and compare it to e((dz − ax)F2, szF1) after cancelling out e(F1, F2)axsz. But
this extra term cannot be cancelled since a and x appear in separate elements of G2. So our assumption is
meaningful and there does not seem to be any way of efficiently solving A1.

Let DDH1 (resp. DDH2) be the decision Diffie-Hellman assumption in group G1 (resp. G2). It is well-
known that in Type-3 setting these problems are computationally hard. The problem LW1 contains an
embedded instance of DDH1. The elements sF1 and ab2F1 are provided in the instance and it is required
to determine whether Y1 equals ab2sF1 or Y1 is random. Similarly, LW2 contains an embedded instance of
DDH2: the elements bF2 and cF2 are provided in the instance and it is required to determine whether Y2
equals bcF2 or Y2 is random. As a result, an algorithm to solve DDH1 (resp. LW1) implies an algorithm to
solve LW1 (resp. LW2) so that we can say that LW1 (resp. LW2) is no harder than DDH1 (resp. DDH2).
The other direction, however, is not clear and it is due to this reason that the assumptions are considered
non-standard.

Similar to the above, the problem A1 contains an embedded instance of DDH1. If P1 = zF1, P2 = zF2,
then the elements P1, dP1, sP1, Z1, P2 (present in the A1-instance) will form a proper DDH1 instance where
it is required to determine whether Z1 = sdP1 = sdzF1 or not. Hence a DDH1 solver can be used to solve
A1. On the other hand, the converse is not known to hold.

2.4 Hierarchical Identity-Based Encryption

A HIBE scheme consists of five probabilistic polynomial time (in the security parameter) algorithms – Setup,
Encrypt, KeyGen, Delegate and Decrypt.

– Setup: based on an input security parameter κ, generates and outputs the public parameters PP and
the master secret MSK.

5

– KeyGen: inputs an identity vector id and master secret MSK and outputs the secret key SKid corre-
sponding to id.

– Encrypt: inputs an identity id, a message M and returns a ciphertext C.
– Delegate: takes as input a depth ` identity vector id = (id1, . . . , id`), a secret key SKid and an identity

id`+1; returns a secret key for the identity vector (id1, . . . , id`+1).
– Decrypt: inputs a ciphertext C, an identity vector id, secret key SKid and returns either the corresponding

message M or ⊥ indicating failure.

2.5 Anonymous CPA-Secure HIBE

The security game defined below captures both anonymity and security against a chosen plaintext attack
for a HIBE scheme. This model, which we call ano-ind-cpa, is equivalent to the standard security notions for
CPA-security and anonymity and has been used earlier in [8, 7].
Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to A .
Phase 1: A makes a number of key extraction queries adaptively. For a query on an identity vector id, the
challenger responds with a key SKid.
Challenge: A provides two message-identity pairs (M0, îd0) and (M1, îd1) as challenge with the restriction

that neither îd0, îd1 nor any of their prefixes should have been queried in Phase 1. The challenger then
chooses a bit β uniformly at random from {0, 1} and returns an encryption Ĉ of Mβ under the identity îdβ
to A .
Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that no queried identity
id is a prefix of either îd0 or îd1.
Guess: A outputs a bit β′.

If β = β′, then A wins the game. The advantage of A in breaking the security of the HIBE scheme in
the game ano-ind-cpa given by

Advano-ind-cpaHIBE (A) =

∣∣∣∣Pr[β = β′]− 1

2

∣∣∣∣ .
The HIBE scheme is said to be (ε, t, q)-ANO-IND-ID-CPA secure if every t-time adversary making at most q

queries has Advano-ind-cpaHIBE (A) ≤ ε.

3 Lewko-Waters IBE

This section reviews the asymmetric pairing-based IBE construction of Lewko-Waters [15]. The description
in [15] consists of the usual ciphertexts and keys as well as the so-called semi-functional ciphertexts and keys.
We use a compact notation to denote normal and semi-functional ciphertexts and keys. The group elements
shown in curly brackets { } are the semi-functional components. To get the scheme itself, these components
should be ignored.

Let G = (p,G1,G2,GT , e, P1, P2) be an asymmetric pairing. Pick Q1, U1 ∈U G1 and Q2, U2 ∈ G2 be

such that Q2 ∼ Q1 and U2 ∼ U1. Choose F2
U←− G×2 , a, v, v′

U←− Zp and define V2 = vF2, V
′
2 = v′F2. Let

τ = v + av′ so that τF2 = V2 + aV ′2 . Identities are elements of Zp. The public parameters and master secret
are given by

PP : (P1, aP1, τP1, Q1, aQ1, τQ1, U1, aU1, τU1, e(P1, P2)α)
MSK: (αP2, P2, V2, V

′
2 , Q2, U2, F2).

The randomisers for the ciphertext and key are s and w, r1, r2 respectively. These are elements of Zp.
For the semi-functional components, µ, σ and γ, π are chosen at random from Zp. Elements V ′1 , F1 ∈ G1 are
such that V ′1 ∼ V ′2 and F1 ∼ F2.

6

Ciphertext:

C0 = M · e(P1, P2)αs

C1,1 = s(idQ1 + U1), C1,2 = as(idQ1 + U1){+µσF1},
C1,3 = −τs(idQ1 + U1){−µσV ′1}
C2,1 = sP1, C2,2 = asP1{+µF1}, C2,3 = −τsP1{−µV ′1}

Key:

K1,1 = wP2 + r1V2{−aγF2}, K1,2 = r1V
′
2{+γF2}, K1,3 = r1F2

K2,1 = αP2 + w(idQ2 + U2) + r1V2{−aγπF2},
K2,2 = r2V

′
2{+γπF2}, K2,3 = r2F2

Lewko and Waters show that this scheme is adaptively secure without random oracles under three non-
standard but static assumptions – LW1, LW2 and DBDH-3. Since the elements Q2, U2 are in the master
secret there seems to be no way to check whether a given ciphertext is encrypted to a particular identity or
not. In other words, this scheme is anonymous. We provide a proof in the ANO-IND-ID-CPA model (described
in Section 2.5) which encompasses both CPA-security and anonymity.

Theorem 1. If the (εLW1, t
′)-LW1, (εLW2, t

′)-LW2, (εDBDH-3, t
′)-DBDH-3 and (εA1, t

′)-A1 assumptions hold,
then LW-IBE is (ε, t, q)-ANO-IND-ID-CPA secure where

ε ≤ εLW1 + qεLW2 + εDBDH-3 + εA1

and t = t′ − O(qρ), where ρ is an upper bound on the time required for one scalar multiplication in G1 or
G2.

Proof. Let A be any t-time adversary against LW-IBE in the ano-ind-cpa. The proof follows a hybrid ar-
gument over a sequence of q + 4 games – Gamereal,Game0,Game1, . . . ,Gameq,GameM-rand,Gamefinal –
between A and a simulator B, where the games are defined as follows.

– Gamereal: the real security game ano-ind-cpa.
– Game0: challenge ciphertext is semi-functional.
– Gamek (1 ≤ k ≤ q): first k keys returned to the adversary are semi-functional and the rest are normal.
– GameM-rand: the challenge ciphertext encrypts a random message under one of the challenge identities.
– Gamefinal: both message and challenge identity are random in the challenge ciphertext.

Let Xreal, Xk, XM-rand and Xfinal denote the events that the adversary wins in Gamereal, Gamek,
GameM-rand and Gamefinal for 0 ≤ k ≤ q respectively. Note that, in Gamefinal, the challenge ciphertext
is an encryption of a random message under a random identity vector. Hence β is statistically hidden from
the adversary’s view implying that Pr[Xfinal] = 1/2. From [15], we know that |Pr[Xreal]− Pr[X0]| ≤ εLW1,
|Pr[Xk−1]− Pr[Xk]| ≤ εLW2 and |Pr[Xq]− Pr[XM-rand]| ≤ εDBDH-3.

