Tutorial 6: One-way Functions

Submission Guidelines All problems must be solved in class today. Searching on the internet for solutions is strictly discouraged.

1. Show that any IND-EAV-secure private-key encryption scheme implies the existence of a one-way function.

A: Refer to Katz-Lindell book (section 6.7) for the proof.

2. Suppose $f: \{0,1\}^n \to \{0,1\}^n$ is a one-way function. Prove that the function $g: \{0,1\}^{2n} \to \{0,1\}^{2n}$ defined as $g(x_1, x_2) = (f(x_1), x_2)$ for $x_1, x_2 \in \{0,1\}^n$ is also one-way.

A: Let \mathscr{A}_g be an inverting adversary for g. We construct an adversary \mathscr{A}_f that inverts f. Description of \mathscr{A}_f :

- \mathscr{A}_f received f(x) for some $x \xleftarrow{\mathrm{U}} \{0,1\}^n$.
- It then picks $x_2 \xleftarrow{U} \{0,1\}^n$ and provides $g(x,x_2) = (f(x),x_2)$ to \mathscr{A}_q .
- \mathscr{A}_q sends some $x', x'_2 \in \{0, 1\}^n$ and halts.
- \mathscr{A}_f just relays x' to its challenger and terminates.

Clearly,

$$\Pr[\mathscr{A}_f \text{ wins}] = \Pr[f(x') = f(x)] = \Pr[g(x', x_2') = g(x, x_2')] = \Pr[\mathscr{A}_g \text{ wins}]$$

thus implying that if f is one-way, then so is g.

3. Show (formally) that if a one-to-one function has a hard-core predicate, then it is one-way. Where exactly do you need the one-to-one property?

A: Let $f: X \to Y$ be a 1-1 function and let hc be a hard-core predicate for f. Let \mathscr{A} be an adversary inverting f. We show how to build a prediction adversary \mathscr{B} for hc.

Description of \mathscr{B} :

- Receives from its challenger y = f(x) for some $x \xleftarrow{\cup} X$.
- Provides y to \mathscr{A} and receives $x' \in X$ in return.
- Returns hc(x') and halts.

If \mathscr{A} wins, then f(x') = f(x). f is 1-1 implies that x = x' and hence hc(x) = hc(x'). In this case, \mathscr{B} wins. We therefore can conclude that hc is (ε, t) -hardcore predicate for f implies that f is $(\varepsilon, t - O(1))$ one-way.