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Spring 2019

Tutorial 2: Computational Secrecy and Pseudorandom Generators

Submission Guidelines All problems must be solved in class today. Searching on the internet for solutions
is strictly discouraged.

1. Show that semantic security and security in the sense of indistinguishability of ciphertexts are
equivalent.

A: We will show the equivalence in the presence of an eavesdropper for private key encryption schemes. Same
equivalence holds even in the chosen plaintext attack model.

Let us first recall the definition of semantic security for an encryption scheme E = (Gen,Enc,Dec) over message
spaceM. Semantic security in the presence of an eavesdropper is defined in terms of the following game, denoted
SS, between a challenger and an adversray A .

• Let D denote a distribution over M and let f, h ∶M→ {0,1}∗, all specified by the adversary.

• The challenger picks k ←Ð Gen(), m D←ÐM; picks a bit δ
U←Ð {0,1}; if δ = 0 set c = Enc(k,m), else set

c = � (indicating empty string). Send h(m), c to A .

• A returns a string w ∈ {0,1}∗.

A ’s advantage in the SS game is given by

AdvSSE,A = ∣Pr[A (h(m), c) = f(m) ∣ δ = 0] −Pr[A (h(m), c) = f(m) ∣ δ = 1]∣

E is (ε, t) semantically secure or (ε, t) − SS-secure if for all t time adversaries A , for all message distributions D
and all functions f, h ∶M→ {0,1}∗, AdvSSE,A ≤ ε.

IND-EAV-security implies SS-security. Let A be a SS adversary against E for a particular choice of
message distribution D and functions f, h. Then we show how to build a IND-CPA adversary B using A .

Description of B:

• B picks two messages m0,m1
D←ÐM and provides them to its challenger.

• The challenger picks β
U←Ð {0,1}, computes c∗ = Enc(k,m) (where k ←Ð Gen() is chosen by the challenger

when the game is setup) and provides c∗ to B.

• B computes h(m0) and sends h(m0), c∗ to A .

• A returns a string w to B. If w = f(m0), then B sets β′ = 0; else sets β′ = 1 and returns β′ to its
challenger.

Now let us analyse the probability that B wins the IND-CPA game i.e., β = β′.

Pr[β = β′] = 1

2
(Pr[β = β′ ∣ β = 0] +Pr[β = β′ ∣ β = 1])

= 1

2
(Pr[A (h(m0), c∗) = f(m0)∣β = 0] +Pr[A (h(m0), c∗) ≠ f(m0)∣β = 1])

= 1

2
(Pr[A (h(m0), c∗) = f(m0)∣β = 0] + 1 −Pr[A (h(m0), c∗) = f(m0)∣β = 1])

= 1

2
(Pr[A (h(m0),Enc(k,mβ)) = f(m0)] + 1 −Pr[A (h(m0)) = f(m0)])



The last equality follows from the fact that c∗ is completely independent of m0 when β = 1 i.e., when c∗ is an
encryption of m1. We have

AdvIND-CPA
E,B = ∣Pr[beta = β′] − 1

2
∣

= 1

2
∣Pr[A (h(m0),Enc(k,mβ)) = f(m0)] −Pr[A (h(m0)) ≠ f(m0)]∣

= 1

2
AdvSSE,A

thus proving that (ε, t)-IND-CPA security implies (ε′, t′)-SS security with ε′ = 2ε and t′ = t − O(1) (assuming
m0,m1 can be sampled in O(1) time).

SS-security implies IND-EAV-security. Suppose that B is an IND-EAV adversary. We show how to build
an ß adversary A using B for a particular choice of message distribution D and functions f, h ∶M → {0,1}∗.
Note that we have the flexibility to choose the D, f and h here.

Description of A :

• A ’s challenger picks a key k ←Ð Gen().
• B send two messages m0,m1 ∈M to A . A fixes distribution D such that Pr[M =m0] = Pr[M =m1] = 1

2
for a random variable following D. Also, A defines f so that f(m0) = 0 and f(m1) = 1. It further chooses
h ∶M→ {0,1}∗ to be independent of f .

• A ’s challenger picks a message m
D←ÐM, a bit δ

U←Ð {0,1}; sets c = Enc(k,m) if δ = 0 and otherwise sets
c = �; sends h(m), c to A .

• If c = �, A returns a random bit w
U←Ð {0,1} to its challenger and halts. Otherwise, A sends c to B.

• B sends a guess β to A . If β = 0, A sets w = f(m0) = 0; otherwise, A sets w = f(m1) = 1 and sends w to
its challenger.