We now show that Pr[XM-rand]−Pr[Xfinal] ≤ εA1. Consider a simulator B playing the game ano-ind-cpa
with A . At this stage all keys are semi-functional and the message encrypted in the challenge ciphertext
is random. Let (G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz− ax)F2, Z1) be the instance of A1
provided to B. Let Z1 = c · sdzF1. B has to determine whether c = 1 or c ∈U Zp. The game is simulated as
follows.
Set-Up: Pick α, v, v′, y, u

U←− Zp and set the parameters as

P1 = zF1, V2 = vF2, V
′
2 = v′F2, Q1 = y(dzF1), U1 = u(dzF1),

aP1 = azP1, aQ1 = y(adzF1), aU1 = u(adzF1),

7

Similarly compute the elements τP1, τQ1 and τU1. Compute e(P1, P2)α = e(zF1, zF2)α. B returns PP to
A . B knows P2 = zF2 and α but not Q2 and U2.

Key Extraction Phases 1 and 2: B picks w, r1, r2
U←− Zp, γ

U←− Z×p and π′
U←− Zp. It then computes

the key for the k-th identity idk as follows.

K1,1 = w(zF2) + r1V2 − γaF2, K1,2 = r1V
′
2 + γF2, K1,3 = r1F2

K2,1 = αzF2 + w(yidk + u)(dz − ax)F2 + r2V2 − γπ′(aF2),
K2,2 = r2V

′
2 + w(yidk + u)xF2 + γπ′F2, K2,3 = r2F2,

setting π = π′ + γ−1w(yidk + u)x. Since γ−1w(yidk + u)x is additively randomised by π′, π has the correct
distribution in A ’s view. B returns SKidk = ((K1,i,K2,i)i=1,2,3) to A . The following calculation shows that
K2,1 and K2,2 are well-formed.

The following calculation shows that K2,1 and K2,2 are well-formed.

K2,1 = αzF2 + w(yidi + u)(dz − ax)F2 + r2V2 − γπ′(aF2)

= αP2 + w(yidi + u)(dz − ax)F2 + r2V2 − γ(π − γ−1w(yidi + u)x)(aF2)

= αP2 + w(yidi + u)dzF2 − w(yidi + u)axF2 + r2V2 − aγπF2 + w(yidi + u)(axF2)

= αP2 + w(idiQ2 + U2) + r2V2 − aγπF2

K2,2 = r2V
′
2 + w(yidi + u)xF2 + γπ′F2

= r2V
′
2 + w(yidi + u)(xF2) + γ(π − γ−11 w(yidi + u)x)F2

= r2V
′
2 + w(yidi + u)(xF2) + γπF2 − w(yidi + u)xF2

= r2V
′
2 + γπF2.

Challenge: B receives two pairs of messages and identities (M0, îd0) and (M1, îd1) from A . It chooses

β
U←− {0, 1} and a′, ξ

U←− Zp at random and generates a semi-functional challenge ciphertext as follows.

C0
U←− GT

C1,1 = (y îdβ + u)Z1, C1,2 = a′(y îdβ + u)Z1 + ξF1,

C1,3 = −v(y îdβ + u))Z1 − v′a′(y îdβ + u)Z1 − v′ξF1,
C2,1 = szF1, C2,2 = a′szF1, C2,3 = −v(szF1)− v′a′(szF1),

where a′ = a+ µ′, µ = µ′sz and ξ = µσ′. The challenge ciphertext Ĉ = (C0, C1,1, C1,2, C1,3, C2,1, C2,2, C2,3)

is returned to A . The computations below illustrate that Ĉ is a semi-functional encryption with σ = σ′ +
cd(y îdβ + u).

C1,2 = a′(y îdβ + u)Z1 + ξF1

= (a+ µ′)(y îdβ + u)csdzF1 + µσ′F1

= a(y îdβ + u)csdzF1 + µ′h(îdβ)csdzF1 + µσ′F1

= as(îdβQ1 + U1) + (µ′sz)(cd(y îdβ + u))F1 + µσ′F1

= as(îdβQ1 + U1) + µ(cd(y îdβ + u))F1 + µσ′F1

= as(îdβQ1 + U1) + µσF1

Observe that C1,1 = s(îdβQ1 + U1) = (c · (y îdβ + u))(sdzF1). If c = 1, then σ = σ′ + d(y îdβ + u) and Ĉ is

encrypted under îdβ . Otherwise, c is random, causing (y îdβ + u) and consequently the target identity and σ
to be random quantities.

8

Guess: A returns its guess β′ of β.
If the algorithm B returns 1 when β = β′ and 0 otherwise, it can solve the A1 instance with advantage

AdvA1
G (B) = |Pr[β = β′|Z1 is real]− Pr[β = β′|Z1 is random]|

= |Pr[XM-rand]− Pr[Xfinal]|.

Now, A ’s advantage in winning the game is given by

Advano-ind-cpaLW−IBE (A) =

∣∣∣∣Pr[Xreal]−
1

2

∣∣∣∣
= |Pr[Xreal]− Pr[Xfinal]|

≤ |Pr[Xreal]− Pr[X0]|+
q∑

k=1

(|Pr[Xk−1]− Pr[Xk]|)

+ |Pr[Xq,1]− Pr[XM-rand]|+ |Pr[XM-rand]− Pr[Xfinal]|
≤ εLW1 + qεLW2 + εDBDH-3 + εA1

ut

4 Anonymous HIBE from LW-IBE

In this section, we present our HIBE scheme, LW -AHIBE , resulting from a BBG-type extension of the LW
IBE scheme. A straightforward BBG-type extension would lead to problems in adopting the dual system
methodology. We introduce some new elements to overcome this problem. The construction is based on a
Type-3 prime-order pairing with group order p. Identities are variable length tuples of elements from Z×p
with maximum length h.

The first step towards obtaining constant-size ciphertexts is to add elements (Q1,j)j∈[1,h], U1 ∈ G1 to the
public parameters. These are used to create the identity hash – for an identity id = (id1, . . . , id`), the hash is

given by
∑`
j=1 idjQ1,j + U1. This replaces the hash in LW-IBE without affecting the number of elements in

the ciphertext. To facilitate key extraction, the corresponding elements in G2 also are provided. We introduce
some notation here: the tuple (P1, (Q1,j)j∈[1,h], U1) is denoted Q1 and let its G2 counterpart be Q2. Also
present in the master secret of LW-IBE are the elements V2, V

′
2 , F2 that provide cancellation analogous to

the composite order setting. In the HIBE setting, these elements along with Q2, must be made public to
assist in re-randomisation during delegation. Once these are made public, nothing is kept secret except for
α. This acts as a stumbling block against a dual system proof. In a proof within the dual system framework,
some secret elements are needed to create the so-called semi-functional components that are central to this
proof methodology. In the composite order setting, this is achieved by keeping one subgroup hidden from the
attacker which essentially forms the semi-functional space. Similarly, schemes based on dual pairing vector
spaces have some vectors in the dual bases hidden that assist in generating the semi-functional space. But
the strategy for HIBE extension of LW-IBE chalked out above, requires everything to be made public (except
α), which in turn limits our ability to define a semi-functional space.

Our solution to this problem is to keep Q2 in the master secret. In a way, some elements of the group G2

are hidden and provide the basis for generating semi-functional components. To support delegation, suitably
randomised copies of the key components are provided in the key itself. This technique was introduced
by Boyen and Waters [4] to construct an anonymous HIBE scheme. V2, V

′
2 , F2 are public to help in re-

randomisation during delegation; this ensures proper distribution of the delegated key. Note that Q2 contains
precisely the elements required to check whether a ciphertext is encrypted to a particular identity or not.

