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Chapter 1

Introduction

1.1 Background

Public-key encryption (PKE) is an elegant solution to the fundamental problem of cryptography
– secure communication between two parties over a public (insecure) channel. The basic idea is
that every user A holds two keys – a public key (PKA) and a secret key (SKA). A user who
wants to send a message to A encrypts it with PKA and sends the resulting ciphertext along
the public channel. A, at the other end of the channel, decrypts the ciphertext using SKA and
obtains the message. SKA is known to user A alone. Any third party intercepting data on the
public channel cannot gain much information from the ciphertext provided it is computationally
infeasible to retrieve SKA given PKA. Public keys corresponding to different users are stored in
a publicly accessibly directory. A lot of public keys could be floating around in the directory. A
central trusted authority produces certificates on these public keys to indicate which of these are
genuine. A certificate essentially binds a key to a particular user. In a practical implementation of
PKE, there should be efficient mechanisms to manage the large number of certificates present in
the directory. Since the inception of the PKE notion in 1976, a huge body of work has emerged
centered around the problem of constructing highly efficient and provably secure PKE systems.
But the dominant and daunting task of certificate management had been the primary obstacle to
a widespread deployment of PKE for quite some time.

Identity-Based Encryption. The notion of identity-based encryption (IBE) was introduced by
Shamir [145] in 1984. In an IBE system (depicted in Figure 1.1), the identity idA of a user A (for
instance, A’s email address) itself is her public key. A does not generate her own secret key. Instead,
a trusted centre called the private key generator (PKG) is responsible for creating and distributing
secret keys corresponding to identities. The need for certification does not arise simply because the
secret keys are communicated to the intended users over a secure authenticated channel. Another
user B wanting to send a message secretly to A encrypts the message using idA. Encryption is done
using the public parameters of the PKG PP available for download to any user. The ciphertext
thus obtained is sent to A.

Shamir [145] challenged cryptographers to design a practical IBE system. The search for such a
system ended nearly 2 decades later with the ideas presented in three different works. Sakai, Ohgishi

1



AliceidA: alice@example.com

PKG

SK
idAidA

PP

Bob Message: M

C = Encrypt(PP,M, idA)
C

M = Decrypt(C,SKidA)

Figure 1.1: Identity-Based Encryption.
Green line: secure authenticated channel; red line: insecure/public channel; dotted line: download

and Kasahara [142] presented an efficient scheme based on pairings over elliptic curves but without
a formal security model or proof. Boneh and Franklin [25] first formalised the notion of IBE and
defined an appropriate security model. They presented an efficient scheme based on pairings and
further proved its security using random oracles. A parallel work by Cocks [59] proposed an IBE
construction based on quadratic residuosity assumption. The three works and in particular that of
Boneh and Franklin marked the beginning of a journey aimed at constructing IBE schemes that are
both efficient and provably secure. The Boneh-Franklin IBE was constructed using bilinear pairings
over elliptic curve groups. Pairings were first used in cryptographic constructions by Joux [99] for
realising efficient single-round three-party group key agreement protocols. Following the seminal
work of Boneh and Franklin, pairings turned out to be important tools for efficient constructions
of a wide range of cryptographic primitives. Currently, most practical constructions of IBE and
related primitives rely on pairings.

PKG

Entity 1

S1

Entity 2

Entity 3

S2

Entity 4:Alice

SK(id1,id2,id3,id4)

SK(id1,id2,id3)

SK(id1,id2)

SKid1

S3

PP

BobC

Figure 1.2: Hierarchical identity-based encryption.
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Hierarchical Identity-Based Encryption. In IBE, the PKG generates keys for all users of
the system. Additionally, keys must be distributed through secure authenticated channels to the
corresponding users. As a result there is significant computational overhead on the PKG. An elegant
solution to this problem was proposed in [96, 86] which introduced the concept of hierarchical IBE
(HIBE) (Figure 1.2). A HIBE system organises the users in a tree structure with PKG at the root
and facilitates delegation of key generation. Any entity A, using its secret key SKA, can generate
keys for all entities present in the subtree rooted at A. SKA can be obtained either from the PKG
or from any higher level entity. Entities in a HIBE system are associated to vectors of identities.
Several attempts have been made at constructing HIBE systems where certain measures related to
efficiency and/or security are independent of maximum depth of the hierarchy.

Broadcasting Entity

C

The set of all users.

Only the privileged users can decrypt the broadcast ciphertext C

Privileged User

Revoked User

Figure 1.3: Broadcast encryption.

Broadcast Encryption. Broadcast encryption (BE) enables broadcasting encrypted data to a
set of users so that only a subset of these users, called privileged users, are able to decrypt (see
Figure 1.3). Users who are unable to decrypt the broadcasted information are called revoked users.
The sets of privileged and revoked users form a partition of the set of all users and these sets
can vary with each broadcast. BE has a wide range of applications including pay-TV, copyright
protection of digital content and encrypted file systems. In public key BE (PKBE), users have
public and private keys and anybody can broadcast an encrypted message which can be decrypted
only by the set of privileged recipients. Clearly, encryption must be done using the public keys of
the privileged users in a way that only they can decrypt the message.

Following the introduction of IBE, the notion of broadcast encryption was soon extended to the
identity-based setting. Identity-based broadcast encryption (IBBE) can be seen as an extension of
PKBE. As in IBE, there is a PKG which issues decryption keys. A message can be encrypted to
a set of privileged identities. The motivation of IBBE is to reduce the communication overhead
when the same message is to be sent to a group of identities. Initially studied as multi-receiver
identity-based encryption (MR-IBE) in [11] and independently in [10], IBBE has received a lot of
attention from the cryptography community.

3



AliceΦA: Alice’s access policy

PKG

SK
ΦAΦA

PP

Bob
Message: M

Bob’s attributes/credentials: Ψ

C = Encrypt(PP,M,Ψ)
C

Decrypt(C,SKΦA
)

= M iff R(Ψ,Φ) = 1

Figure 1.4: Attribute-Based Encryption.

Attribute-Based Encryption. Attribute-based encryption (ABE) is a sophisticated form of
public key encryption that provides access control on secret data based on certain policies. A more
general form called functional encryption (FE) also provides the ability to compute functions over
encrypted data (formalised in [32]). In attribute-based encryption, a ciphertext encrypts a message
M and an associated attribute or index Ψ that describes the user’s credentials. In the public index
model, the quantity Ψ is revealed in the ciphertext. A key encodes a predicate or an access policy
Φ under a relation R. Decryption succeeds and outputs M if a relation R(Ψ,Φ) holds. Similar to
IBE, user secret keys are issued by a trusted authority called the private key generator (PKG). The
form of ABE described above is called key-policy ABE since the policy is encoded in the key. A
complementary form called ciphertext-policy ABE is also studied where the policy is embedded in
the ciphertext and index in the key. Starting from its introduction in [141, 91, 126], ABE schemes
supporting different kinds of access policies have been studied using both bilinear maps and lattices.

The main focus of this work is building efficient IBE, HIBE, IBBE and ABE systems from
bilinear pairings that are provably secure.

1.2 Issues Related to the Design of Identity-Based Primitives

Before summarising our results, we present a discussion on some issues to keep in mind while
designing IBE and related primitives. This will help the reader better understand the central
theme of our work. The features that a system is required to have is determined by the application
where it is deployed. On the other hand, features such as implementation efficiency is universally
important. We broadly categorise these into two types – efficiency and security – and discuss each
in detail.

1.2.1 Efficiency Measures

The efficiency of a particular (H)IBE scheme is usually measured in terms of the following mea-
sures – execution time of encryption, decryption and key generation algorithms; sizes of public
parameters, ciphertext and secret key. Given below are some remarks regarding an IBE scheme.
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• Public parameters are created just once and so are the secret keys corresponding to different
users.

• The encryption and decryption algorithms are executed more often than other algorithms.

• As ciphertexts are communicated more often, they consume a significant portion of the com-
munication bandwidth.

• Any user who wishes to send an encrypted message must download the public parameters
and the number of such users may be “large”.

From the above points, one can infer that an important goal of (H)IBE research is to obtain
constructions that have shorter public parameters and ciphertexts as well as faster encryption and
decryption algorithms. Towards this goal, a first step would be to choose a suitable mathematical
structure to work with for the construction. Most practical constructions of identity-based schemes
are obtained from structures called pairings and the efficiency of a pairing-based scheme depends
on the choice of pairing to a considerable extent.

Choice of Pairing. A pairing is a bilinear, non-degenerate and efficiently computable map e from
G1 ×G2 to GT , where G1,G2 and GT are groups of the same order. Practical instantiations of such
maps are obtained by suitably choosing G1 and G2 to be groups of elliptic curve points and GT to be
a subgroup of the multiplicative group of a finite field. Three kinds of pairings are identified in the
literature: Type-1, where G1 = G2; Type-2, where an efficiently computable isomorphism from G2

to G1 is known; and Type-3, where there are no known efficiently computable isomorphisms from
G1 to G2 or vice versa. It has been reported in the literature [153, 76, 44], that among the different
types of pairings, it is the Type-3 pairings which provide the most compact parameter sizes and
the most efficient algorithms. Further, Type-1 pairings are usually defined over low characteristics
fields and recent advances [12, 101, 92, 3, 93] in algorithms for discrete log computations over such
fields have raised serious question marks about the security of Type-1 pairings [75]. From both
efficiency and security considerations, constructions based on Type-3 pairings are desirable. Less
efficient alternatives are when G1 and G2 are same (called Type-1 pairings) or when the common
group order is a composite number (called composite-order pairings).

Constant-Size Ciphertexts. Among efficiency issues that arise specially in the hierarchical
setting (HIBE), the most important is the size of the ciphertexts. Recall that in a HIBE scheme,
an individual entity can obtain a private key from either the PKG or from a lower-level entity. In the
later case, the complete identity of the entity is obtained by appending its individual identity to the
identity of the entity from which it obtains the private key. As a result, identities consist of tuples
of varying lengths. Encryption of a message is done for a specified identity tuple. In many HIBE
schemes, as the length of the identity tuple increases, so does the length of the resulting ciphertext.
Consequently, the bandwidth requirement for communicating the ciphertext also increases. For an
individual user, this may actually lead to a disincentive for obtaining decryption keys from lower-
level entities. The net result may be in opposition to the basic motivation for a HIBE which is the
ability to off-load work to lower-level entities. The solution to this issue is to require the ciphertext
size to be independent of the length of the identity tuple. Then, irrespective of the length of the
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identity tuple, the bandwidth required for the ciphertext would be the same. Such a scheme is
called a constant-size ciphertext HIBE.

Throughout the thesis, we use the abbreviation CC-HIBE to denote HIBE schemes with constant-
size ciphertexts. We clarify that the constant size here only refers to the number of group elements
in the ciphertext. The size of representation of the group elements, however, needs to increase if
the value of the security parameter increases.

Broadcast Setting. Below we discuss some efficiency measures specific to the design of (IB)BE
schemes.

Header size: In all BE schemes, the actual message undergoes a single encryption with a session
key. In addition to this, the ciphertext contains some additional information which allows a
privileged user to obtain the session key and recover the message. This additional information
constitutes the header of the ciphertext. To reduce the communication overhead it is desirable
to reduce the size of the header as much as possible. So, BE schemes with lower header sizes
are preferable.

User key size: The amount of key material that a user has to store is an important parameter.
Practical deployment may require storing such material in smart cards. Consequently, it is
of interest to try and reduce the size of user keys as much as possible.

1.2.2 Security

All security proofs are reductionist arguments i.e., “breaking the security” of a system is reduced
to the problem of solving some “computationally hard” problem. What it means to break the
security of a particular primitive is defined in terms of a security model which more or less captures
real world attacks. Once the model is defined, concrete schemes are proved secure based on the
hardness of certain problems. Normally these problems are related to the mathematical structure
based on which the scheme is constructed. A security reduction for a concrete scheme T based
on a problem Π would proceed in the following way. An algorithm B asked to solve a particular
instance of Π simulates the real world system T in an attacker’s view. The attacker’s ability to
break the security of the cryptosystem will be used to B’s advantage in solving Π. Essentially B
uses the attacker’s ability to break the security of T in solving Π.

