Tutorial 6: One-way Functions

Submission Guidelines All problems must be solved in class today. Searching on the internet for solutions is strictly discouraged.

1. Show that any IND-EAV-secure private-key encryption scheme implies the existence of a one-way function.

A: Refer to Katz-Lindell book (section 6.7) for the proof.
2. Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a one-way function. Prove that the function $g:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$ defined as $g\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), x_{2}\right)$ for $x_{1}, x_{2} \in\{0,1\}^{n}$ is also one-way.

A: Let \mathscr{A}_{g} be an inverting adversary for g. We construct an adversary \mathscr{A}_{f} that inverts f.
Description of \mathscr{A}_{f} :

- \mathscr{A}_{f} received $f(x)$ for some $x \stackrel{\mathrm{U}}{\longleftarrow}\{0,1\}^{n}$.
- It then picks $x_{2} \stackrel{U}{\longleftarrow}\{0,1\}^{n}$ and provides $g\left(x, x_{2}\right)=\left(f(x), x_{2}\right)$ to \mathscr{A}_{g}.
- \mathscr{A}_{q} sends some $x^{\prime}, x_{2}^{\prime} \in\{0,1\}^{n}$ and halts.
- \mathscr{A}_{f} just relays x^{\prime} to its challenger and terminates.

Clearly,

$$
\operatorname{Pr}\left[\mathscr{A}_{f} \text { wins }\right]=\operatorname{Pr}\left[f\left(x^{\prime}\right)=f(x)\right]=\operatorname{Pr}\left[g\left(x^{\prime}, x_{2}^{\prime}\right)=g\left(x, x_{2}^{\prime}\right)\right]=\operatorname{Pr}\left[\mathscr{A}_{g} \text { wins }\right]
$$

thus implying that if f is one-way, then so is g.
3. Show (formally) that if a one-to-one function has a hard-core predicate, then it is one-way. Where exactly do you need the one-to-one property?

A: Let $f: X \rightarrow Y$ be a 1-1 function and let hc be a hard-core predicate for f. Let \mathscr{A} be an adversary inverting f. We show how to build a prediction adversary \mathscr{B} for hc.
Description of \mathscr{B} :

- Receives from its challenger $y=f(x)$ for some $x \stackrel{\mathrm{U}}{\longleftarrow} X$.
- Provides y to \mathscr{A} and receives $x^{\prime} \in X$ in return.
- Returns hc(x^{\prime}) and halts.

If \mathscr{A} wins, then $f\left(x^{\prime}\right)=f(x)$. f is 1-1 implies that $x=x^{\prime}$ and hence $\mathrm{hc}(\mathrm{x})=\mathrm{hc}\left(\mathrm{x}^{\prime}\right)$. In this case, \mathscr{B} wins. We therefore can conclude that hc is (ε, t)-hardcore predicate for f implies that f is $(\varepsilon, t-O(1))$ one-way.