9

A by-product of keeping this tuple secret is anonymity. Thus our scheme is secure in the ANO-IND-ID-CPA
security model (refer to Section 2.5).

We now present the scheme LW -AHIBE . A discussion on the security of LW -AHIBE can be found in
Section 5.

Construction

Setup(κ): Let h denote the maximum depth of the HIBE. Choose random generators P1 ∈ G1 and P2 ∈ G2;

elements Q1,1, . . . , Q1,h, U1
U←− G1 and Q2,1, . . . , Q2,h, U2 ∈ G2 such that Q2,j ∼ Q1,j for all 1 ≤ j ≤ h and

U2 ∼ U1. Let F2 ∈ G2 be chosen at random and v, v′ be chosen randomly from Zp. Set V2 = vF2, V ′2 = v′F2.
Pick α, a at random from Zp. Set τ = v + av′ so that τF2 = V2 + aV ′2 .

PP : (P1, aP1, τP1, U1, aU1, τU1, (Q1,j , aQ1,j , τQ1,j)j∈[1,h],
V2, V

′
2 , F2, e(P1, P2)α).

MSK: (αP2, P2, Q2,1, . . . , Q2,h, U2).

Encrypt(M, id = (id1, . . . , id`),PP): Choose s
U←− Zp. Let Hi(id) = id1Qi,1 + · · · + id`Qi,` + Ui for i = 1, 2.

The ciphertext is given by C = (C0, C1,1, C1,2, C1,3, C2,1, C2,2, C2,3) where the elements are computed as
follows.

C0 = M × e(P1, P2)αs,
C1,1 = sH1(id), C1,2 = asH1(id), C1,3 = −τsH1(id)
C2,1 = sP1, C2,2 = asP1, C2,3 = −τsP1

KeyGen(id = (id1, . . . , id`),MSK,PP): Choose w1, w2, r1, r2, r3, r4, (z1,j , z2,j)j∈[`+1,h]
U←− Zp. The key con-

sists of 6(n− `+ 2) group elements computed as follows.

K1,1 = w1P2 + r1V2, K1,2 = r1V
′
2 , K1,3 = r1F2

K2,1 = αP2 + w1H2(id) + r2V2, K2,2 = r2V
′
2 , K2,3 = r2F2

Dj,1 = w1Q2,j + z1,jV2, Dj,2 = z1,jV
′
2 , Dj,3 = z1,jF2 for `+ 1 ≤ j ≤ h

J1,1 = w2P2 + r3V2, J1,2 = r3V
′
2 , J1,3 = r3F2

J2,1 = w2H2(id) + r4V2, J2,2 = r4V
′
2 , J2,3 = r4F2

Ej,1 = w2Q2,j + z2,jV2, Ej,2 = z2,jV
′
2 , Ej,3 = z2,jF2 for `+ 1 ≤ j ≤ h.

The secret key for id is given by SKid = (S1,S2), where S1 = (K1,i,K2,i, Dj,i)j∈[`+1,h],i=1,2,3 and S2 =
(J1,i, J2,i, Ej,i)j∈[`+1,h],i=1,2,3. Notice that S2-components are almost same as S1-components except that
the secret α is not embedded in S2. The set S2 is exclusively used for re-randomisation.
Delegate(id = (id1, . . . , id`),SKid, id`+1,PP): Let id : id`+1 denote the ` + 1-length identity vector

(id1, . . . , id`, idell+1) obtained by appending id`+1 to id. Choose r′1, r
′
2, r
′
3, r
′
4, (z

′
1,j , z

′
2,j)j∈[`+2,h]

U←− Zp and

w′1, w
′
2

U←− Z×p . The components of the key for the identity id : id`+1 are computed as follows.

K1,1 ← K1,1 + w′1J1,1 + r′1V2 K2,1 ← K2,1 + id`+1D`+1,1 + w′1(J2,1 + id`+1E`+1,1) + r′2V2
K1,2 ← K1,2 + w′1J1,2 + r′1V

′
2 K2,2 ← K2,2 + id`+1D`+1,2 + w′1(J2,2 + id`+1E`+1,2) + r′2V

′
2

K1,3 ← K1,3 + w′1J1,3 + r′1F2 K2,3 ← K2,3 + id`+1D`+1,3 + w′1(J2,3 + id`+1E`+1,3) + r′2F2

J1,1 ← w′2J1,1 + r′3V2 J2,1 ← w′2(J2,1 + id`+1E`+1,1) + r′4V2
J1,2 ← w′2J1,2 + r′3V

′
2 J2,2 ← w′2(J2,2 + id`+1E`+1,2) + r′4V

′
2

J1,3 ← w′2J1,3 + r′3F2 J2,3 ← w′2(J2,3 + id`+1E`+1,3) + r′4F2

10

For j = `+ 2, . . . , h,
Dj,1 ← Dj,1 + w′1Ej,1 + z′1,jV2 Dj,2 ← Dj,2 + w′1Ej,2 + z′1,jV

′
2 Dj,3 ← Dj,3 + w′1Ej,3 + z′1,jF2

Ej,1 ← w′2Ej,1 + z′2,jV2 Ej,2 ← w′2Ej,2 + z′2,jV
′
2 Ej,3 ← w′2Ej,3 + z′2,jF2

The above procedure essentially re-randomises all components of the key. As a result the distribution of a
key obtained using delegation is the same as the distribution of a key obtained using the key generation
procedure. To note the re-randomisation consider the following change of scalars for the modified key.

w1 ← w1 + w′1w2; w2 ← w′2w2;
r1 ← r1 + r′1 + w′1r3; r3 ← w′2r3 + r′3;
r2 ← r2 + r′2 + id`+1z1,`+1 + w′2(r4 + id`+1z2,`+1); r4 ← w′2(r4 + id`+1z2,`+1) + r′4;
z1,j ← z1,j + z′1,j + w′1z2,j+1 for j = `+ 2, . . . , h z2,j ← w′2z2,j + z′2,j for j = `+ 2, . . . , h

These new randomisers are properly distributed by the choice of w′1, w
′
2, r
′
1, r
′
2, r
′
3, r
′
4, (z

′
1,j), (z

′
2,j).

Decrypt(C, id = (id1, . . . , id`),SKid,PP): Decryption is done as follows.

M = C0 ×
e(C1,1,K1,1)e(C1,2,K1,2)e(C1,3,K1,3)

e(C2,1,K2,1)e(C2,2,K2,2)e(C2,3,K2,3)
(1)

Correctness of decryption of the HIBE scheme follows directly from that of LW-IBE since the decryption
procedure remains the same – the additional delegation components do not play any role in decryption.
Observe that computing the ratio of pairings in Equation (1) using J1,i, J2,i (i = 1, 2, 3) instead of K1,i,K2,i

results in 1T (the identity of GT).

5 Security of LW -AHIBE

We first provide some basic intuition underlying the proof with respect to different stages of security analysis
(within the dual system framework), highlighting the similarities and differences with LW-IBE security proof.
Then, a detailed security analysis of LW -AHIBE is presented in Section 5.2.

5.1 Ideas Underlying the Security Proof

The first step is to define semi-functional (sf) ciphertexts and keys. The definition of sf-ciphertext remains
the same as LW-IBE. The keys of LW -AHIBE are significantly different from LW-IBE. We formulate the
definition of sf-keys on the basis of the following observations.

– Sf-components for (K1,i,K2,i)i=1,2 are identical to LW-IBE since only these components participate in
decryption.

– It is required to define sf-components for (Dj,1, Dj,2)j∈[`+1,h] though they are only used during delega-
tion to create the identity-hash. This is because they share the randomiser w1 with K1,i,K2,i and this
randomiser comes from a problem instance in the reductions.