Degradation. Security guarantee for particular scheme is stated as follows. If an algorithm
running in time t breaks the security of the scheme with “advantage” ε, then some computational
problem Π can be solved in time t′ with advantage ε′. The ratio δ of t′/ε′ to t/ε is the tightness
gap and the reduction is said to have a degradation of δ. Depending upon the scheme and the
reduction, δ could be a constant or could depend on quantities such as the security parameter, the
maximum number of corrupt users, the maximum length of an identity tuple (in case of HIBE),
number of privileged users (in the broadcast setting) and possibly other parameters. Designing
schemes that have low degradation is important.
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Hardness Assumptions: As mentioned above, the proof of security of a (id-based) primitive is
based on the assumption that some well formulated problem is computationally hard. There is a
small subset of such problems which are considered to be standard. Apart from standard hardness
assumptions, designers sometimes have to create new hard problems to effect a reduction. These
problems are often parametrised by a quantity arising either in the construction or the proof. If
not, they are termed static. Since such non-standard problems are less studied, a basic theme of
research is to try and obtain schemes which can be proved secure under standard and/or static
assumptions.

Modelling Security. Proving security of an identity-based encryption scheme involves many
subtleties. In traditional PKE, each user creates her own set of keys independent of other users.
Hence, while modelling security it is enough to consider malicious behaviour on part of just one
individual user. But in case of IBE, all secret keys corresponding to individual users are generated
from a single master secret key. A possible attack scenario is when a group of users collude to
compromise the privacy of another user outside of the group. Also, this group can grow with
time. A strong notion of security must consider such collusion attacks. This attack is modelled
by providing an adversary access to a key extraction oracle and the freedom to query the oracle
with identities chosen adaptively. The adversary chooses the target identity at some point and
then continues to extract keys. Naturally, the attacker is not allowed to extract a key for the
target identity. This security model is called the adaptive identity model (formalised by Boneh
and Franklin [25]). A central goal in building identity-based schemes is to ensure security in the
adaptive model.

Anonymity. Another important security notion is anonymity which requires that a ciphertext
does not reveal any information about the recipient’s identity. Abdalla et al. [1] first formalised
the notion of anonymity and used anonymous IBE to construct public key encryption with key-
word search (PEKS). PEKS enables search on encrypted documents based on some keywords and
this capability for search is delegateable. Anonymous HIBE schemes provide means to extend
PEKS to more sophisticated primitives such as public key encryption with temporary keyword
search (PETKS) and identity-based encryption with keyword search (IBEKS). Obtaining anony-
mous HIBE schemes is one of the main objectives of this thesis.

Proving Security. While proving security of a system within the adaptive identity model, the
simulator should be designed in a way that it can answer the adaptive key extraction queries and
simultaneously challenge that adversary to break the security of the target identity.

Initial constructions for IBE and related primitives were proved secure in the random oracle
model (ROM). The ROM is an idealised model in which every hash function is replaced by a truly
random function. In attempts to prove security without random oracles, researchers considered
weaker security goals modeled as selective security. In this model, the attacker chooses the target
identity before looking at the public parameters. Although unrealistic, the selective model was an
important step towards proofs without random oracles. A proof technique used in earlier works
partitions the identity space into two sets – one for which the simulator can create secret keys
and the other containing possible target identities. This is known as the partitioning approach.
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The partition is either hard coded in the public parameters during setup or programmed into the
random oracle. The former method is particularly easy in the selective setting – the target identity
(known apriori) is the only identity for which the simulator cannot create a secret key.

Adaptively secure IBE without random oracles was first obtained by Boneh and Boyen [23] and
later on by Waters [157]. Both proofs rely on the partitioning approach. The simulator actually
guesses the partition and aborts if the target identity does not fall in the corresponding set. When
extended to more sophisticated primitives such as HIBE or IBBE this approach introduces an
exponential factor in security degradation.

After a long gap, in 2009, Waters [158] introduced a new proof technique called dual system
encryption. Using the new technique, Waters presented the first IBE scheme with constant-size
public parameters achieving adaptive security under standard assumptions. This IBE was further
extended to adaptively secure HIBE and BE schemes. The dual system methodology was indeed a
paradigm shift in provable security and has lead to many adaptively secure encryption schemes with
more sophisticated structure. Examples include predicate encryption, inner product encryption and
attribute-based encryption.

We use dual system technique in all our proofs. Our proofs rely on static assumptions (number
of elements in the instance is independent of the parameters pertaining to the construction). Fur-
thermore, an exponential loss in security is avoided in case of primitives with richer structure such
as HIBE, IBBE and ABE.

1.2.3 Prefix Decryption

We discuss an important feature of HIBE schemes that cannot be really classified as an efficiency
or security property. In some HIBE schemes, a ciphertext for an identity vector can be decrypted
by any entity possessing a secret key for a prefix of that identity. Let us name this property
prefix decryption. In constructions with separate ciphertext elements corresponding to individual
components of the identity tuple, such as the one in [86], prefix decryption is facilitated – the
ciphertext can be truncated to obtain a valid ciphertext under the prefix identity vector and thus
can be decrypted using the corresponding key. Prefix decryption in a CC-HIBE could be done
as follows: the key for the prefix is used to create a key corresponding to the recipient identity
via delegation; the resulting key is used to decrypt the ciphertext. The latter method fails when
the scheme is anonymous i.e., when the recipient identity is hidden. Delegation can no longer be
done without knowledge of the recipient identity. The above discussion suggests that achieving
constant-size ciphertexts and anonymity simultaneously results in the loss of prefix decryption.
Although it may seem that this restriction is somehow tied to the property of anonymity, we would
like to emphasise that this is a definitional issue. That is, whether prefix decryption is allowed or
not must reflect in the HIBE definition. The definition we provide does not explicitly allow prefix
decryption. We stress that the prefix decryption property is absent in all known HIBE constructions
that concurrently attain constant-size ciphertexts and anonymity. Furthermore, all known HIBE
schemes possess at most two out of the three features – constant-size ciphertexts, anonymity and
prefix decryption.

On the other hand, not having prefix decryption guards against key escrow to some extent. An
entity has the power to delegate keys to lower level entities but cannot decrypt ciphertexts sent
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to the lower-level entities. This feature may be useful in applications such as email. If the higher
level entities are key generating servers, user privacy will not be compromised in the event that any
of these servers is corrupted. Further, in primitives such as identity-based searchable encryption
obtained from anonymous HIBE schemes [1], this limitation does not make any difference.

We provide a more detailed discussion on prefix decryption in Section 6.6.

1.3 Thesis Organisation

This thesis is a collection of results from five papers [136, 137, 139, 138, 135] organised into nine
chapters. Chapter 1 is an introduction to identity-based cryptographic primitives. Chapter 2
contains notation, definitions and mathematical preliminaries required for later chapters. Chapter 3
discusses the evolution of techniques for proving security of identity-based systems. Chapter 4
presents a survey of previous and related works.

In Chapter 5, we have systematically simplified Waters 2009 IBE scheme in the setting of asym-
metric pairing. Waters’ dual system IBE scheme [158] was described in the setting of symmetric
pairing. A key feature of the construction is the presence of random tags in the ciphertext and
decryption key. The simplifications retain tags used in the original description. This leads to
several variants, the first one of which is based on standard assumptions and in comparison to
Waters original scheme reduces ciphertexts and keys by two elements each. Going through several
stages of simplifications, we finally obtain a simple scheme whose security can be based on two
standard assumptions and a natural and minimal extension of the decision Diffie-Hellman problem
for asymmetric pairing groups. The scheme itself is also minimal in the sense that apart from the
tags, both encryption and key generation use exactly one randomiser each. This final scheme is
more efficient than both the previous dual system IBE scheme in the asymmetric setting due to
Lewko and Waters and the more recent dual system IBE scheme due to Lewko. We extend the
IBE scheme to hierarchical IBE (HIBE) and broadcast encryption (BE) schemes. Both primitives
are secure in their respective full models and have better efficiencies compared to previously known
schemes offering the same level and type of security.

In Chapter 6, we consider the problem of constructing constant-size ciphertext HIBE (CC-
HIBE) schemes based on asymmetric pairings within the dual system framework. We present a
HIBE scheme denoted LW -AHIBE , with constant-size ciphertexts that can be implemented using
the most efficient bilinear pairings, namely, Type-3 pairings. In addition to being fully secure, this
scheme is anonymous. LW -AHIBE is obtained by extending the asymmetric pairing based IBE
scheme due to Lewko and Waters [114]. The extension uses the approach of Boneh-Boyen-Goh [24]
to obtain constant-size ciphertexts. Anonymity comes as a by-product of the dual system proof.
In fact, a technique introduced by Boyen-Waters [36] to achieve anonymity is used implicitly. At
the time it was proposed, LW -AHIBE was the only known scheme using Type-3 pairings to achieve
constant-size ciphertexts, security against adaptive-identity attacks and anonymity under static
assumptions without random oracles.

We then present two more HIBE schemes, denoted as JR -AHIBE and JR -HIBE , from Type-
3 pairings, also with constant sized ciphertexts. Scheme JR -AHIBE achieves anonymity while
JR -HIBE is non-anonymous. The constructions are obtained by extending the IBE scheme recently
proposed by Jutla and Roy [103]. Security is based on the standard decisional Symmetric eXternal
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Chapter Schemes Category

4
IBE1, IBE2, IBE3, IBE4, IBE5 , IBE6 IBE

HIBE6 HIBE
BE6 BE

5
JR -HIBE Non-anonymous CC-HIBE

LW -AHIBE , JR -AHIBE Anonymous CC-HIBE

6 IBBE1, IBBE2, IBBEROM
1 , IBBEROM

2 IBBE

7 B-ABE ,F -ABE Bounded DFA-Based ABE

Table 1.1: Summary of schemes proposed.

Diffie-Hellman (SXDH) assumption. In terms of provable security properties, previous direct con-
structions of constant-size ciphertext HIBE had one or more of the following drawbacks: security
in the weaker model of selective-identity attacks; exponential security degradation in the depth
of the HIBE; and use of non-standard assumptions. The security arguments for JR -AHIBE and
JR -HIBE avoid all of these drawbacks. These drawbacks can also be avoided by obtaining HIBE
schemes by specialising schemes for hierarchical inner product encryption; the downside is that the
resulting efficiencies are inferior to those of the schemes reported here. Currently, there is no known
anonymous HIBE scheme having the security properties of JR -AHIBE and comparable efficiency.
Based on the current state-of-the-art, JR -AHIBE and JR -HIBE are the schemes of choice for efficient
implementation of (anonymous) HIBE constructions.

Chapter 7 describes the first constructions of efficient identity-based broadcast encryption
(IBBE) schemes which can be proved secure against adaptive-identity attacks based on standard
assumptions. The constructions are obtained by extending the currently known most efficient IBE
scheme proposed by Jutla and Roy [103]. Ciphertext size and user storage compare favourably to
previously known constructions. The new constructions fill both a practical and a theoretical gap
in the literature on efficient IBBE schemes.

In Chapter 8, we consider ABE constructions form bilinear maps. Most of the known bilinear-
map-based ABE schemes have one property in common – the functions only deal with fixed-size
inputs. Waters [160] went beyond fixed-size inputs and proposed an ABE scheme that operates
over arbitrary-sized inputs. In this system, a secret key is associated with a deterministic finite
automaton (DFA)M and the index Ψ is a string w over the input alphabet of the DFA. Decryption
succeeds if M accepts w. As a result, the system supports the class of regular languages. This
construction was shown to be selectively secure without random oracles based on the eXpanded
Decisional Bilinear Diffie-Hellman Exponent (XDBDHE) assumption parametrised by `, the length
of the challenge string. Over arbitrary sized inputs, there are no known schemes that achieve
adaptive security from static assumptions.

