Tutorial 2: Pseudorandom Objects

Submission Guidelines All problems must be solved in class today. Searching on the internet for solutions is strictly discouraged.

- 1. Prove that an efficient pseudorandom function with lengths of the input and key being $\log_2 n$ and p(n) respectively (for some polynomial p) exist *unconditionally*. State any assumptions you make about p and also specify what the output length of the PRF should be.
- 2. Let $G : \{0,1\}^n \to \{0,1\}^\ell$ be a pseudorandom generator. Define G'(s) (for $s \in \{0,1\}^n$) to be the first n bits of G(s). Is the function $F_k : \{0,1\}^n \to \{0,1\}^n$ (where $k \in \{0,1\}^n$) defined as $F_k(x) = G'(k) \oplus x$ pseudorandom? Justify your answer.
- 3. Let $F = \{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ be a pseudorandom function and G a pseudorandom generator with input length n and output length $\ell = n + 1$. For each of the following encryption schemes, state whether the scheme has IND-EAV-secure and whether it is IND-CPA-secure. In each case, the shared key k is chosen uniformly at random from $\{0,1\}^n$.
 - (a) To encrypt $m \in \{0,1\}^{2n+2}$, parse m as $m_1 ||m_2|$ with $|m_1| = |m_2|$ and send $\langle G(k) \oplus m_1, G(k+1) \oplus m_2 \rangle$.
 - (b) For a message $m \in \{0,1\}^{n+1}$, choose a random $r \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^n$ and compute the ciphertext as $\langle r, G(r) \oplus m \rangle$.
 - (c) Encrypt $m \in \{0, 1\}^n$ as $m \oplus F_k(0^n)$.
 - (d) Parse message $m \in \{0,1\}^{2n}$ as $m_1 ||m_2|$ with $|m_1| = |m_2|$, choose $r \xleftarrow{\mathbb{R}} \{0,1\}^n$ and encrypt as $\langle r, m_1 \oplus F_k(r), m_2 \oplus F_k(r+1) \rangle$.
- 4. Assume that F is a pseudorandom permutation. Show that there exists a function F' that is a PRP but is not a strong PRP.