– Once sf-components are defined for S1, it is natural to ask: is it necessary to define sf-parts for S2? The
answer is yes since otherwise the fourth reduction fails, where P2, U2, (Q2,j) are masked by a quantity
that forces the keys to be semi-functional. We have already seen this in the context of LW-IBE (see
Theorem 1).

We would like to emphasise that the definition of semi-functional components (in both ciphertexts and
keys), complexity assumptions and the reductions are all inter-linked. Changing the structure of sf-keys may
determine the assumption required or affect simulation in some reduction. Also, for the reductions to go

11

through, the sf-components may have to be defined in a particular way. The structure of sf-components we
have is in a sense, optimal, subject to assumptions and simulations we provide.

An outline of the four main reductions in the augmented security proof (including anonymity) of LW-IBE
is as follows.

First reduction: The goal of this reduction is to show that an attacker cannot distinguish between a
normal ciphertext and an sf-ciphertext. It is achieved via a reduction from the LW1 problem. An LW1
instance is embedded in the challenge ciphertext attempting to exploit the adversary’s ability to detect
the change in order to solve the problem.

Second reduction: In this reduction, it is shown that if the adversary can decide whether the response to
the k-th key extraction query is normal or semi-functional, then LW2 problem can be solved. The k-th
key is constructed from an instance of LW2 problem in such a way that the key is normal if the instance
is ‘real’ and semi-functional otherwise.

Third reduction: Here, the message that the challenge ciphertext encrypts, is changed to a random
element of GT . It is shown that solving the DBDH-3 problem is no harder than distinguishing between
an sf-encryption of the real message from an sf-encryption of a random element of GT .

Fourth reduction: Challenge ciphertext encrypts a random message under a random identity. The identity-
hash is created using the challenge in an instance of A1 problem thus making it real or random according
to the distribution of the challenge.

This strategy does not directly extend to the hierarchical setting. Several challenges/restrictions emerge as
we try to prove security of LW -AHIBE .

The first and the third reductions for LW -AHIBE are the closest to the corresponding reductions for LW-
IBE appearing in [15]. In these reductions, the simulations of the public parameters; the ciphertext elements;
and the components of the key which are present in LW-IBE; are exactly the same as for LW-IBE. The only
technicality is to ensure that the extra components of the key can be properly simulated without changing
the corresponding assumptions (LW1 for the first reduction and DBDH-3 for the third reduction).

The second reduction presents some technical novelty. We need to extend the dual-system technique to
handle this reduction. In this reduction, it is shown that the adversary cannot decide whether the response to
the k-th key extraction query is normal or semi-functional. Compared to the LW-IBE, the key has additional
components which are required for delegation and re-randomisation; moreover, these have semi-functional
parts. A new technique is required to handle these simulations.

Partial semi-functionality: Consider the second reduction where the k-th key is made semi-functional.
LW-IBE reduction embeds a pairwise independent function in the k-th key as well as the challenge ciphertext
to ensure independent distribution of the scalars involved in the respective sf-components. This function is
determined by the parameters used to create the identity-hash. An attempt to use the same strategy for
LW -AHIBE , however, causes a problem. The reason is that the identity-hash is now present in three places
– challenge ciphertext, S1 and S2. In addition, all these have sf-components. One possible way to deal with
this is to embed a 3-wise independent function i.e., a degree-2 polynomial in the identity. As result the one
extra group element is required in PP as well as MSK. Also, encryption and key generation would each
require an extra scalar multiplication and a squaring in the underlying field. The other way to get around
the problem is to use two separate instances to generate the two hashes in the key. We follow the latter
approach since the efficiency of the scheme remains unaffected alhtough the degradation is increased by a
factor of 2. The key is changed from normal to semi-functional in two steps – first make S1 semi-functional
followed by S2. We call a key partial semi-functional if S1 is semi-functional and S2 is normal.

The second step of the dual-system technique changes the key in the k-th response from normal to semi-
functional (without the adversary noticing this). In our case, this is done in two sub-steps – the first step

12

changes from normal to partial semi-functional and the second step changes from partial semi-functional to
semi-functional. This leads to a slight degradation in the security bound by a factor of 2.

The fourth reduction is to show anonymity of the HIBE scheme. This is almost the same as the reduction
that we have provided to show the anonymity of the LW-IBE. The only difference is that the extra elements
of the key have to properly simulated.

5.2 Detailed Proof

As is typical in the dual-system technique, we first describe semi-functional ciphertexts and keys. These are
required only in the reductions and not in the actual scheme.

Semi-functional ciphertext: Let C ′0, C
′
1,1, C

′
1,2, C

′
1,3, C

′
2,1, C

′
2,2, C

′
2,3 be ciphertext elements normally gen-

erated by the Encrypt algorithm for message M and identity id. Let V ′1 , F1 be elements of G1 such that
V ′1 ∼ V ′2 and F1 ∼ F2. Choose µ, σ ∈ Zp at random. The semi-functional ciphertext generation algorithm
will modify the normal ciphertext as: C0 = C ′0, C1,1 = C ′1,1, C2,1 = C ′2,1 and

C1,2 = C ′1,2 + µσF1, C1,3 = C ′1,3 − µσV ′1 , C2,2 = C ′2,2 + µF1, C2,3 = C ′2,3 − µV ′1 .

Semi-functional key: Let (S1,S2) be the secret key generated by the KeyGen algorithm for identity
id = (id1, . . . , id`) with S1 = (K1,i,K2,i, Dj,i)j∈[`+1,h],i=1,2,3, S2 = (J1,i, J2,i, Ej,i)j∈[`+1,h],i=1,2,3. Let
γ1, π, γ2, η, (πj , ηj)j∈[`+1,h] be uniform random elements chosen from Zp. The semi-functional key genera-
tion algorithm will modify the normal key as:

K1,1 = K1,1 − aγ1F2, K1,2 = K1,2 + γ1F2, J1,1 = J1,1 − aγ2F2, J1,2 = J1,2 + γ2F2,
K2,1 = K2,1 − aγ1πF2, K2,2 = K2,2 + γ1πF2, J2,1 = J2,1 − aγ2ηF2, J2,2 = J2,2 + γ2ηF2,

For j = `+ 1, . . . , h
Dj,1 = Dj,1 − aγ1πjF2, Dj,2 = Dj,2 + γ1πjF2, Ej,1 = Ej,1 − aγ2ηjF2, Ej,2 = Ej,2 + γ2ηjF2.

The rest of the components remain unchanged.

Partial semi-functional key: In a partial semi-functional key, S2 is normal and S1 is semi-functional.
Note that definitions are similar to [15] except for the delegation and re-randomisation components. Since

decryption is not affected by these components of the key, all the requirements for semi-functional keys and
ciphertexts are satisfied. A pair of semi-functional ciphertext and key is called nominally semi-functional if
σ = π (condition that makes decryption successful).

Structure of the Proof. We consider the security model defined in Section 2.5. The proof is organised
as a hybrid over a sequence of 2q + 4 games defined as follows.

Gamereal: ano-ind-cpa game defined in Section 2.5.
Game0,1: the challenge ciphertext is semi-functional and all the keys returned to the adversary are normal.
Gamek,0 (for 1 ≤ k ≤ q): k-th key is partial semi-functional, the first k − 1 keys are semi-functional; the

rest of the keys are normal.
Gamek,1 (for 1 ≤ k ≤ q): similar to Gamek,0 except that the k-th key is (fully) semi-functional.
GameM-rand: all keys are semi-functional and the challenge ciphertext encrypts a random message to the

challenge identity.
Gamefinal: similar to GameM-rand except that the challenge ciphertext now encrypts to a random identity

vector.