We present an adaptively secure DFA-based ABE scheme. The construction uses composite-
order bilinear pairings and is built upon the selectively secure DFA-based FE scheme of Waters
(Crypto 2012). The scheme is proven secure using the dual system methodology under static
assumptions. A dual system proof requires generating semi-functional components appropriately
during simulation. In addition, these components must be shown to be properly distributed in an
attacker’s view. This can be ensured by imposing a restriction on the automata and strings over
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which the scheme is built i.e., every symbol can appear at most once in a string and in the set of
transition tuples of an automata. First a basic construction with the aforementioned constraint is
obtained and proved to be adaptively secure. With the restrictions, our system supports a sub-class
of regular languages. We then show how to extend this basic scheme to a full scheme where the
restrictions can be relaxed by placing a bound on the number of occurrences of any symbol in a
string and in the set of transitions. With the relaxed restrictions, our system supports functionality
defined by a larger subset of regular languages.

Finally, Chapter 9 provides a conclusion along with a discussion on open problems and directions
for future work. Table 1.1 provides a tabular summary of the different schemes proposed in this
work. Most of our constructions, at the time they were proposed, advanced the state-of-the-art
in terms of efficiency while providing strong security guarantees. Some of them are to this date
among the most efficient schemes known.
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Chapter 2

Definitions and Mathematical
Preliminaries

In this chapter, we present notation, definitions and a discussion on pairings. First, we define
HIBE, PKBE, IBBE and FE schemes followed by the corresponding security models. We provide
definitions for both IBE and HIBE but discuss security only for HIBE. The security of IBE can be
seen as a special case of HIBE with the number of levels set to one. In case of HIBE schemes, there
are different formalisations of security. We discuss them in detail.

2.1 Definitions of Primitives

Before proceeding, we fix some notation. x1, . . . , xk
R←Ð X indicates that elements x1, . . . , xk are

sampled independently from the set X according to some distribution R. We use U to denote

the uniform distribution. For a (probabilistic) algorithm A, y
R←Ð A(x) means that y is chosen

according to the output distribution of A on input x. A(x; r) denotes that A is run on input x
with its internal random coins set to r. For two integers a < b, the notation [a, b] represents the set
{x ∈ Z ∶ a ≤ x ≤ b}.

2.1.1 Identity-Based Encryption

The notion of IBE was proposed by Shamir in [145] and later formalised by Boneh and Franklin [25].

Definition 2.1.1 (IBE). An IBE scheme consists of four probabilistic algorithms – IBE .Setup,
IBE .KeyGen, IBE .Encrypt and IBE .Decrypt – each of which has runs in time upper bounded by a
polynomial in the security parameter, denoted κ. The first two algorithms are run by the PKG,
IBE .Encrypt by the sender and IBE .Decrypt by the receiver. Formally, the security parameter is
input to the IBE .Setup algorithm as 1κ indicating that the time complexities of the algorithms
should be polynomially bounded in the length of the input, which is kappa. For the sake of
simplicity, we write κ in place of 1κ.

IBE .Setup(κ): takes as input the security parameter κ and outputs the public parameters PP along
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with the master secret key MSK. PP is made publicly available. MSK is kept secret and
known only to the PKG. The public parameters PP also include descriptions of the identity
space I , the message space M and the ciphertext space C .

IBE .KeyGen(MSK, id): takes as input an identity id andMSK and returns a secret key SKid cor-
responding to id. The communication of id and SKid happens through a secure authenticated
channel between the PKG and the user identified by id.

IBE .Encrypt(PP, id,M): takes as input a message M , identity of the intended recipient id, the
public parameters PP and produces as output a ciphertext C.

IBE .Decrypt(C, id,SKid): takes as input a ciphertext C, an identity id, the corresponding secret key
SKid, the public parameters PP and returns either the corresponding message M or returns
� indicating failure.

IBE .Setup is a probabilistic algorithm that picks a random pair of public parameters and master
secret. The IBE .Encrypt algorithm is randomised. It essentially samples a ciphertext from the set
of possible ciphertexts corresponding to a given identity and message. Any ciphertext that can be
produced by the IBE .Encrypt algorithm is said to be valid. The IBE .KeyGen algorithm, on the other
hand, could be either deterministic or probabilistic. In the latter case, the algorithm can be seen
as choosing a key at random from the set of all possible keys for a given identity. The algorithm
IBE .Decrypt, by definition, can be probabilistic. While most IBE constructions have deterministic
decryption, there are a few known constructions in which decryption can fail with some probability.
Typically all sampling is done according to the uniform distribution over the respective domains.
However, the definition of IBE does not require this.

Technically, the public parameters PP may be required for IBE .KeyGen and IBE .Decrypt algo-
rithms depending on the construction. In the sequel, we do not explicitly mention this and whether
IBE .PP must be provided as input or not will be clear from the context.

We now formally state the standard correctness criterion for IBE schemes.

Correctness. An IBE scheme consisting of the above four algorithms is said to satisfy the cor-

rectness condition if for all (PP,MSK) R←Ð IBE .Setup(κ), for all SKid
R←Ð IBE .KeyGen and for all

C R←Ð IBE .Encrypt(id,M), with probability 1, it holds that M = IBE .Decrypt(C, id,SKid).

2.1.2 Hierarchical Identity-Based Encryption

As mentioned in Chapter 1, HIBE is an extension of IBE where users/entities are organised in a
tree-like structure with the PKG at the root. The basic motivation for imposing such a structure
is as follows. In the IBE setting, the PKG has to generate keys for every user. In addition, each
key needs to be transmitted to the corresponding user through a secure channel. Clearly, when
the number of users is large, this will create a huge computation and communication overhead on
the PKG. Suppose the entities are organised into a rooted tree and higher level entities have the
ability to delegate key generation to lower level entities without the involvement of the PKG. This
reduces the load on the PKG significantly.
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In a HIBE system, each user is associated with a vector of identities. Let HIBE denote a HIBE
scheme with a hierarchy of maximum depth h. Let I denote the identity space of IBE . Then each
user in HIBE will be associated with a vector id = (id1, . . . , id`) where 1 ≤ ` ≤ h and idj ∈ I for each
j ∈ [1, `]. A vector id′ = (id1, . . . , id

′
`) with `′ < ` is called a prefix of id. The PKG can generate

secret keys for any identity vector. The public parameters remain the same for all entities and
fixed by the PKG during setup. Individual entities are not allowed to have their own parameters.
Moreover, the master secret is known only to the PKG. So the question arises as to how delegation
of key generation is enabled. A secret key for id can be generated either by an entity corresponding
to a prefix (say, id′) of id or obtained directly from the PKG. In the former case, any secret key
SKid′ corresponding to id′ contains sufficient information required to generate a key for id. In
fact, SKid′ enables key generation for any id containing id′ as a prefix.

Definition 2.1.2 (HIBE). We now proceed to the formal definition. A HIBE scheme HIBE consists
of five probabilistic algorithms – HIBE .Setup, HIBE .Encrypt, HIBE .KeyGen, HIBE .Delegate and
HIBE .Decrypt.

HIBE .Setup(κ): based on an input security parameter κ, generates and outputs the public param-
eters PP and the master secret MSK.

HIBE .KeyGen(MSK, id): inputs an identity vector id and master secret MSK and outputs the
secret key SKid corresponding to id.

HIBE .Encrypt(PP, id,M): inputs an identity id, a message M and returns a ciphertext C.

HIBE .Delegate(PP, id = (id1, . . . , id`),SKid, id): takes as input PP, a depth ` identity vector id =
(id1, . . . , id`), a secret key SKid and an identity id; returns a secret key for the identity vector
(id1, . . . , id`+1) where id`+1 = id.

HIBE .Decrypt(C, id,SKid): inputs a ciphertext C, an identity vector id, secret key SKid and returns
either the corresponding message M or � indicating failure.

As in IBE, all the above algorithms run in time polynomial in the κ. Furthermore, the other
comments regarding the algorithms for IBE hold even in the hierarchical case.

Correctness. The HIBE scheme is said to satisfy the correctness condition if for all

(PP,MSK) R←Ð HIBE .Setup(κ), for all SKid generated by a sequence of calls to HIBE .KeyGen

and HIBE .Delegate algorithms and for all C R←Ð HIBE .Encrypt(PP, id,M), with probability 1, it
holds that M = HIBE .Decrypt(C, id,SKid).

2.1.3 (Public Key) Broadcast Encryption

A broadcast encryption scheme allows an entity to send an encrypted message to a set N of users
such that only a subset S ⊆ N can decrypt. The ciphertext is, however, broadcasted to all the users.
We call S the set of privileged users and R = N ∖ S as the set of revoked users. In a public key
broadcast encryption (PKBE) scheme, anyone is allowed to encrypt. Traditionally, each user has a
pair of keys – public and private. A sender needs the public keys of all users in order to broadcast
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a ciphertext. In addition these public keys must be certified. We consider a variant where, a set
of common public parameters is associated to a PKG (as in IBE) and keys for individual users are
generated by the PKG, thus removing the need for certification. In this setting, encryption is done
using the public parameters. In addition, we are interested in a static system (the composition
of N does not change with time) with stateless receivers (users are not required to update their
private keys). Note that the number of users n = ∣N ∣ is fixed in the static setting. We require n
to be polynomially bounded in the security parameter κ. We write broadcast encryption and omit
the prefix “public-key” for simplicity.

For the definition of BE, we refer to [87]. Prior to this work, 3–algorithm definition was used,
variants of which were introduced in [69, 33]). In case of dynamic BE [69, 65] another algorithm
called Join or Register would be included to enable new users to join the system at any point of
time.

Definition 2.1.3 (PKBE). A broadcast encryption scheme BE is defined by four probabilistic
algorithms – BE .Setup, BE .KeyGen, BE .Encrypt, BE .Decrypt whose run times are bounded above
by a polynomial in the security parameter κ. The first three are executed by the broadcasting
entity and the last one by a recipient of the broadcast message.

BE .Setup(κ,n): takes as input the security parameter κ and the number of users n = poly(κ). Let
N = [1, n]. It outputs a public/secret key pair (PK,SK).

BE .KeyGen(SK, j): takes as input SK, a user index j ∈ N and returns a private key SKj for user
j.

BE .Encrypt(PK,S,M): inputs a subset S ⊆ N of users to whom the message is to be broadcast,
the public key PK and the message M . It outputs a ciphertext C.

BE .Decrypt(S, j,SKj ,C): takes as input a ciphertext C, a set S of users to whom C is encrypted
and the user’s secret key SKj . If j ∈ S then the corresponding message M is returned.

Correctness: The BE scheme is said to satisfy the correctness condition if for all (PK,SK) R←Ð
BE .Setup(κ,n), for all S ⊆ N , for all j ∈ S, for all SKj

R←Ð BE .KeyGen(SK, j) and for all C R←Ð
BE .Encrypt(PK,S,M), with probability 1, it holds that M = BE .Decrypt(C,S,SKj) if j ∈ S.

2.1.4 Identity-Based Broadcast Encryption

An identity-based broadcast encryption (IBBE) is similar to the public key broadcast encryption
defined in Section 2.1.3 except that each user is associated with an identity. Additionally, the
number of users/identities is allowed to be exponential in the security parameter. However, we
consider a variant where the maximum number of users in any recipient set S is fixed at the time
of setup.

Definition 2.1.4 (IBBE). An IBBE scheme IBBE is defined by four probabilistic algorithms –
IBBE .Setup, IBBE .KeyGen, IBBE .Encrypt, IBBE .Decrypt whose run times are bounded above by a
polynomial in the security parameter κ. The identity space is denoted I .
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IBBE .Setup(κ,m): Takes as input a security parameter κ and the maximum number m of identities
in a privileged recipient group. It outputs the public parameters PP and the master secret
MSK.

IBBE .KeyGen(MSK, id): On input an identity id and the master secret MSK, this algorithm
generates and outputs a secret key SKid for id.

IBBE .Encrypt(PP, S ⊆ I ,M): Takes as input a set of identities S that are the intended recipients
of the message M . If ∣S∣ ≤m, the algorithm outputs a ciphertext C.

IBBE .Decrypt(PP, S, id,SKid,C): Inputs the public parameters, a set S = {id1, . . . , id`}, an identity
id, a secret key SKid corresponding to id, a header Hdr and outputs the message M .

