Tutorial 5: Hash Functions and MACs

Submission Guidelines All problems must be solved in class today. Searching on the internet for solutions is strictly discouraged.

- 1. Let F be a PRF. Show that the following constructions of MAC are insecure. Let $\mathcal{K} = \{0,1\}^n$ and $m = m_1 \| \cdots \| m_\ell$ with $m_i \in \{0,1\}^n$ for $i \in [1,\ell]$.
 - (a) Send $t = F_k(m_1) \oplus \cdots \oplus F_k(m_\ell)$.
 - (b) Pick $r \xleftarrow{U} \{0,1\}^n$, compute $t = F_k(r) \oplus F_k(m_1) \oplus \cdots \oplus F_k(m_\ell)$ and send (r,t).
- 2. If a message m is authenticated by sending $t = F_k(m)$ along with m, the security is implied if F is a PRF. Does security hold when F is a weak PRF?
- 3. Let $H_1, H_2 : \{0,1\}^m \to \{0,1\}^n$ be two hash functions. Define a hash function $H : \{0,1\}^m \to \{0,1\}^{2n}$ as $H(x) = H_1(x) || H_2(x)$. Prove that if at least one of H_1, H_2 is collision resistant, then H is collision resistant.
- 4. Show that for a hash function, collision resistance implies second pre-image resistance and second pre-image resistance implies pre-image resistance.