13

These games are ordered as Gamereal, Game0,1, Game1,0,Game1,1, . . . ,Gameq,0,Gameq,1, GameM-rand,
Gamefinal in our hybrid argument. Let X� be events that A wins in Game�.

For the proof it will be convenient to use the following short-hand: denote by h(id) the sum
∑`
j=1 yj idj+u

and by g(id) the sum
∑`
j=1 λj idj + ν, where y1, . . . , yn, u, λ1, . . . , λn, ν are elements of Zp to be chosen in

the proofs.

Theorem 2. If the (εLW1, t
′)-LW1, (εLW2, t

′)-LW2, (εDBDH-3, t
′)-DBDH-3 and (εA1, t

′)-A1 assumptions hold,
then LW -AHIBE is (ε, t, q)-ANO-IND-ID-CPA secure where

ε ≤ εLW1 + 2qεLW2 + εDBDH-3 + εA1

and t = t′ − O(qρ), where ρ is an upper bound on the time required for one scalar multiplication in G1 or
G2.

Proof. For any t-time adversary A against LW -AHIBE in the ano-ind-cpa, its advantage in winning the game
is given by

Advano-ind-cpaLW -AHIBE (A) =

∣∣∣∣Pr[Xreal]−
1

2

∣∣∣∣ .
We know that Pr[Xfinal] = 1

2 and hence we have

Advano-ind-cpaLW -AHIBE (A) = |Pr[Xreal]− Pr[Xfinal]|

≤ |Pr[Xreal]− Pr[X0]|+
q∑

k=1

(|Pr[Xk−1,1]− Pr[Xk,0]|) +

q∑
k=1

(|Pr[Xk,0]− Pr[Xk,1]|)

+ |Pr[Xq,1]− Pr[XM-rand]|+ |Pr[XM-rand]− Pr[Xfinal]|
≤ εLW1 + 2qεLW2 + εDBDH-3 + εA1

The last inequality follows from the lemmas 1, 2, 3, 4 and 5. In all the lemmas, A is a t-time adversary
against LW -AHIBE and B is an algorithm running in time t′ that interacts with A and solves one of the
three problems LW1, LW2, DBDH-3 or A1. ut

Lemma 1. |Pr[Xreal]− Pr[X0,1]| ≤ εLW1.

Proof. The algorithm B receives the following instance of LW1

(F1, bsF1, sF1, aF1, ab
2F1, bF1, b

2F1, asF1, b
2sF1, b

3F1, b
3sF1, F2, bF2, Z1).

B has to determine whether Z1 = ab2sF1 or Z1 ∈U G1. We will call Z1 “real” in the former case and
“random” otherwise. B simulates the security game as described below.

Set-Up: B chooses α, y, v′, (yj , λj)j∈[1,h], u, ν
U←− Zp and sets the parameters.

P1 = b2F1 + yF1, Q1,j = λj(b
2F1) + yjF1 for 1 ≤ j ≤ h, U1 = ν(b2F1) + uF1

V2 = bF2, V
′
2 = v′F2.

This implicitly sets P2 = (b2 + y)F2, v = b and τ = b + av′. Compute aP1 = ab2F1 + y(aF1) and τP1 =
b3F1 + v′(ab2F1) + y(bF1) + yv′(aF1). The elements (aQ1,j , τQ1,j)j∈[1,h], aU1, τU1 are constructed similarly.
Set e(P1, P2)α = (e(b3F1 + y(bF1), bF2)e(P1, yF2))α. The simulator gives the following public parameters to
A .

PP = (P1, Q1,1, . . . , Q1,h, U1, aP1, aQ1,1, . . . , aQ1,h, aU1, τP1, τQ1,1, . . . , τQ1,h, τU1, e(P1, P2)α).

14

Phases 1 and 2: A makes a number of key extract queries. B does not know P2, Q2,j , U2 which
are part of the master secret. The secret key for a query on id is constructed as follows. B chooses
r′1, r

′
2, r
′
3, r
′
4, (z

′
1,j , z

′
2,j)j∈[`+1,h], w1, w2 ∈ Zp at random and computes

K1,1 = w1yF2 + r′1(bF2), K1,3 = r′1F2 − w(bF2), K1,2 = v′K1,3,,
K2,1 = αyF2 + r′2(bF2) + wh(id)F2, K2,3 = r′2F2 − (w1g(id) + α)(bF2), K2,2 = v′K2,3,,
Dj,1 = w1yjF2 + z′1,j(bF2), Dj,3 = z′1,jF2 − w1λj(bF2), Dj,2 = v′Dj,3 for `+ 1 ≤ j ≤ h,

J1,1 = w2yF2 + r′3(bF2), J1,3 = r′3F2 − w2(bF2), J1,2 = v′J1,3,
J2,1 = r′4(bF2) + w2h(id)F2, J2,3 = r′4F2 − w2g(id)(bF2), J2,2 = v′J2,3,
Ej,1 = w2yjF2 + z′2,j(bF2), Ej,3 = z′2,jF2 − w2λj(bF2), Ej,2 = v′Ej,3 for `+ 1 ≤ j ≤ h,

implicitly setting

r1 = r′1 − w1b, r2 = r′2 − (w1g(id) + α)b,
r3 = r′3 − w2b, r4 = r′4 − w2g(id)b,
z1,j = z′1,j − w1λjb, z2,j = z′2,j − w2λjb for j = `+ 1, . . . , h.

The following computation shows that the components are well-formed.

K1,1 = wyF2 + r′1(bF2) K2,1 = αyF2 + r′2(bF2) + wh(id)F2

= wyF2 + (r1 + wb)bF2 = αyF2 + (r2 + (wg(id) + α)b)bF2 + wh(id)F2

= w(yF2 + b2F2) + r1(bF2) = α(yF2 + b2F2) + r2(bF2) + w(g(id)b2F2 + h(id)F2)

= wP2 + r1V2 = αP2 + wH2(id) + r2V2

D1,j = wyjF2 + z′j(bF2)

= wyjF2 + (z1,j + wλjb)(bF2)

= w(yjF2 + λjb
2F2) + z1,j(bF2)

= wQ2,j + z1,jV2

Following the same logic, it can be verified that J1,1, J2,1, Ej,1 are well-formed. Remaining components clearly
have the right form.

Challenge: B receives two pairs (M0, îd0) and (M1, îd1) from A . It chooses β ∈ {0, 1} at random. B
computes the ciphertext for Mβ under îdβ as follows.

C0 = Mβ ·
(
e(b3sF1 + y(bsF1), bF2)e(b2sF1 + y(sF1), yF2)

)α
= Mβ · e(P1, P2)αs

C1,1 = g(îdβ)(b2sF1) + h(îdβ)(sF1), C1,2 = g(îdβ)Z1 + h(îdβ)(asF1)

C1,3 = −g(îdβ)(b3sF1)− h(îdβ)(bsF1)− v′g(îdβ)Z1 − v′h(îdβ)(asF1)
C2,1 = b2sF1 + y(sF1), C2,2 = Z1 + y(asF1)
C2,3 = −b3sF1 − y(bsF1)− v′Z1 − v′(asF1).

B returns Ĉ = (C0, C1,1, C1,2, C1,3, C2,1, C2,2, C2,3) to A .

If Z1 = ab2sF1, then it is easy to see that Ĉ is normal. Otherwise, Z1 = (ab2s+ µ)F1 for some µ ∈U Zp
and Ĉ is semi-functional with µ = µ and σ = g(îdβ). The calculation below shows that C1,2 is a properly

15

formed (semi-functional) component.