Correctness. The IBBE scheme satisfies the correctness condition if for all sets S ⊆ I with ∣S∣ ≤
m, for all idi ∈ S, if (PP,MSK) R←Ð IBBE .Setup(κ,I ,m), SKidi

R←Ð IBBE .KeyGen(MSK, idi),
C R←Ð IBBE .Encrypt(PP, S,M), the Pr[M = IBBE .Decrypt(PP, S, idi,SKidi ,C)] = 1.

IBBE is usually defined following the hybrid encryption (KEM-DEM) paradigm. The IBBE
key encapsulation mechanism (KEM) produces a session key along with a header. This session key
is used to encrypt the message via the data encapsulation mechanism (DEM). The DEM can be
instantiated to any secure symmetric key encryption scheme. The security of the IBBE would then
rely on the security of the KEM. Our main interest is in designing secure IBBE-KEMs. The details
of the symmetric encryption portion (DEM) is omitted and also not considered in our security
proof.

Definition 2.1.5 (IBBE-KEM). An IBBE-KEM is defined by four probabilistic algorithms –
IBBE-KEM .Setup, IBBE-KEM .Encap, IBBE-KEM .KeyGen and IBBE-KEM .Decap. The identity
space is denoted I and the key space for the symmetric encryption scheme is denoted by K .

IBBE-KEM .Setup(κ,m): Takes as input a security parameter κ and the maximum number m of
identities in a privileged recipient group. It outputs the public parameters PP and the master
secret MSK.

IBBE-KEM .KeyGen(MSK, id): Input is an identity id and master secret MSK; output is a secret
key SKid for id.

IBBE-KEM .Encap(PP, S ⊆ I ): Takes as input a set of identities S that are the intended recipients
of the message. If ∣S∣ ≤ m, the algorithm outputs a pair (Hdr,K) where Hdr is the header
and K ∈ K is the session key.

IBBE-KEM .Decap(PP, S, id,SKid,Hdr): Inputs the public parameters, a set S = {id1, . . . , id`}, an
identity id, a secret key SKid corresponding to id, a header Hdr and outputs the session key
K if id ∈ S.

The message to be broadcast is encrypted using a symmetric encryption scheme Sym =
(Sym .Encrypt, Sym .Decrypt) with key space K . Let C R←Ð Sym .Encrypt(K,M) where M is the mes-
sage to be broadcast and K is the session key returned by IBBE-KEM .Encap algorithm. The
broadcast consists of the triple (S,Hdr,C). The full header is given by (S,Hdr). During decryption,
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the key K output by the IBBE-KEM .Decap algorithm is used to decrypt C to obtain the message
M as M = Sym .Decrypt(K,C).

Correctness. The IBBE scheme satisfies the correctness condition if for all sets S ⊆
I with ∣S∣ ≤ m, for all idi ∈ S, if (PP,MSK) R←Ð IBBE-KEM .Setup(κ,I ,m),
SKidi

R←Ð IBBE-KEM .KeyGen(MSK, idi), (Hdr,K) R←Ð IBBE-KEM .Encap(PP, S), the Pr[K =
IBBE-KEM .Decap(PP, S, idi,SKidi ,Hdr)] = 1.

2.1.5 Attribute-Based Encryption

The literature contains several variants of attribute-based encryption (ABE) and in many cases
the definition and security model for ABE depends on the functionality being studied (i.e., the
type of access policies realised). Since our constructions are based on the policy of acceptance
by deterministic finite automata, we provide the corresponding definition only. We begin with a
discussion on deterministic finite automata.

2.1.5.1 Deterministic Finite Automata

Definition 2.1.6 (Deterministic Finite Automaton). A deterministic finite automaton (DFA) M
is a 5-tuple (Q,Σ, q0, F, δ) where Q ≠ ∅ is a finite set of states, Σ ≠ ∅ denotes the input alphabet,
q0 ∈ Q is the start state, ∅ ≠ F ⊆ Q is the set of final states and δ ∶ Q×Σ→ Q is called the transition
function.

An automaton M is said to accept a string w = w1⋯w` ∈ Σ∗ if there is a sequence of states
p0, . . . , p` such that p0 = q0, δ(pi−1,wi) = pi for each i ∈ {1, . . . , `} and p` ∈ F . The set L = {w ∈
Σ∗ ∶M accepts w} is the language accepted by M. Languages accepted by DFAs are called regular
languages.

It is well-known [95] that any DFA M, one can construct M′ such that M′ has a unique final
state and both M and M′ accept the same set of languages. This is achieved by introducing
a special symbol $ at the end of the string and adding a transition from each final state in M
to a new unique final state in M′ based on the $. More precisely, if M = (Q,Σ, q0, F, δ), then
M′ = (Q′,Σ′, q0, f, δ

′) where Q′ = Q ∪ {f}, Σ′Σ ∪ {$} and the new transition function δ′ is given
by δ′(q, σ) = δ(q, σ) for each (q, σ) ∈ Q × Σ, δ′(f, σ) = f for all σ ∈ Σ, δ′(q,$) = f for q ∈ F and
δ′(q,$) = q for q ∈ Q′ ∖ F . Note that the states in F are not final states in M′. Also observe that
on input w ∈ Σ∗ to M′, f is not reachable (even in an intermediate step) if M does not accept w.

Our constructions in Chapter 8 are based on DFAs that have a unique final state. We thus
use the notation M = (Q,Σ, q0, qf , δ) with qf being the final state. Transitions of an automaton
M = (Q,Σ, q0, qf , δ) are represented as 3-tuples of the form t = (qx, qy, σ) where δ(qx, σ) = {qy}.
Let T denote the set of all transition tuples t.

2.1.5.2 DFA-Based ABE

The definition of DFA-based attribute-based encryption (described in [160]) is provided here.
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Definition 2.1.7 (DFA-ABE). A attribute-based encryption scheme ABE over DFA’s consists of
four probabilistic algorithms - ABE .Setup, ABE .KeyGen, ABE .Encrypt and ABE .Decrypt.

ABE .Setup(κ,Σ): takes as input a security parameter κ, generates the public parameters PP and
the master secret MSK based on the input alphabet Σ. Σ is part of PP.

ABE .KeyGen(MSK,M): receives the description of a DFAM and master secretMSK and outputs
a secret key SKM corresponding to M.

ABE .Encrypt(PP,m,w): inputs a message m, a string w = w1w2⋯w` over Σ and returns a cipher-
text C (which also contains w).

ABE .Decrypt(C,SKM): inputs a ciphertext C and secret key SKM. If Accept(M,w) = 1, the
algorithm returns m; otherwise, returns � indicating failure.

Correctness. ABE satisfies the correctness condition if for all (PP,MSK) R←Ð ABE .Setup(κ,Σ),
for all M, SKM

R←Ð ABE .KeyGen(MSK,M), for all w ∈ Σ∗, C R←Ð ABE .Encrypt(PP,m,w), the
Pr[K = ABE .Decrypt(C,SKM)] = 1.

This is a key-policy attribute-based encryption scheme. One can also define a ciphertext-policy
scheme but we do not provide the definitions.

2.2 Formalising Security Goals

A natural goal of an attacker against any encryption system would be to learn, given a ciphertext,
anything meaningful about the message. We call the system secure if it can guard against such
attacks i.e., a ciphertext must not reveal any information about the plaintext1. This concept was
first formalised by Goldwasser and Micali [89] and termed as semantic security. They further
showed that semantic security is equivalent to a notion called indistinguishability of ciphertexts
(also defined in [89]). An important requirement for discussing indistinguishability in the context
of public key systems is that the encryption algorithm be probabilistic. This will apply to (H)IBE
and (IB)BE schemes as they are public key systems with richer structure.

We now define the notion of indistinguishability of ciphertexts in identity-based systems. An
attacker has access to all public information (public parameters PP). In order to model collusion
attacks, the attacker is provided the secret keys (SKid1 , . . . ,SKidq) corresponding to a group of
identities (id1, . . . , idq) of the attacker’s choice. Now, let M denote the message space for the
encryption scheme. Since encryption is probabilistic, there could be several possible ciphertexts
corresponding to a single message for a fixed target identity. Let CM denote the ciphertext space
for a message M ∈ M . The encryption algorithm, on input PP and M , can be viewed as sampling
a ciphertext from CM according to some distribution. The attacker specifies two messages M0 and
M1. A ciphertext for one of the two messages is given back to the attacker and asked to guess which

message was encrypted. That is, a bit β
U←Ð {0,1} is picked and Ĉ generated as an encryption of

Mβ under PP. The attacker is given only Ĉ and asked to guess β. The system is said to be secure if

1We assume that the attacker is only passive i.e., it only tries to learn information rather than tampering with
ciphertexts whence it is termed active
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the attacker is unsuccessful in guessing β with probability significantly away from 1/2. This notion
of security is termed IND-ID-CPA (short for indistinguishability under the chosen plaintext attack).

An even stronger setting is when the attacker is provided access to a decryption oracle i.e., it is
allowed to make decryption queries on ciphertexts of its choice. Security against such an attacker
is termed IND-ID-CCA (indistinguishability against chosen ciphertext attacks). IND-ID-CCA is
considered the strongest notion of security. In Chapter 4, we will discuss generic and non-generic
transformations from CPA-secure schemes to CCA-secure scheme in the identity-based setting.
Most of these methods are reasonably efficient. Hence only consider only CPA-security and provide
the corresponding definitions here.

We now present the formal security definitions for the various primitives we consider in this
work. The security definition for IBE is omitted. It can be derived as special case of HIBE security
with the number of levels set to 1.

Note. The terms attacker and adversary are used interchangeably throughout this work.

2.2.1 HIBE

2.2.1.1 The Standard Model for CPA-Security

CPA-security for IBE schemes was formalised in [25]. The corresponding model for HIBE schemes
was first described by Gentry and Silverberg [86]). This model is based on the assumption that
the distribution of secret keys generated by KeyGen algorithm is identical to the distribution of
keys output by Delegate algorithm. The assumption applies to a large number of schemes. We now
describe the model via the following security game, called ind-cpa (depicted in Figure 2.1).

Challenger Adversary

PP

SKid1

SKidq

Ĉ

PP

id1, . . . , idk

SKid1 , . . . ,SKidk

îd,M0,M1

Ĉ = Encrypt(Mβ , îd)

idk+1, . . . , idq

SKidk+1
, . . . ,SKidq

Guess: β′

Figure 2.1: HIBE Security Game

There are several stages of the game which are described as follows. An attacker/adversary is an
algorithm denoted throughout this work as A .

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to
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A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on an identity
vector id, the challenger responds with a key SKid.

Challenge: A provides two message M0,M1 and identity îd as challenge with the restriction that
no prefix of îd has been queried in Phase 1. The challenger then chooses a bit β uniformly at
random from {0,1} and returns an encryption Ĉ of Mβ under îd to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that no queried
identity id is a prefix of îd.

Guess: A outputs a bit β′.

If β = β′, then A wins the game. The advantage of A in breaking the security of the HIBE
scheme in the game ind-cpa given by

Advind-cpa
HIBE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The HIBE scheme is said to be (ε, t, q)-IND-ID-CPA secure if every t-time adversary making at most
q queries has Advind-cpa

HIBE (A ) ≤ ε.

Selective Identity Model. The definition of IND-ID-CPA security is adaptive in nature since
the adversary is allowed to choose the target identity at any point during the game. The choice
could depend on the secret keys received earlier. A weaker notion called selective security requires
the attacker to commit to the target identity before even looking at the public parameters. The
analogous game, named ind-cpa, consists of a stage Initialise before Setup in which A commits
to the target identity vector îd. Advantage is defined similar to the adaptive setting. We call a
HIBE scheme selectively secure or (ε, t, q)-IND-sID-CPA secure2 if any adversary running in time
at most t has Advind-cpa

HIBE (A ) ≤ ε.
For all the security definitions discussed in the sequel, selective versions can be defined similar

to IND-sID-CPA. None of our schemes are selectively secure. We require this notion only in our
discussions on the development of the subject in Chapter 4.