We have

Pr[A (h(m), c) = f(m)] −Pr[A (h(m)) = f(m)]

= 1

2
(Pr[A (h(m), c) = f(m)∣m =m0] +Pr[A (h(m), c) = f(m)∣m =m1])

− 1

2
(Pr[A (h(m)) = f(m)∣m =m0] +Pr[A (h(m)) = f(m)∣m =m0])

= 1

2
(Pr[A (h(m0),Enc(k,m0)) = 0] +Pr[A (h(m1),Enc(k,m1)) = 1])

− 1

2
(Pr[A (h(m0)) = 0] +Pr[A (h(m1)) = 1])

= 1

2
Pr[B(Enc(k,m0)) = 0] + 1

2
Pr[B(Enc(k,m1)) = 1] − 1

2
(1

2
+ 1

2
)

= Pr[B(Enc(k,mβ)) = β] −
1

2

thus implying

AdvSSE,A = ∣Pr[A (h(m), c) = f(m)] −Pr[A (h(m)) = f(m)]∣

= ∣Pr[B(Enc(k,mβ)) = β] −
1

2
∣

= AdvIND-CPA
E,B

Therefore, (ε, t)-SS security implies (ε′, t′)-IND-CPA security with ε′ = ε and t′ = t −O(1)
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2. Let G be a PRF that stretches n-bit strings to 2n-bit strings. For s ∈ {0,1}n, write G(s) = G0(s)∥G1(s),
so that G0(s) represents the first n-bits of G(s) and G1(s) represents the last n bits of G(s). Define a
new PRG G0 that stretches n-bit strings to 4n-bit strings as:

G′(s) = G(G0(s))∥G(G1(s)).

Prove that if G is a secure PRG, then so is G′.

A: We show that (ε, t)-security of G implies (ε′, t′)-security of G′ with ε′ ≤ 6ε and t′ = t −O(1). Suppose that
D ′ is a distinguisher for G′ in the PRG game. Let Game0 denote the real PRG game for G where the challenger

picks δ
U←Ð {0,1}; if δ = 0, picks s

U←Ð {0,1}n, sets r = G′(s); otherwise picks r
U←Ð {0,1}4n and sends r to D ′.

D ′ returns a bit γ.

Define two games Game1, Game2, Game3 with modified distributions of r when δ = 0 as follows.

Game1: When δ = 0, challenger computes r as follows: pick random strings t1, t2
U←Ð {0,1}n; set r = G(t1)∥G(t2).

Game2: When δ = 0, challenger picks t1
U←Ð {0,1}n, r2

U←Ð {0,1}2n and sets r ← G(t1)∥r2.

Game3: When δ = 0, challenger picks r
U←Ð {0,1}4n.

Let Ei denote the probability that D ′ returns 1 in Gamei for i = 0,1,2,3. Clearly, 2∣Pr[E0] − Pr[E3]∣ = AdvPRGG′,D′

(we have seen this in class).

Lemma 1. ∣Pr[Ei−1] −Pr[Ei]∣ ≤ ε for i = 1,2,3

Proof. We first show that ∣Pr[E0] −Pr[E1]∣ ≤ ε. We construct a distinguisher D for G that leverages the ability
of D ′ to distinguish between Game0 and Game1.

Description of D :

• D ’s challenger picks β
U←Ð {0,1}. If β = 0, it picks s

U←Ð {0,1}n sets w ←Ð G(s); otherwise w is sampled
uniformly at random from {0,1}2n and sends w to D .

• D picks a bit δ
U←Ð {0,1}. When δ = 0, it sets r ←Ð G(w1)∥G(w2), where w = w1∥w2 with w1,w2 ∈ {0,1}n.

Otherwise, if δ = 1, D picks r
U←Ð {0,1}4n and sends r to D ′.

• D ′ returns a bit γ which is relayed by D to its challenger.

Observe that D simulates Game0 when β = 0 (i.e., w = G(s)) and otherwise simulates Game1 (when w
U←Ð

{0,1}2n). We therefore have

ε ≥ AdvPRGG,D

= ∣Pr[D(w) = 1∣β = 0] −Pr[D(w) = 1∣β = 1]∣
= ∣Pr[D ′(r) = 1∣β = 0] −Pr[D(r) = 1∣β = 1]∣
= ∣Pr[D ′(r) = 1 in Game0] −Pr[D(r) = 1 in Game1]∣
= ∣Pr[E0] −Pr[E1]∣

Similarly, one can prove that ∣Pr[E1] −Pr[E2]∣ ≤ ε and ∣Pr[E2] −Pr[E3]∣ ≤ ε. ⊓⊔

From the lemma it follows that

AdvPRGG′,D′ = 2∣Pr[E0] −Pr[E3]∣
≤ 2(∣Pr[E0] −Pr[E1]∣ + ∣Pr[E1] −Pr[E2]∣ + ∣Pr[E2] −Pr[E3]∣
≤ 6ε.
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3. Suppose that G1 and G2 are PRGs defined from {0,1}n to {0,1}`. Define a new PRG G ∶ {0,1}n ×
{0,1}n → {0,1}`, where G(s1, s2) = G1(s1) ⊕G2(s2). Show that if either G1 or G2 is secure (we may
not know which one is secure), then G is a secure PRG.