C1,2 = g(îdβ)Z1 + h(îdβ)(asF1)

= g(îdβ)(ab2s+ µ)F1 + h(îdβ)(asF1)

= as(g(îdβ)b2F1 + h(îdβ)F1) + µg(îdβ)F1

= asH1(îdβ) + µσF1

Verification of the well-formedness of C1,3, C2,2 and C2,3 follows the same pattern. Scalars (λj)j∈[1,h], ν
are information theoretically hidden from A ’s view and hence σ = g(id) appears to be uniformly and
independently distributed with respect to all other information provided to A .

Note that, to check whether Ĉ is semi-functional or not, B itself could try to decrypt it with a semi-
functional key for îdβ . Any such attempt will fail due to the following reason – aF2 is unavailable to B; it
could try to cancel out −aγF2 in K1,1 or γF2 in K1,2 with some other elements; but we do not see how to
achieve this keeping the link between K1,1 and K1,2 (via γ) intact, without knowing aF2.
Guess: The adversary returns its guess β′ to B.

If Z1 is real, Ĉ is normal and hence B simulates Gamereal. Otherwise, Z1 is random and Ĉ is semi-
functional in which case, B simulates Game0,1. Suppose that B returns 1 if β = β′ and 0 otherwise. Then
it can solve the LW1 problem with advantage

AdvLW1
G (B) = |Pr[β = β′|Z1 is real]− Pr[β = β′|Z1 is random]| = |Pr[Xreal]− Pr[X0,1]| ≤ εLW1.

ut

Lemma 2. |Pr[Xk−1,1]− Pr[Xk,0]| ≤ εLW2 for 1 ≤ k ≤ q.

Proof. Let (F1, dF1, d
2F1, bxF1, dbxF1, d

2xF1, F2, dF2, bF2, cF2, Z2) be the instance of LW2 that B receives.
Let Z2 = (bc+ γ)F2. B’s task is to decide whether γ = 0 (Z2 is real) or γ ∈U Zp (Z2 is random).

Set-Up: B chooses α, a, yv, y1, . . . , yh, u, λ1, . . . , λh, ν
U←− Zp and computes parameters as follows. P1 = dF1,

Q1,j = λj(dF1) + yjF1 for 1 ≤ j ≤ h, U1 = ν(dF1) + uF1, V2 = −a(bF2) + dF2 + yvF2 and V ′2 = bF2 setting
v = −ab+ d+ yv, v

′ = b and τ = d+ yv. The element τP1 can be computed as τP1 = d2F1 + yv(dF1). The
parameters τQ1,j for 1 ≤ j ≤ h and τU1 are given by τQ1,j = λj(d

2F1) + yj(dF1) + yvλj(dF1) + yvyjF1 and
τU1 = ν(d2F1) + u(dF1) + yvν(dF1) + yvuF1. The remaining parameters required to provide PP to A are
computed using a, α and elements of the problem instance. Elements of the master secret key can also be
obtained from the instance and randomisers chosen at setup.
Phases 1 and 2: The key extraction queries for identities id1, . . . , idq are answered in the following way.
If i < k, a semi-functional key is returned and if i > k a normal key is returned. B creates semi-functional
keys using the master secret, a and F2.

For i = k, B computes of S1 using the problem instance in the following manner. Let idk = (id1, . . . , id`).

B chooses w′1, r
′
2, z
′
1,`+1, . . . , z

′
1,h

U←− Zp.

K1,1 = w′1P2 − aZ2 + yv(cF2), K1,2 = Z2, K1,3 = cF2

K2,1 = αP2 + w′1(g(idk)(dF2) + h(idk)F2) + r′2V2 − ag(idk)Z2 + yvg(idk)(cF2)− h(idk)cF2

K2,2 = r′2V
′
2 + g(idk)Z2, K2,3 = r′2F2 + g(idk)(cF2)

and for j = `+ 1, . . . , h, set

Dj,1 = w′1Q2,j + z′1,jV2 − yj(cF2)− aλjZ2 + yvλj(cF2)
Dj,2 = z′1,jV

′
2 + λjZ2, Dj,3 = z′1,jF2 + λj(cF2)

16

thus implicitly setting w1 = w′1 − c, r1 = c, r2 = r′2 + g(idk)c and z1,j = z′1,j + λjc for `+ 1 ≤ j ≤ h.

Let S1 = (K1,i,K2,i, Dj,i)j∈[`+1,h],i=1,2,3. The second set S2 = (J1,i, J2,i, Ej,i)j∈[`+1,h],i=1,2,3 is created
normally. B returns SKidk

= (S1,S2) as the key for idk. If Z2 = bcF2 then the key for idk is normal.

We show that K2,1 is well-formed. Verifying the remaining parts can be done analogously.

K2,1 = αP2 + w′1(g(idk)(dF2) + h(idk)F2) + r′2V2 − ag(idk)Z2 + yvg(idk)(cF2)− h(idk)cF2

= αP2 + (w1 + c)H2(idk) + (r2 − g(idk)c)(−a(bF2) + dF2 + yvF2)

+ g(idk)(−abcF2 + yvcF2)− h(idk)cF2

= αP2 + (w1 + c)H2(idk) + r2V2 − g(idk)cdF2 + g(idk)(abcF2 − cyvF2)

− g(idk)(abcF2 − yvcF2)− h(idk)cF2

= αP2 + (w1 + c)H2(idk) + r2V2 − g(idk)cdF2 − h(idk)cF2

= αP2 + (w1 + c)H2(idk) + r2V2 − cH2(idk)

= αP2 + w1H2(idk) + r2V2.

If Z2 = (bc + γ)F2 the key will be partial semi-functional with γ1 = γ, π = g(idk) and πj = λj
for ` + 1 ≤ j ≤ h. It is straightforward to check that SKidk

is a properly formed partial sf-key. Also,
since (λj)j∈[1,h], ν are information theoretically hidden from the adversary, π, (πj)j∈[`+1,h] are uniformly and
independently distributed in A ’s view.

B could attempt checking whether SKidk
is semi-functional by creating a sf-ciphertext for idk. Since

V ′1 = bF1 is not available to B, the only way of doing this will lead to σ being the same as π (challenge
ciphertext is created via this method). The ciphertext-key pair will be nominally semi-functional and thus
provides no information to B.

Challenge: A provides two message-identity pairs, (M0, îd0) and (M1, îd1) to B. It chooses β ∈U {0, 1},
generates the challenge ciphertext as shown below.

C0 = Mβ · e(dbxF1, dF2)α

C1,1 = g(îdβ)(dbxF1) + h(îdβ)(bxF1)

C1,2 = ag(îdβ)(dbxF1) + ah(îdβ)(bxF1)− g(îdβ)(d2xF1)

C1,3 = −yvg(îdβ)(dbxF1)− h(îdβ)(dbxF1)− yvh(îdβ)(bxF1)
C2,1 = dbxF1, C2,2 = a(dbxF1)− d2xF1, C2,3 = −yv(dbxF1).

This sets s = bx, µ = −d2x and σ = g(îdβ). Since λ1, . . . , λh and ν are chosen uniformly at random from
Zp, λ1X1 + · · ·+ λhXh + ν is a pairwise independent function for variables X1, . . . , Xh over Zp. As a result,

π = λ1id1 + · · · + λ`id` + ν and σ = λ1 îd1 + · · · + λ̂̀îd̂̀+ ν are independent and uniformly distributed. B

returns Ĉ = (C1,i, C2,i)i=1,2,3.

To show that Ĉ is indeed distributed properly, we show that C1,3 is well-formed. Along the same lines,
one can check the well-formedness of C1,2, C2,2 and C2,3.