2.2.1.2 Shi-Waters Model for CPA-Security

Shi and Waters [146] consider a complete security definition for HIBE schemes where the distri-
bution of a secret key actually depends on the delegation path. We name this notion of security
IND-ID-CPA2 and provide a description here. It is used for proving security of a HIBE scheme we
present in Chapter 5.

As usual, the security for a HIBE scheme is modelled as a game ind-cpa2 between an adversary
A and a simulator. Following are the different phases of the security game.

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to
A . It also initialises a set S = ∅ which denotes the set of secret keys it has created but not revealed.

Phase 1: A makes a number of queries of the following types adaptively.

2“sID” denotes that the challenge identity is chosen selectively.
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• Create: The adversary A provides an identity id for which the challenger creates a key
SKid but does not give it to A . The challenger adds the secret key to S.

• Delegate: A specifies a secret key SKid in S and provides an identity id to the challenger.
The challenger runs the delegation algorithm of the HIBE with inputs PP,SKid, id and adds
the resulting key for (id, id) to S.

• Reveal: A specifies an element SK in S. The challenger removes SK from S and returns it
to A .

Challenge: A provides a challenge identity îd and two equal length messages M0 and M1 to the
challenger with the restriction that îd should not have been queried in Phase 1. The challenger
then chooses a bit β uniformly at random from {0,1} and returns an encryption Ĉ of Mβ for îd to
A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that any identity
tuple for which the key is revealed is not a prefix of îd.

Guess: A outputs a bit β′. A wins the above game if β = β′. The advantage of A in breaking
the security of the HIBE scheme in the above game is given by

Advind-cpa2
HIBE (A ) = ∣Pr[β = β′] − 1

2
∣ .

We say that the HIBE is (ε, t, qR, qA)-IND-ID-CPA2 secure if every t-time adversary making at most
qR reveal queries and qA create and delegate queries has Advind-cpa2

HIBE (A ) ≤ ε.

2.2.1.3 Anonymity

Another important notion of security for a HIBE scheme is that of ciphertext anonymity. The
fundamental requirement for a scheme to be called anonymous is that looking at a ciphertext and
public parameters, one must not be able to guess the identity to which the ciphertext is encrypted.
Anonymity is also modelled in terms of an indistinguishability game similar to CPA-security. The
difference lies in the challenge phase – instead of providing two messages and an identity vector,
the attacker specifies two identity vectors and a single message. The challenge ciphertext is created
under one of the identities. The goal of the attacker is to guess which of the two identities was used
to encrypt the challenge ciphertext.

Anonymity in HIBE schemes was first introduced and formalised by Abdalla et al. in [1]. Instead
of treating anonymity separately, we follow a combined model which captures both anonymity and
CPA-security simultaneously. The game corresponding to this model, which we call ano-ind-cpa, is
equivalent to the standard security notions for IND-ID-CPA-security and anonymity taken together
and has been used earlier in [70, 63].

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to
A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on an identity
vector id, the challenger responds with a key SKid.
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Challenge: A provides two message-identity pairs (M0, îd0) and (M1, îd1) as challenge with the
restriction that neither îd0, îd1 nor any of their prefixes should have been queried in Phase 1. The
challenger then chooses a bit β uniformly at random from {0,1} and returns an encryption Ĉ of
Mβ under the identity îdβ to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that no queried
identity id is a prefix of either îd0 or îd1.

Guess: A outputs a bit β′.

If β = β′, then A wins the game. The advantage of A in breaking the security of the HIBE
scheme in the game ano-ind-cpa given by

Advano-ind-cpa
HIBE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The HIBE scheme is said to be (ε, t, q)-ANO-IND-ID-CPA secure if every t-time adversary making
at most q queries has Advano-ind-cpa

HIBE (A ) ≤ ε.

2.2.2 PKBE

Again, security is defined in terms of indistinguishability of ciphertexts. The target of an attacker
is a set of users Ŝ ⊆ N . The model must also capture collusion attacks. In other words, the attacker
gets hold of secret keys for some users outside of Ŝ. Described below is adaptive CPA security of
a PKBE scheme is defined via the ind-be-cpa between an adversary A and a challenger.

Setup: The challenger runs the Setup algorithm and gives the public key PK to A .

Phase 1: A adaptively issues private key queries for a number of users from {1, . . . , n}.

Challenge: A specifies two messages M0,M1 and a challenge set Ŝ such that, for every private

key query i, i ∉ Ŝ. The challenger chooses β
U←Ð {0,1} and returns to A the encryption of Mβ for

the set Ŝ.

Phase 2: A issues more private key queries but with the restriction that for every query i, i ∉ Ŝ.

Guess: The adversary outputs its guess β′ for β.

The adversary wins the above game if β = β′. The advantage of A in breaking the security of
the BE scheme is defined in terms of the probability of the event that β = β′ in the ind-be-cpa as
shown below.

Advind-be-cpa
PKBE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The BE scheme is said to be (ε, t, q)-IND-B-CPA3 secure if every t-time adversary making at most
q queries has Advind-be-cpa

BE (A ) ≤ ε.

2.2.3 IBBE

The security model for PKBE schemes naturally extends to IBBE schemes ([10, 48]). The IBBE
security model allows an adversary to specify a target set of identities that it wishes to attack. The

3“B” indicates broadcast setting.
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model also allows the adversary to corrupt entities and obtain the decryption keys corresponding
to their identities with the restriction that the corrupted set of identities is disjoint from the target
set of identities. Depending on when the adversary specifies the target set leads to two different
security notions. The weaker notion, called selective-identity security (summarised sID), requires
the adversary to specify the target set before it can corrupt any entity. The stronger notion, called
adaptive-identity security (summarised aID), allows the adversary to specify the target set after it
has corrupted a set of identities (and also allows it to corrupt identities after specifying the target
set). It is desirable to obtain schemes which are secure against adaptive-identity attacks. Since
our constructions will be defined within the KEM-DEM framework, we only provide the security
definition for IBBE-KEM systems which can be obtained from that of IBBE with a bit of tweaking.

Adaptive security against chosen plaintext attacks in IBBE-KEM systems is defined via the
following game ind-ibbe-cpa between an adversary A and a challenger.

Setup: The challenger runs the Setup algorithm of the IBBE and gives the public parameters to
A .

Key Extraction Phase 1: A makes a number of key extraction queries adaptively. For a query
on an identity vector id, the challenger responds with a key SKid.

Challenge: A provides a challenge set Ŝ with the restriction that if id is queried in the key

extraction phase 1, then id ∉ Ŝ. The challenger computes (Ĥdr,K0)
R←Ð Encap(PP, Ŝ) and chooses

K1
U←ÐK . It then chooses a bit β uniformly at random from {0,1} and returns (Ĥdr,Kβ) to A .

Key Extraction Phase 2: A makes more key extraction queries with the restriction that it
cannot query a key for any identity in Ŝ.

Guess: A outputs a bit β′.

If β = β′, then A wins the game. The advantage of A of the IBBE scheme in winning the
ind-ibbe-cpa is given by

Advind-cpa
IBBE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The IBBE scheme is said to be (ε, t, q)-IND-BID-CPA secure if every t-time adversary making at
most q key extraction queries has Advind-ibbe-cpa

IBBE (A ) ≤ ε.

2.2.4 DFA-Based ABE

Security is modelled based on the notion of indistinguishability of ciphertexts under a chosen
plaintext attack (CPA) ([160]). It is defined via a game ind-abe-cpa between an adversary A and
a challenger consisting of several stages.

Setup: The challenger runs the ABE .Setup algorithm of the ABE scheme and gives the public
parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on automatonM,
the challenger runs the ABE .KeyGen algorithm of the ABE scheme and returns its output SKM to
A .

Challenge: A provides two messages pairs m0,m1 and a challenge string ŵ = ŵ1ŵ2⋯ŵ̂̀ subject
to the condition that A does not request keys for any automaton that accepts ŵ in Phase 1 or
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Phase 2. The challenger then picks β
U←Ð {0,1} and returns an encryption Ĉ of mβ under the

string ŵ to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that none of
the automata that are queried accept ŵ.

Guess: A outputs a bit β′.

In the selective model, there is a stage Initialise before Setup in which the adversary commits
to the input alphabet Σ and the challenge string ŵ. Call this game ind-abe-cpa.

If β = β′, then A wins the game. The advantage of A in breaking the security of the ABE
scheme in the ind-abe-cpa game is given by

Advind-abe-cpa
ABE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The ABE scheme is said to be (ε, t, ν)-IND-STR-CPA secure4 (secure under chosen plaintext attack)
if for every adversary A making at most ν queries and whose running time is t, it holds that
AdvIND-STR-CPA

ABE (A ) ≤ ε. Similarly for the selective case, the notion of IND-sSTR-CPA-security can
be defined.

2.3 Mathematical Preliminaries

We define some notation first. The finite field of order q is denoted as Fq. For a positive integer N ,
ZN denotes the ring of integers modulo N . If G is a finite cyclic group, then G× denotes the set
of generators of G. Let P ∈ G× for some additive cyclic group G. For a vector (Q1, . . . ,Qd) ∈ Gd,
d ≥ 1, define dlogP (Q1, . . . ,Qd) as (x1, . . . , xd) ∈ (Z∣G∣)d such that Qi = xiP for all i ∈ [1, d]. For an
asymmetric pairing function e ∶ G1 ×G2 → GT , elements of G1 will be identified by subscript 1 and
elements of G2 by subscript 2.

2.3.1 An Overview of Elliptic Curve Pairings.

A bilinear pairing is a 7-tuple G = (N,G1,G2,GT , e, P1, P2) where G1 = ⟨P1⟩, G2 = ⟨P2⟩ are written
additively and GT is a multiplicatively written group, all having the same order N and e ∶ G1×G2 →
GT is a map with the following properties.

1. Bilinear: For P1,Q1 ∈ G1 and P2,Q2 ∈ G2, the following holds:
e(P1, P2 +Q2) = e(P1, P2)e(P1,Q2) and e(P1 +Q1, P2) = e(P1, P2)e(Q1, P2).

2. Non-degenerate: If e(P1, P2) = 1T , the identity element of GT , then either P1 is the identity
of G1 or P2 is the identity of G2.

3. Efficiently computable: The function e should be efficiently computable.

Practical examples of such maps are the Weil pairing and Tate pairing on elliptic curves over finite
fields. G1 and G2 are groups of elliptic curve points and GT is a subgroup of the multiplicative

4The abbreviation “STR” stands for string. “sSTR” denotes that the challenge string is chosen selectively.
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group of a related finite field. Let E denote an elliptic curve over a finite field Fq. The group G1

is a subgroup of E(Fq) and G2 is typically chosen to be a subgroup of E(Fqk). Group GT would
be a subgroup of F×

qk
. The integer k is called the embedding degree of the pairing. A lot of factors

influence the choice of a pairing. These include

• size of representation of elements in the three groups G1, G2, GT ,

• complexity of group operation in G1 and G2,

• efficiency of evaluating the pairing function e.

These factors are determined chiefly by the size of the base field q, the embedding degree k and the
size of the groups N . These quantities are chosen keeping in mind the desired security level and
various algorithms to solve the discrete logarithm problem in G1, G2 and GT .

Types of Pairings. Pairings can be broadly categorised into two types based on the common
group order N .

Prime-order pairings: In this case, N is a prime number. This type of pairing is further classified
into three types in the literature [153, 76].

Type-1 In this type, the groups G1 and G2 are the same.

Type-2 G1 ≠ G2 and an efficiently computable isomorphism ψ ∶ G2 → G1 is known.

Type-3 Here, G1 ≠ G2 and no efficiently computable isomorphisms between G1 and G2 are
known.

It has been reported in the literature [153, 76, 44], that among the different types of pairings,
it is the Type-3 pairings which provide the most compact parameter sizes and the most
efficient algorithms. Further, Type-1 pairings are usually defined over low characteristics
fields and recent advances [12, 101, 92, 3, 93] in algorithms for discrete log computations
over such fields have raised serious question marks about the security of Type-1 pairings [75].
From both efficiency and security considerations, constructions based on Type-3 pairings are
desirable.