A: The idea is that if G1 is secure then G1(s1) will be indistinguishable from a random string of length `. So,
when added to G1(s1) ⊕G2(s2) will be indistinguishable from random. Similar argument holds when G2 is a
secure PRG.

Suppose G1 is (ε1, t1)-secure. It can be shown that G is (ε, t)-secure with ε = ε1 and t = t1−O(1) by constructing
a distinguisher D1 for G1 using a distinguisher D for G.

Description of D1:

• D1’s challenger picks β
U←Ð {0,1}. If β = 0, it picks s

U←Ð {0,1}n sets w ←Ð G(s); otherwise w is sampled
uniformly at random from {0,1}` and sends w to D .

• D1 picks s2
U←Ð {0,1}n, computes t←Ð w ⊕G2(s2) and sends t to D .

• D returns a bit γ which is relayed by D1 to its challenger.

Note that w and hence t are uniformly distributed over {0,1}` when β = 1. Otherwise t is distributed as in the
real game. We therefore have

ε1 ≥ AdvPRGG1,D1

= ∣Pr[D1(w) = 1∣β = 0] −Pr[D1(w) = 1∣β = 1]∣
= ∣Pr[D(t) = 1∣β = 0] −Pr[D(t) = 1∣β = 1]∣

= ∣Pr[D(G(s)⊕G2(s2)) = 1∣s U←Ð {0,1}n] −Pr[D(t) = 1∣t U←Ð {0,1}`]∣
= AdvPRGG,D

from which it follows that ε = ε1 and the running time of D1 is t1 = t +O(1).

4. Let G ∶ {0,1}n → {0,1}` be a PRG and let η = 1/2`−n. Call G secure against seed recovery or (ε, t)-SR
secure if any t-time adversary A has advantage at most ε in the following game: A receives G(s) and

returns a guess s′ of s. Here, advantage AdvSRG,A is defined as ∣Pr[s = s′] − 1/2n∣. Show that if G is an

(ε′, t′)-PRG then it is (ε, t)-SR secure with ε ≤ ε′ + η + 1/2n and t = t′ +O(1).

A: Let A be a seed recovering adversary against G. We show how to build a distinguisher D for G.

Description of D :

• From its challenger, D receives a string r ∈ {0,1}` which is either G(s) for some s
U←Ð {0,1}n or uniformly

distributed in {0,1}` according to some bit δ
U←Ð {0,1} being 0 or 1 respectively.

• D provides r to A and at the end of the seed recovery game, receives a string s′ ∈ {0,1}n from A .

• D now checks if G(s′) = r; if so, returns 1 and otherwise returns 0.

Observe that when r
U←Ð {0,1}`, A ’s guess is completely independent of r. There are 2n possible values of s′

and for a fixed s′, there are 2n possible outputs of G. So, the probability that G(s′) = r is precisely 2n/2` (since
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r is uniformly distributed). We therefore have

Pr[D(r) = 1∣δ = 0] −Pr[D(r) = 1∣δ = 1]

= Pr[A (r) = s′ ∧ s = s′] −Pr[(A (r) = s′ ∧G(s′) = r)∣r U←Ð {0,1}`]

= Pr[s′ = s] − ∑
s′∈{0,1}n

Pr[G(s′) = r∣A (r) = s′, r U←Ð {0,1}`]Pr[A (r) = s′∣r U←Ð {0,1}`]

= Pr[s′ = s] − ∑
s′∈{0,1}n

2n

2`
1

2n

= Pr[s′ = s] − 2n

2`

It now follows that

AdvSRG,A = ∣Pr[s′ = s′] − 1

2n
∣

= ∣Pr[D(r) = 1∣δ = 0] −Pr[D(r) = 1∣δ = 1] + 2n

2`
− 1

2n
∣

≤ ∣Pr[D(r) = 1∣δ = 0] −Pr[D(r) = 1∣δ = 1]∣ + η + 1

2n

= AdvPRGG,D + η + 1

2n
.
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