C1,3 = −yvg(îdβ)(dbxF1)− h(îdβ)(dbxF1)− yvh(îdβ)(bxF1)

= −yvg(îdβ)(dbxF1)− yvh(îdβ)(bxF1)− h(îdβ)(dbxF1)− g(îdβ)d2bxF1 + g(îdβ)d2bxF1

= −yvbxH1(îdβ)− dbxH1(îdβ) + g(îdβ)d2x(bF1)

= −τH1(îdβ) + σµV ′1

Guess: A returns a bit β′ as its guess for β.

17

When the instance is real, B simulates Gamek−1,1 and otherwise simulates Gamek,0. B returns 1 if A
wins the game i.e., β = β′; otherwise it returns 0. Hence, B can solve the LW2 instance with advantage

AdvLW2
G (B) = |Pr[β = β′|Z2 is real]− Pr[β = β′|Z2 is random]| = |Pr[Xk−1,1]− Pr[Xk,0]|.

from which the statement of the lemma follows. ut

Lemma 3. |Pr[Xk,0]− Pr[Xk,1]| ≤ εLW2 for 1 ≤ k ≤ q.

The proof is reminiscent of Lemma 2. The reason is as follows: the structure of S2 is identical to S1 if the
αP2 term is removed from K2,1. Moreover, the simulator chooses α and creates αP2 independent of the
instance. Hence the simulation will be similar except that the instance is now embedded in S2 and S1 is
made semi-functional independent of the instance.

Lemma 4. |Pr[Xq,1]− Pr[XM-rand]| ≤ εDBDH-3.

Proof. B receives (F1, aF1, bF1, sF1, F2, aF2, bF2, sF2, ZT) as an instance of the DBDH-3 problem where
ZT = e(F1, F2)abs (real) or ZT ∈U GT (random).
Set-Up: With y, v, v′, y1, . . . , yh, u chosen at random from Zp, B sets the parameters as

P1 = yF1, P2 = yF2, aP1 = y(aF1), V2 = vF2, V
′
2 = v′F2, τP1 = yvF1 + yv′(aF1)

Q1,j = yjP1 = yjyF1 for 1 ≤ j ≤ h, U1 = uP1 = uyF1, e(P1, P2)α = e(aF1, bF2)y
2

implicitly setting α = ab and τ = v+ av′. The remaining parameters can be computed easily. B returns PP
to A .
Phases 1 and 2: When A asks for the secret key for the i’th identity idi = (id1, . . . , id`), B chooses
at random w1, w2, r1, r2, r3, r4, (z1,j , z2,j)

h
j=1 and γ′1, γ1, γ2, (πj)

h
j=1, η, (ηj)

h
j=1 from Zp and computes a semi-

functional key for idi as follows.

K1,1 = w1P2 + r1V2 − γ1(aF2), K1,2 = r1V
′
2 + γ1F2, K1,3 = r1F2

K2,1 = γ′1(aF2) + w1h(idi)(P2) + r2V2, K2,2 = r2V
′
2 + y(bF2)− γ′1F2, K2,3 = r2F2,

Dj,1 = w1Q2,j + z1,jV2 − γ1πj(aF2), Dj,2 = z1,jV
′
2 + γ1πjF2, Dj,3 = z1,jF2 for `+ 1 ≤ j ≤ h.

J1,1 = w2P2 + r3V2 − γ2(aF2), J1,2 = r3V
′
2 + γ2F2, J1,3 = r3F2

J2,1 = w2h(idi)(P2) + r4V2 − γ2η(aF2), J2,2 = r4V
′
2 + γ2ηF2, J2,3 = r4F2,

Ej,1 = w2Q2,j + z2,jV2 − γ2ηj(aF2), Ej,2 = z2,jV
′
2 + γηjF2, Ej,3 = z2,jF2 for `+ 1 ≤ j ≤ h.

Here the relation aγ′1 = by − γ1π is implicitly set by the simulator. Calculations provided below justify that
K2,1 and K2,2 have the correct distribution. Other elements have the correct form and distribution.

K2,1 = γ′1(aF2) + w1h(idi)(P2) + r2V2 K2,2 = r2V
′
2 + y(bF2)− γ′1F2

= (by − γ1π)(aF2) + w1h(idi)(P2) + r2V2 = r2V
′
2 + y(bF2)− (by − γ1π)F2

= ab(yF2) + w1h(idi)(P2) + r2V2 − aγ1πF2 = r2V
′
2 + y(bF2)− byF2 + γ1πF2

= αP2 + w1h(idi)(P2) + r2V2 − aγ1πF2. = r2V
′
2 + γ1πF2.

Observe that B does not know α or αF2 and hence cannot create a normal key.

Challenge: B receives two pairs (M0, îd0) and (M1, îd1) from A . It samples β
U←− {0, 1}, µ′ U←− Zp and

generates a semi-functional challenge ciphertext as follows.

C0 = Mβ × ZT
C1,1 = yh(îdβ)sF1, C1,2 = h(îdβ)µ′F1, C1,3 = −vyh(îdβ)(sF1)− v′h(îdβ)µ′F1

C2,1 = y(sF1), C2,2 = µ′F1, C2,3 = −yv(sF1)− v′µ′F1

18

with µ′ = asy + µ and σ = h(îdβ). The challenge ciphertext Ĉ = (C0, C1,1, C1,2, C1,3, C2,1, C2,2, C2,3) is
returned to A .

Guess: A returns its guess β′ of β.

It is clear that Ĉ is a semi-functional encryption of Mβ when ZT = e(P1, P2)abs. And when ZT ∈U GT
Ĉ would be a semi-functional encryption of a random message. Hence B simulates Gameq,1 or Gamefinal
according to ZT being real or random respectively. If the algorithm B returns 1 when β = β′ and 0 otherwise,
it can solve the DBDH-3 instance with advantage

AdvDBDH-3
G (B) = |Pr[β = β′|ZT is real]− Pr[β = β′|ZT is random]| = |Pr[Xq,1]− Pr[Xfinal]|.

ut

Lemma 5. |Pr[XM-rand]− Pr[Xfinal]| ≤ εA1.

Proof. Let (G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz−ax)F2, Z1) be the instance of A1 pro-
vided to B. Let Z1 = c · sdzF1. B has to determine whether c = 1 or c ∈U Zp. The game is simulated as
follows.

Set-Up: Pick α, v, v′, y1, . . . , yh, u
U←− Zp and set the parameters as

P1 = zF1, V2 = vF2, V
′
2 = v′F2, Q1,j = yj(dzF1), U1 = u(dzF1),

aP1 = azP1, aQ1,j = yj(adzF1), aU1 = u(adzF1),

where j = 1, . . . , h and similarly the elements τP1, τQ1,j and τU1. Compute e(P1, P2)α = e(zF1, zF2)α. B
returns PP to A . B knows P2 = zF2 and α but not Q2,j ’s and U2. The main idea is to mask the components
required to create identity-hash in G2 by a scalar multiple of aF2 so that only semi-functional keys can be
created.

Key Extraction Phases 1 and 2: B picks w1, w2, r1, r2, r3, r4, (z1,j , z2,j)
h
j=1

U←− Zp, γ1, γ2
U←− Z×p and

π′, (π′j)
h
j=1, η

′, (η′j)
h
j=1

U←− Zp. It then computes the key for the i-th identity vector idi = (id1, . . . , id`) as
follows.