Composite-order pairings: Here the common group order is a composite number and the pairing
is symmetric (G1 = G2). This type of pairings were first introduced by Boneh, Goh and
Nissim [29]. Their construction requires the group order to be square-free and not divisible by
3. Also, there are no known asymmetric variants of such pairings. Composite-order pairings
have the property of orthogonality described next. Let G = (N = p1p2,G,G,GT , e, P )5 is a
composite-order pairing. P1 ∈ Gp1 , the subgroup of G of order p1. Similarly define Gp2 and let
P2 ∈ Gp2 . The orthogonality property is that e(P1, P2) = 1T , the identity of GT . In general, if
N = p1p2⋯pk, then for any two subgroups GN1 ,GN2 of G (of order N1,N2 respectively) with
gcd(N1,N2) = 1, any two points P ∈ GN1 and Q ∈ GN2 would be orthogonal i.e., e(P,Q) = 1T .

5We consider the group order to be a product of two primes for simplicity. The group order could be any square
free integer.
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Due to this property, composite order groups are very useful for obtaining schemes with dual
system proofs. On the other hand, they are very inefficient in comparison to Type-1 prime
order groups, let alone Type-3 pairings. reasonable security level, N must be chosen to be
quite large.

Note: We write p as the order (in place of N) for a prime-order pairing in the rest of the material.

2.3.2 Hardness Assumptions

2.3.2.1 Type-3 Pairings

Most of our constructions are based on Type-3 pairings. We state some hardness assumptions in
Type-3 pairings that are used in our proofs. Let G = (p,G1,G2,GT , e, P1, P2) be an asymmetric
pairing. All the assumptions are decisional in nature. We first define a generic static decision
problem Π over a G.

Let A , a probabilistic polynomial time (PPT) algorithm A that outputs 0 or 1. Denote by
D, a distribution consisting of a constant number of elements from G1, G2 and GT . Let T1,T2 be
two distributions over one of the three groups. The goal of A is to distinguish between the two
distributions – (D,T1) and (D,T2). The advantage of A in solving Π is given by

AdvΠ
G (A ) = ∣Pr[A (D,T1) = 1] −Pr[A (D,T2) = 1]∣.

We say that (ε, t)-Π assumption holds if for any t-time algorithm A , AdvΠ
G (A ) ≤ ε.

Next the required assumptions are stated as instantiations of Π by suitably defining D and
T1,T2.

DDH1: Decisional Diffie-Hellman in G1.

F1
U←Ð G×

1 ; F2
U←Ð G×

2 , x, y, µ
U←Ð Zp;

D = (G, F1, xF1, yF1, F2),
T1 = xyF1, T2 = (xy + µ)F1.

DDH2: Decisional Diffie-Hellman in G2.

F1
U←Ð G×

1 ; F2
U←Ð G×

2 , x, y, γ
U←Ð Zp;

D = (G, F1, F2, xF2, yF2),
T1 = xyF2, T2 = (xy + γ)F2.

SXDH: Symmetric eXternal Diffie-Hellman.

SXDH in G is DDH1 and DDH2 assumptions combined.

DDH2v: A variant of DDH2.

F1
U←Ð G×

1 ; F2
U←Ð G×

2 , x1, x2, d, z, γ
U←Ð Zp;

D = (G, F1, dF1, dzF1, zx1F1, F2, dF2, x1F2, x2F2),
T1 = x1x2F2, T2 = (x1x2 + γ)F2.
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LW1: Assumption 1 of Lewko and Waters [114].

F1
U←Ð G×

1 ; F2
U←Ð G×

2 , a, b, s
U←Ð Zp, µ

U←Ð Zp;
D = (G, F1, bsF1, sF1, aF1, ab

2F1, bF1, b
2F1, asF1, b

2sF1, b
3F1, b

3sF1, F2, bF2),
T1 = ab2sF1, T2 = (ab2s + µ)F1.

LW2: Assumption 2 of Lewko and Waters [114].

F1
U←Ð G×

1 ; F2
U←Ð G×

2 , d, b, c, x
U←Ð Zp, γ

U←Ð G2;

D = (G, F1, dF1, d
2F1, bxF1, dbxF1, d

2xF1, F2, dF2, bF2, cF2),
T1 = bcF2, T2 = (bc + γ)F2.

Assumption A1.

F1
U←Ð G×

1 ; F2
U←Ð G×

2 ; a, z, d, s, x, µ
U←Ð Zp;

D = (G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz − ax)F2),
T1 = sdzF1, T2 = (sdz + µ)F1.

DLin1: Decision Linear in group G1.

P1, F1,H1
U←Ð G×

1 ; P2, F2,H2
U←Ð G×

2 ; x1, x2, µ
U←Ð Zp;

D = (G, P1, F1,H1, P2, F2,H2, x1P1, x2F1),
T1 = (x1 + x2)H1, T2 = (x1 + x2 + µ)H1.

DLin2: Decision Linear in group G2.

P1, F1,H1
U←Ð G×

1 ; P2, F2,H2
U←Ð G×

2 ; x1, x2, γ
U←Ð Zp;

D = (G, P1, F1,H1, P2, F2,H2, x1P2, x2F2),
T1 = (x1 + x2)H2, T2 = (x1 + x2 + γ)H2.

DBDH: Decisional Bilinear Diffie-Hellman.

F1
U←Ð G×

1 ; F2
U←Ð G×

2 ; x1, x2, x3, η
U←Ð Zp;

D = (G, F1, x1F1, x2F1, x3F1, F2, x1F2, x2F2, x3F2),
T1 = e(F1, F2)x1x2x3 , T2 = e(F1, F2)x1x2x3+η.

DBDH-3: Decisional Bilinear Diffie-Hellman in Type-3 pairings [44].

F1
U←Ð G×

1 ; F2
U←Ð G×

2 ; x1, x2, x3
U←Ð Zp; η

U←Ð GT ;

(G, F1, x1F1, x2F1, x3F1, F2, x1F2, x2F2),
T1 = e(F1, F2)x1x2x3 , T2 = e(F1, F2)x1x2x3+η.

2.3.2.2 Composite-Order Pairings

Our ABE construction (described in Chapter 8) is build upon composite-order pairings. We now
state the complexity assumptions used in our security proof. Before proceeding, we introduce some
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notation.

A composite order pairing is represented as a tuple G = (p1, p2, p3,G,GT , e,G) where p1, p2, p3

prime, ∣G∣ = ∣GT ∣ = N = p1p2p3, G = ⟨G⟩ and e ∶ G × G → GT is the pairing function. Define
Gpub = (N,G,GT , e,G) where N = p1p2p3. Also let GB denote the subgroup of order B of G. This
representation is particular to those pairings where the group order is a product of three distinct
primes. In general, the order could be any composite number that is hard to factor. We denote
elements of groups Gp2 ,Gp3 with subscripts 2 and 3 respectively. Elements of Gp1 and G are written
without a subscript. The meaning will be clear from the context.

We state two Decisional SubGroup (DSG) assumptions followed by an assumption that we term
SubGroup Diffie Hellman (SGDH) in composite order groups equipped with a bilinear pairing. We
stick to the notation used in Section 2.3.2.1 for presenting the assumptions.

Assumption DSG1

P
U←Ð Gp1 ; P3

U←Ð Gp3 ;
D = (Gpub, P,P3),
T1

U←Ð Gp1 , T2
U←Ð Gp1p2 .

Assumption DSG2

P,X
U←Ð Gp1 ; P2,X2

U←Ð Gp2 ; P3,X3
U←Ð Gp3 ;

D = (Gpub, P,P3,X + P2,X2 +X3),
T1

U←Ð Gp1p3 , T2
U←Ð G.

Assumption SGDH

α, s
U←Ð ZN ; P

U←Ð Gp1 ; P2,X2, Y2
U←Ð Gp2 ; P3

U←Ð Gp3 ;
D = (Gpub, P,P2, P3, αP +X2, sP + Y2),
T1 = e(P,P )αs, T2

U←Ð GT .

2.3.3 Discussion on the SXDH Assumption

For both the DDH and the DLin problems there are no know efficient algorithms to solve these
problems in a suitable subgroup of the points on an elliptic curve. The situation changes when we
move to pairing groups. For Type-1 pairings, i.e., in the case G1 = G2, DDH becomes easy to solve,
whereas DLin is still conjectured to be hard. On the other hand, for Type-3 pairings, the situation
is different. As mentioned earlier, for such pairings, there are no known efficiently computable
isomorphisms from G1 to G2 or from G2 to G1. A consequence of this is that the easy algorithm
for solving DDH in Type-1 pairings no longer applies and for Type-3 pairings there are no known
efficient algorithms to solve DDH1 or DDH2.

The DDH1 (resp. DDH2) problem would become easy if one were able to find an efficiently
computable isomorphism from G1 to G2 (resp. G2 to G1). The non-existence of such isomor-
phisms is an underlying assumption required for the SXDH assumption to hold. Presently, the
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isomorphism problem has perhaps not been studied in detail and so, considering SXDH to be a
standard assumption may not be universally accepted. On the other hand, we do mention that
there is evidence [156, 77] that SXDH is indeed hard. Further, starting from Waters’ remarks about
the possible efficiency improvements of his dual-system IBE using the SXDH assumption, several
schemes have been proposed whose security relies on this assumption [52, 53, 103]. In view of
the above discussion, we consider SXDH to be a ‘natural’ assumption which has been used earlier
and has some evidence to support the assumption. In the current state of knowledge, there is no
evidence to suggest that for Type-3 pairings, SXDH problem is easier than DLin.

2.3.4 Generic Security of DDH2v

The generic group model is an idealised model introduced by [148] in which lower bounds on
computational complexity of solving certain problems can be obtained without looking into the
structure of the actual groups that are used in a protocol. Let G = (p,G1,G2,GT , e, P1, P2) be a
Type-3 bilinear group. The elements of groups G1, G2 and GT are encoded as uniform random
strings so that the adversary can only test for equality of group elements. Four oracles are provided
to the adversary out of which three simulate the group actions in G1, G2 and GT and the fourth
one simulates the bilinear map e. The group encodings are modelled as three injective maps
σ1 ∶ Zp → Σ1, σ2 ∶ Zp → Σ2 and σT ∶ Zp → ΣT where E1,E2,ET ⊂ {0,1}∗. The following theorem
provides an upper bound on the advantage of an adversary that solves the DDH2v problem in a
generic bilinear group.

Theorem 2.3.1. Let A be an algorithm that attempts to solve the DDH2v problem in
the generic group model making at most m queries to the oracles computing the group

actions in G1, G2, GT and the bilinear map e. If d, z, x1, x2, y
U←Ð Zp, b

U←Ð
{0,1} with yb = x1x2 and y1−b = y and σ1, σ2, σT are random encodings, then given
p, σ1(1), σ1(d), σ1(dz), σ1(zx1), σ2(1), σ2(d), σ2(x1), σ2(x2), σ2(y0), σ2(y1) the advantage ε of A in
solving the problem is bounded above by

ε ≤ 3(m + 10)2

2p
.

Proof. Let B denote an algorithm that simulates the generic bilinear group for A . B maintains
three lists

L1 = {(F1,i, σ1,i) ∶ i = 0,1, . . . , δ1 − 1},

L2 = {(F2,i, σ2,i) ∶ i = 0,1, . . . , δ2 − 1},

LT = {(FT,i, σT,i) ∶ i = 0,1, . . . , δT − 1}

such that at each step δ of the game the relation δ1+δ2+δT = δ+10 holds. Here F⋆,⋆’s are multivariate
polynomials over 6 variables d, z, x1, x2, y0, y1 and σ⋆,⋆’s are strings from {0,1}∗. At the beginning
of the game i.e., δ = 0, the lists are initialised by setting δ1 = 4, δ2 = 6 and δT = 0. The polynomials
1, d, dz, zx1 are assigned to F1,0, F1,1, F1,2, F1,3 and 1, d, x1, x2, y0, y1 to F2,0, F2,1, F2,2, F2,3, F2,4, F2,5

respectively. The encodings for these polynomials are strings uniformly chosen from {0,1}∗ without
repetition. We assume that A queries the oracles on strings previously obtained from B and the
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index of a given string σj,i in the list Lj can be obtained easily by B. The oracles are simulated as
follows.