K1,1 = w1(zF2) + r1V2 − γ1aF2, K1,2 = r1V
′
2 + γ1F2, K1,3 = r1F2

K2,1 = αzF2 + w1h(idi)(dz − ax)F2 + r2V2 − γ1π′(aF2), K2,2 = r2V
′
2 + w1h(idi)xF2 + γ1π

′F2, K2,3 = r2F2,

J1,1 = w2(zF2) + r3V2 − γ2aF2, J1,2 = r3V
′
2 + γ2F2, J1,3 = r3F2

J2,1 = w2h(idi)(dz − ax)F2 + r4V2 − γ2η′(aF2), J2,2 = r4V
′
2 + w2h(idi)xF2 + γ2η

′F2, J2,3 = r4F2,

For `+ 1 ≤ j ≤ h,
Dj,1 = w1yj(dz − ax)F2 + z1,jV2 − γ1π′j(aF2), Dj,2 = z1,jV

′
2 + w1yj(xF2) + γ1π

′
jF2, Dj,3 = z1,jF2

Ej,1 = w2yj(dz − ax)F2 + z2,jV2 − γ2η′j(aF2), Ej,2 = z2,jV
′
2 + w2yj(xF2) + γ2η

′
jF2, Ej,3 = z2,jF2

setting π = π′ + γ−11 w1h(idi)x, πj = π′j + γ−11 w1yjx, η = η′ + γ−12 w2h(idi)x and ηj = η′j + γ−12 w2yjx. Since
all these scalars are additively randomised they remain properly distributed in the adversary’s view. We

19

show that Dj,1, Dj,2 are well-formed; the rest can be verified in a similar fashion.

Dj,1 = w1yj(dz − ax)F2 + z1,jV2 − γ1π′j(aF2)

= w1yjdzF2 − w1yjaxF2 + z1,jV2 − γ1(πj − γ−11 w1yjx)(aF2)

= w1yjdzF2 − w1yjaxF2 + z1,jV2 − aγ1πjF2 + w1yjaxF2

= w1yjdzF2 + z1,jV2 − aγ1πjF2

Dj,2 = z1,jV
′
2 + w1yj(xF2) + γ1π

′
jF2

= z1,jV
′
2 + w1yj(xF2) + γ1(πj − γ−11 w1yjx)F2

= z1,jV
′
2 + w1yjxF2 + γ1πjF2 − w1yjxF2

= z1,jV
′
2 + γ1πjF2

Challenge: B receives two pairs of messages and identity vectors (M0, îd0) and (M1, îd1) from A . It

chooses β
U←− {0, 1} and a′, ξ

U←− Zp at random and generates a semi-functional challenge ciphertext as
follows.

C0
U←− GT

C1,1 = h(îdβ)Z1, C1,2 = a′h(îdβ)Z1 + ξF1, C1,3 = −vh(îdβ)Z1 − v′a′h(îdβ)Z1 − v′ξF1,
C2,1 = szF1, C2,2 = a′szF1, C2,3 = −v(szF1)− v′a′(szF1),

where a′ = a+ µ′, µ = µ′sz and ξ = µσ′. The challenge ciphertext Ĉ = (C0, C1,1, C1,2, C1,3, C2,1, C2,2, C2,3)

is returned to A . The computations below illustrate that Ĉ is a semi-functional encryption with σ = σ′ +
cdh(îdβ).

C1,2 = a′h(îdβ)Z1 + ξF1

= (a+ µ′)h(îdβ)csdzF1 + µσ′F1

= ah(îdβ)csdzF1 + µ′h(îdβ)csdzF1 + µσ′F1

= asH1(îdβ) + (µ′sz)(cdh(îdβ))F1 + µσ′F1

= asH1(îdβ) + µ(cdh(îdβ))F1 + µσ′F1

= asH1(îdβ) + µσF1

Observe that C1,1 = sH1(îdβ) = (c · h(îdβ))(sdzF1). If c = 1, then σ = σ′ + dh(îdβ) and Ĉ is encrypted

under îdβ . Otherwise, c is random, causing h(îdβ) and consequently the target identity and σ to be random
quantities.
Guess: A returns its guess β′ of β.
If the algorithm B returns 1 when β = β′ and 0 otherwise, it can solve the A1 instance with advantage

AdvA1
G (B) = |Pr[β = β′|Z1 is real]− Pr[β = β′|Z1 is random]| = |Pr[XM-rand]− Pr[Xfinal]|.

ut

6 Conclusion

We have extended the Lewko-Waters IBE scheme using asymmetric pairings to a constant-size ciphertext
HIBE. In addition to CPA-security the HIBE scheme possesses anonymity. Security is based on the assump-
tions LW1, LW2, DBDH-3 and a new assumption A1 that we introduce. This HIBE is the first example of

20

an anonymous, adaptive-id secure, constant-size ciphertext HIBE which can be instantiated using Type-3
pairings. The assumptions used are static but non-standard. It would be interesting to explore constructions
that obtain security under standard assumptions.

Note

A recent work by Lee, Park and Lee [13] proposes a construction identical to ours. Their proof of anonymity,
however, relies on different assumptions namely – SXDH and asymmetric 3-party Diffie-Hellman (while our
proof is based on A1). We would like to mention that this appeared in DCC August 2013 issue and was
made publicly available after we submitted to IMACC 2013.

Acknowledgement

We thank the reviewers of IMACC 2013 for providing useful comments.

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee,
Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation
to anonymous IBE, and extensions. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 205–222. Springer, 2005.

2. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity-based encryption with constant size ciphertext.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 440–456.
Springer, 2005. Full version available at Cryptology ePrint Archive; Report 2005/015.

3. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput.,
32(3):586–615, 2003. Earlier version appeared in the proceedings of CRYPTO 2001.

4. Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random oracles). In
Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 290–307. Springer,
2006.

5. Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing asymmetric pairings – the role of
ψ revisited. Discrete Applied Mathematics, 159(13):1311–1322, 2011.

6. Clifford Cocks. An identity-based encryption scheme based on quadratic residues. In Bahram Honary, editor,
IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science, pages 360–363. Springer, 2001.

7. Angelo De Caro, Vincenzo Iovino, and Giuseppe Persiano. Fully secure anonymous hibe and secret-key anonymous
ibe with short ciphertexts. In Marc Joye, Atsuko Miyaji, and Akira Otsuka, editors, Pairing-Based Cryptography
- Pairing 2010, volume 6487 of Lecture Notes in Computer Science, pages 347–366. Springer Berlin / Heidelberg,
2010.

8. Léo Ducas. Anonymity from asymmetry: New constructions for anonymous hibe. In Josef Pieprzyk, editor,
CT-RSA, volume 5985 of Lecture Notes in Computer Science, pages 148–164. Springer, 2010.

9. David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups to prime-order
groups. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 44–61.
Springer, 2010.

10. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

11. Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang Zheng, editor, ASIACRYPT,
volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer, 2002.

12. Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knudsen, editor,
EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 466–481. Springer, 2002.

13. Kwangsu Lee, JongHwan Park, and DongHoon Lee. Anonymous hibe with short ciphertexts: full security in
prime order groups. Designs, Codes and Cryptography, pages 1–31, 2013.

21

14. Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the prime order setting. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer
Science, pages 318–335. Springer, 2012.

15. Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE with
short ciphertexts. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages
455–479. Springer, 2010.

16. Jong Hwan Park and Dong Hoon Lee. Anonymous hibe: Compact construction over prime-order groups. IEEE
Transactions on Information Theory, 59(4):2531–2541, 2013.

17. Jae Hong Seo, Tetsutaro Kobayashi, Miyako Ohkubo, and Koutarou Suzuki. Anonymous hierarchical identity-
based encryption with constant size ciphertexts. In Stanislaw Jarecki and Gene Tsudik, editors, Public Key
Cryptography, volume 5443 of Lecture Notes in Computer Science, pages 215–234. Springer, 2009.

18. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum, editors,
CRYPTO, volume 196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1984.

19. Nigel P. Smart and Frederik Vercauteren. On computable isomorphisms in efficient asymmetric pairing-based
systems. Discrete Applied Mathematics, 155(4):538–547, 2007.

20. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 619–636. Springer, 2009.

22