Group actions in G1,G2 and GT : Consider the group G1. A submits two strings σ1,i and
σ1,j and a selection bit indicating addition or subtraction. B first computes F1,δ1 = F1,i ± F1,j . If
there exists an index k with 0 ≤ k < δ1 such that F1,δ1 = F1,k then B sets σ1,δ1 = σ1,k; otherwise
it sets σ1,δ1 to a uniform random string from {0,1}∗ ∖ {σ1,0, . . . , σ1,δ1−1}. B then adds the pair
(F1,δ1 , σ1,δ1) to L1, returns σ1,δ1 to A and increments δ1 by one.

Group actions in G2 and GT are simulated similarly with the selection bit indicating multipli-
cation or division in case of GT .

Bilinear map: A submits two operands σ1,i, σ2,j . B fetches the corresponding polynomials
F1,i, F2,j and computes FT,δT = F1,i ⋅F2,j . If for some k with 0 ≤ k < δT , FT,δT = FT,k then set σT,δT =
σT,k; otherwise σT,δT is set to a random string chosen uniformly from {0,1}∗ ∖ {σT,0, . . . , σT,δT−1}.
B then adds the pair (FT,δT , σT,δ1) to L1, returns σT,δT to A and increments δT by one.

A makes at most m oracle queries, terminates and returns a bit b′ to the simulator. Let
v⃗ = (d, z, x1, x2.y0, y1) denote the vector consisting of variables over which the polynomials are
defined. Now the simulator chooses at random d∗, z∗, x1

∗, x2
∗, y∗ ∈ Zp and b ∈ {0,1} and sets

yb
∗ = x1

∗x2
∗, y1−b

∗ = y∗. Let v⃗∗ = (d∗, z∗, x1
∗, x2

∗, y0
∗, y1

∗). B assigns v⃗∗ to the variables v⃗. The
simulation provided by B is perfect unless this assignment causes any of the following to hold.

1. F1,i − F1,j = 0 for some i ≠ j and F1,i ≠ F1,j .

2. F2,i − F2,j = 0 for some i ≠ j and F2,i ≠ F2,j .

3. FT,i − FT,j = 0 for some i ≠ j and FT,i ≠ FT,j .

Let F denote the event that at least one of the above holds, indicating failure. The following
result by Schwartz [143] will be used in arguing that the event failure occurs with low probability.
Let p be a prime number and F (Z1, . . . , Zk) be a non-zero polynomial in Zp[Z1, . . . , Zk] of degree
d. Then, if z1, . . . , zk are uniform elements of Zp , the probability that F (z1, . . . , zk) = 0 is at most
d/p.

First, we show that if F does not occur, then the bit b is information theoretically hidden from the
adversary. Observe that all variables except yb and y1−b are independent of the bit b. Since yb = x1x2,
a polynomial of degree 2, the adversary will win if it somehow produces a polynomial consisting of
x1x2 in LT using combinations of polynomials from L1 and L2 (through applications of the bilinear
map) and generate the same polynomial by combining yb and elements of L1. Polynomials in LT are
of degree at most 3. The degree two polynomials that can be constructed are d2, dx1, dx2, dz, zx1

and sums of these, but none of them contain x1x2. The only degree 3 polynomial consisting of
x1x2 is zx1x2 which can be constructed using σ1(zx1) and σ2(x2). However, to find out the bit b,
A will need to engineer the same polynomial using yb for which it needs σ1(z), but this element is
not available in the instance. Therefore, we have Pr[b = b′∣¬F] = 1/2.

We now only need to obtain a bound on the probability that F occurs. For fixed i and j,
F1,i −F1,j is a polynomial of degree at most 2 and hence is zero at a random v⃗∗ with probability at
most 2/p. Similarly F2,i − F2,j vanishes at v⃗∗ with probability at most 1/p. The list L3 consists of
polynomials of degree at most 3 which implies that the third case holds with probability at most
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3/p. There are totally (δ1
2
), (δ2

2
), (δT

2
) pairs of polynomials from L1,L2, LT respectively. Also since

there are at most m queries we have δ1 + δ2 + δT = δ + 10 ≤m + 10. It now follows that

Pr[F] ≤ (δ1

2
)2

p
+ (δ2

2
)1

p
+ (δT

2
)3

p

≤ 3(m + 10)2

p
.

We have

Pr[b = b′] = Pr[b = b′∣¬F]Pr[¬F] +Pr[b = b′∣F]Pr[F]
≤ Pr[b = b′∣¬F](1 −Pr[F]) +Pr[F]

≤ 1

2
+ 1

2
Pr[F]

and

Pr[b = b′] ≥ Pr[b = b′∣¬F](1 −Pr[F]) = 1

2
− 1

2
Pr[F]

together resulting in the required bound on the advantage as follows.

∣Pr[b = b′] − 1

2
∣ ≤ Pr[F]

2
≤ 3(m + 10)2

2p
.
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Chapter 3

Evolution of IBE Proof Techniques

Identity-Based Encryption was first formalised by Boneh and Franklin [25]. They also defined a
security model for IBE (discussed in Section 2.2.1.1) and proved security of their construction in
this model. The proof relied on the DBDH assumption. This work stimulated further research on
IBE and a huge body of work emerged targeted at obtaining fully secure and efficient IBE schemes.
Arguably, the strongest notion of security for IBE schemes is security in the adaptive identity
model without random oracles. It would not be inappropriate to say that a significant amount of
research on IBE following [25] was driven by the goal of achieving adaptive security under simple
assumptions.

3.1 Early Attempts at Achieving Full Security

The most tricky part in proving security of an IBE scheme is the generation of keys in response
to adaptive key extraction queries while being able to provide the adversary a ciphertext on the
target identity. It must be ensured that the simulator cannot

• answer key extraction queries on the challenge identity,

• create a secret key for the target identity.

Random Oracles. Initial constructions of IBE [25, 59] were proved secure using random oracles
(ROs). Random oracle model (ROM) is an idealised model where some or all hash functions used
in a system are modelled as (black-box) random functions. In case of Boneh-Franklin IBE the
hash function that maps identities to a pairing group is modelled as a random function during
simulation. Proof follows a partitioning strategy wherein the identity space I is divided into two
subsets – one containing identities for which the simulator can create secret keys and the other
containing identities for which challenge ciphertexts can be generated. For systems within the
ROM, the partitioning is done at random (i.e., the subset of identities is chosen at random) during
simulation.

Random oracles allows security proofs for systems that may not have a proof otherwise. Also,
using ROs may lead to more efficient constructions. As a matter of fact, Boneh-Franklin IBE is
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still one of the most efficient systems known till date. However, a limitation of the ROM is that a
truly random function/oracle cannot be implemented by a poly-time algorithm. In addition, there
have been some schemes [39, 14] known to be secure in the ROM but insecure when a concrete
function is used in place of the RO. Schemes which show such separation may be artificial or the
insecurity may arise from certain implementation or “structural” flaws (as pointed out in [18]).
Nevertheless, these results place random oracles on shaky ground. So an important question that
arises is whether there exist systems that can be proved secure without random oracles?

Identity space I

Ik

Ic

Id’s for which
simulator can
generate keys

Id’s for which sim-
ulator can generate
challenge ciphertext

Figure 3.1: The Partitioning Technique

Towards Security without Random Oracles – Selective Model. The problem of construct-
ing IBE schemes without ROs was first addressed by Canetti, Halevi and Katz [41]. For proving
security of their proposed construction, they had to stick to a weaker notion of security, called the
selective identity model (refer to Section 2.2.1.1 for details). In this model, the attacker commits
to the target identity îd before seeing the public parameters. îd is then used by the simulator to
create the public parameters in such a way that keys can be created for identities other than îd
and challenge ciphertext can be created for îd. In other words, the selective model allows a tight
partition of the identity space. Two more IBE constructions in the selective identity model were
proposed by Boneh and Boyen [22]. We refer to the as BB-IBE-1 and BB-IBE-2. The schemes were
efficient and the algebraic techniques introduced in their works have greatly influenced later works
on (H)IBE. The first scheme uses the following identity hash: H(id) = U + idV where U,V ∈ G
(here G is the source group of a pairing (p,G,GT , e, P )) and the identity is mapped to id ∈ Zp using
a collision resistant hash function. This method of hashing the identity has since been used in a
number of different works.

Adaptive Security. The first adaptively secure IBE without random oracles was proposed by
Boneh and Boyen [23] via a modification of their selectively secure scheme BB-IBE-1. However,
the scheme is too inefficient to be used in practice. The problem of constructing a practical
adaptively secure IBE without ROs remained open until Waters [157] gave an elegant solution
to this problem. Waters used a new identity hash defined as follows. Identities are mapped to

34



{0,1}n via a collision resistant hash function. H(id) = U0+∑nj=1 ijUj where id = (i1, . . . , in) ∈ {0,1}n
and U0, U1, . . . , Un ∈ G. The elements U0, . . . , Un must be provided in the public parameters to
enable creating the hash during encryption. This makes the size of the public parameters rather
large. But some trade-offs were obtained by Chatterjee-Sarkar [47] and Naccache [116] between the
size of the public parameters and the security loss.

The proof of security of Waters’s IBE follows a partitioning strategy. The partition is created
during the setup phase and hard-wired into the public parameters. The proof uses an “artificial
abort” step which introduces a significant security loss. Bellare and Ristenpart [17] showed how to
eliminate this step and obtained a different proof of security for Waters’s IBE, also following the
partitioning approach.

Limitations of the Partitioning Approach. The partitioning strategy introduces a high se-
curity degradation, especially when used for proving security of schemes with richer structure such
as HIBE, ABE, etc. This holds true even in the random oracle model. In case of HIBE, the loss in
security would be exponential in the maximum depth of the hierarchy h. This makes the reduction
less meaningful for large values of h. The basic problem is that HIBE has more structure on the
identity space. In addition, delegation in HIBE requires that if an identity vector falls within the
key generation partition then all its descendants must also belong to that partition. Taking care of
these constraints makes the partitioning reduction very inefficient.

Adaptive Security without Partitioning. In order to avoid the problems introduced by the
partitioning paradigm, Gentry [83] proposed an efficient IBE scheme with a tight reduction to an
assumption parameterised by the maximum number of key extraction queries q (called q-Augmented
Bilinear Diffie-Hellman Exponent). The simulator in the reduction algorithm can generate exactly
one secret key for each identity. For an attacker that makes at most q key extraction queries, a
degree-q polynomial f(id) is embedded in the secret key corresponding to the id. The challenge
ciphertext for îd is constructed in way that it decrypts only with the single key for îd that the
simulator can generate. But this provides no information about the distribution of the message
to the simulator. These techniques were then extended by Gentry and Halevi [84] to HIBE. They
proposed the first adaptively secure HIBE scheme without the exponential security degradation
present in earlier HIBE systems. The drawback was that the underlying hardness assumption is
more complex. A tight security reduction to an assumption parameterised q is not known to be
any better than a loose reduction (with degradation q) to a static assumption.

3.2 Dual System Encryption

Dual system encryption was introduced by Waters in [158] to tackle the innate challenges involved
in proving security of identity-based systems in the adaptive identity model. As mentioned in
the previous section, a simulator must answer key extraction queries made by the adversary and
at the same time be able to use the adversary’s success to solve some hard problem. Moreover,
in the adaptive identity setting, the simulator must be prepared to produce a secret key for any
identity even before looking at the challenge identity. Dual system encryption precisely addresses
this problem and prepares the simulator to respond to adaptive key requests in addition to creating

35



the challenge ciphertext. We now define the dual system paradigm.

3.2.1 Semi-functional Ciphertexts and Keys

In a dual system, there are two forms of ciphertexts and keys – normal and semi-functional. The
normal form corresponds to their definitions in the actual construction and semi-functional forms
are used only in the security proof. A normal ciphertext can be decrypted by a normal or semi-
functional key and a normal key can decrypt a normal or semi-functional ciphertext. But decryption
of a semi-functional ciphertext by a semi-functional key fails with high probability. Such a decryp-
tion causes the message to be blinded by an additional factor determined by the semi-functional
components of the key and ciphertext. A proof of security in the dual system framework is usually
a hybrid argument over a sequence of games in which the challenge ciphertext and all the keys
provided to the adversary are turned into semi-functional. At this point, proving security (in the
sense of indistinguishability of ciphertexts) becomes easy as the simulator no longer needs to give
out real keys or ciphertext. In other words, none of the keys returned to the adversary provide any
information which could possibly assist in decrypting the challenge ciphertext.

In case of Waters’s IBE and many other systems, the number of games in the hybrid is q + 3
where q the number of key extract queries. The first game Greal is the real ind-cpa game and in
the second game (G0), the challenge ciphertext is semi-functional. In Gk (for k = 1, . . . , q), the
challenge ciphertext is semi-functional, the first k keys are semi-functional and the rest of the keys
are normal. All keys and challenge ciphertext are semi-functional in Gq. At this stage, the burden
on the simulator is greatly reduced as it no longer needs to create any normal keys. The last game
is Gfinal where the challenge ciphertext is a semi-functional encryption of a random message. In the
proof, one needs to argue that the subsequent games are indistinguishable either computationally
or information theoretically. There are essentially three stages in the proof which we term as the
first, second and third reductions.

First Reduction: Here we show that the adversary cannot distinguish between a normal and a
semi-functional ciphertext so that Greal and G0 are indistinguishable.

Second Reduction: where is it is argued that normal and semi-functional keys are indistinguish-
able in the adversary’s view or equivalently Gk−1 and Gk are indistinguishable (for k ∈ [1, q]).

Third Reduction: to show that Gq and Gfinal are indistinguishable.

The most crucial step in the dual system proof is the second reduction where it is required to
argue that the adversary cannot detect the change of the k-th key (say for idk) from normal to
semi-functional. The simulator embeds the instance of some hard problem in the k-th key so that
the attacker’s success can be used to solve the problem instance. The simulator could itself create
a semi-functional ciphertext for idk, test whether it decrypts with the k-the key and find out the
nature of the k-the key. This must be disallowed. On the other hand, the simulator should be able
to create a semi-functional ciphertext for the challenge identity which requires the simulator to have
the power to create semi-functional ciphertexts! To deal with this paradox, Waters adopted the
following strategy: a single-degree polynomial F (x) = Ax + B is embedded in both the challenge
ciphertext and the k-th key where A,B are chosen during setup and information theoretically
hidden in the public parameters. The scheme uses random tags in ciphertexts and keys so that
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decryption succeeds only when the tags are unequal; decryption fails unconditionally otherwise.
During simulation the tags in SKidk and Ĉ are set to F (x) evaluated at idk and îd respectively (i.e.,
the tags are set to F (idk) and F (îd) respectively). Since A,B are statistically hidden from the
adversary, the tags will appear uniformly and independently distributed in the attacker’s view. If
the simulator attempts to create a semi-functional ciphertext for idk, its tag is set to F (idk) thus
ensuring that encryption with SKidk fails unconditionally. The simulator thus gains no information
about the nature of SKidk .

3.2.2 Nominal Semi-functionality

Lewko and Waters [114] introduced a new way to tackle the issue discussed above. In contrast to
Waters’ strategy, the functionality of the public random tags was transferred to the semi-functional
space. Instead of allowing the decryption algorithm to fail when tags are equal, the Lewko-Waters
method allows decryption to succeed in the presence of a different form of semi-functionality, called
nominal semi-functionality. A pair of ciphertext and key for a particular identity are nominally
semi-functional if they are distributed as semi-functional objects and also correlated to each other
in a way that the semi-functional components cancel out and lead to successful decryption. Using
nominal semi-functionality, the problem encountered in the second reduction is dealt with in a
more elegant manner by designing the simulator as follows. Consider the transition from Gk−1 to
Gk where the secret key SKidk for the k-th query idk is turned semi-functional.The simulator can
only create a nominally semi-functional ciphertext for idk. Using such a ciphertext, the simulator
does not get a clue about the nature of SKidk since decryption would succeed anyway.

The Lewko-Waters method helped in getting rid of tags and the complications they introduce.
One is the (negligible) probability of decryption failure and the other being the difficulty of extend-
ing to HIBE with constant-sized ciphertexts.

3.2.3 Structuring Semi-Functional Spaces

Discussed here are some basic principles underlying the design of semi-functional objects. Consider
an IBE scheme and a ciphertext-key pair C,SKid for an identity id. In the following, we use
the abbreviation ‘sf ’ for semi-functional. Unless both are semi-functional, decryption must be
successful. Suppose C is semi-functional and SKid is normal. For the decryption to be successful,
the sf-components of C upon interaction with the normal components of SKid must cancel out.
Similar condition must hold in case SKid is semi-functional and C is normal. (Figure 3.2 shows the
required interaction between ciphertexts and keys). In a sense, the sf-spaces for ciphertext and keys
are orthogonal to each other. This is usually achieved by mimicking the structure of the normal
components in the corresponding semi-functional terms. Some secret randomness (independent
of the public parameters) is used to define these sf-terms. The entropy provided by these terms
plays an important role in the security proofs. We discuss the randomness-related issues further in
Section 3.2.4. Now we discuss sf-spaces are designed in the pairing setting.

Composite-Order Pairings: The orthogonal property of composite order pairings provides a
clean way of defining semi-functional spaces. Let G = (N = p1p2p3,G,G,GT , e, P ) be a
composite order pairing. The group Gp1 provides the space for normal ciphertexts and keys.
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Figure 3.2: Interaction between ciphertexts and keys.

Group Gp2 may be defined as the sf-space. This will ensure that sf-terms cancel out with
normal terms (by the orthogonality property). Indistinguishability arguments can be based
on the so-called subgroup decision assumptions. In a subgroup decision problem, an element
is sampled from one of two subgroups of G and the task is to decide which group the element
was chosen from. Hardness of the problem relies on the fact that N is hard to factor and
without the factors there is no trivial way to test membership of the given element.

We need the order to be a product of at least three primes for the following reason. Suppose
we take N = p1p2. Then to argue that normal and semi-functional ciphertexts are indistin-
guishable we would need assumption DSG1 (refer to Section 2.3.2.2 for definition), where the
subgroups involved are Gp1 and Gp1p2 . But given another element from either Gp1 or Gp1p2 ,
this problem can be solved easily by just testing orthogonality with the challenge element.
Hence the group Gp3 is required to additionally randomise either ciphertext or keys.

We use composite-order pairings to design our attribute-based encryption schemes based on
deterministic finite automata.

Dual Pairing Vector Spaces: These are elegant mathematical structures that can be instanti-
ated with Type-3 pairings having properties that are found in composite order pairings thus
being suitable for constructions within the dual system framework. The first DPVS-based
constructions of primitives appeared in [119, 120].

A typical construction for a DPVS Vn = (p,V,V∗,GT , ē,A,A∗) is via a direct product over
a pairing (p,G1,G2,GT , e, P1, P2), where V = G1 ×⋯ ×G1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

and V∗ = G2 ×⋯ ×G2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

are vector

spaces of dimension n over Zp. A,A∗ form the canonical bases of V,V∗ respectively. The func-

tion ē is defined as ē(x,y) =
n

∏
i=1

e(Xi, Yi) where x = (X1, . . . ,Xn) ∈ V and y = (Y1, . . . , Yn) ∈ V∗.

One can observe that a form of orthogonality exists between the vectors in V and V∗. This
provides a way to simulate the orthogonality property of composite order groups in the prime
order setting. For a DPVS Vn, let B = (b1, . . . ,bn) and B∗ = (b∗1 , . . . ,b∗n) be bases of V and
V∗ such that ē(bi,b∗j ) = 1 for i ≠ j and ē(bi,b∗i ) = e(P1, P2)ψ for all i ∈ {1,2, . . . , n} where ψ
is an element of Z×p . Then (B,B∗) are called dual bases of Vn.

Security proofs mostly rely on the decisional subspace assumptions in V (or V∗) wherein a
random basis B (or B∗) is provided in the instance. The task is to decide whether a vector

v = ∑mi=1 xibi for some 1 ≤ m < n or v
U←Ð V. Of course, if vectors b∗m+1, . . . ,b

∗
n of the dual

basis B∗ of B are provided, this problem becomes easy to solve - just pair a linear combination
of these vectors with v and check whether the result of the pairing is the identity in GT .
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Details of how features of composite order groups can be obtained in the prime order setting
using DPVSs can be found in [111]. Although DPVS-based constructions facilitate more
compact dual system proofs and better intuition behind design of ciphertexts and keys, many
small details are hidden. For most of these constructions, the dimension n needs to be fixed
during system setup. This limits the flexibility in designing ciphertexts and keys in order to
optimise efficiency measures. We do not use DPVSs in any of the constructions reported in
this thesis.

Prime-Order Bilinear Groups: Most of our constructions are based on Type-3 pairings. We use
a more ’ad-hoc’ approach to design semi-functional spaces (as first followed by Waters [158]).
Typically, a linear relation involving elements from the source groups is embedded in the
construction distributed between the public parameters and the master secret. Randomised
forms of these elements would then be present in ciphertexts and the keys. During decryption,
components containing these elements are paired and cancelled out on obtaining the embedded
relation. The sf-space would contain parallel copies of this relation defined via some secret
randomness.

In order to ensure that the embedded relation is recovered only upon decryption, more el-
ements may be required in the ciphertext and keys. Due to this reason most dual system
constructions obtained via the ad-hoc approach have larger ciphertexts and keys compared
to the composite-order constructions. On the other hand, prime-order pairings are faster
and have more compact representations. Furthermore, this approach offers more flexibility
in designing various objects in the construction to facilitate further efficiency improvements.
For these reasons, we mainly follow this approach in our constructions.

3.2.4 Tackling Randomness Issues

In the second reduction, the correlation between challenge ciphertext and the key turned semi-
functional is hidden from the attacker by making use of the randomness present in the corresponding
semi-functional terms (as mentioned in Sections 3.2.1 and 3.2.2). But this entropy is not enough
to deal with more than one key at a time. For this reason, the proof is organised into a hybrid of a
sequence of q + 3 games so that only one key is dealt with in each game. But in case of primitives
with richer structure, the entropy present in sf-terms may not be sufficient to argue about the
independence of the ciphertext-key pair. This can be dealt with in either of the following ways –
introduce more intermediate types of semi-functionality and devise a way to turn normal objects
to semi-functional objects via the intermediate forms. The intermediate forms should be defined
in a way that it provides sufficient entropy to argue about independence.

We discuss below the main randomness issues involved in our constructions and the steps taken
to resolve them.

Anonymous HIBE: In our HIBE construction LW -AHIBE , a key for an identity vector id consists
of two copies of H (id) separately randomised. (Here, H denotes the identity-hash used in
the construction.) Semi-functional terms are required to be defined for both components. It
is precisely here that the randomness issue arises. Dealing with the entire key at once, along
with the challenge ciphertext in the proof, becomes a problem as the entropy in the semi-
functional terms is not sufficient. We introduce partial semi-functional keys to tackle this
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issue. The transition from a normal to semi-functional key is now via a partial semi-functional
key. As a result the security degradation increases by a factor 2.

DFA-based ABE: Consider a system with Σ as the alphabet. For “small” alphabets, we may
associate one group element, say Hσ, in the public parameters to each symbol σ ∈ Σ (in
contrast to using a hash for “large” alphabets). One can view “small” and “large” to be
polynomial and super-polynomial/exponential in the security parameter. These Hσ’s appear
in both ciphertexts and keys and the components containing them further have sf-components.
Since Hσ is fixed during setup, there would be only one way to generate the corresponding
sf-terms. For each occurrence of a symbol σ in either a string or an automaton (defining some
transition), a copy of sf-terms corresponding to Hσ are revealed. With more than one copy
of the sf-terms they no longer remain uncorrelated to other information that an attacker is
allowed to obtain.

The solution is to restrict the number of occurrences of symbols in transitions and strings dur-
ing system setup (first used in [112]). As a result the parameters can be appropriately chosen
to accommodate the (fixed) maximum number of occurrences of each symbol. A drawback is
that with the restriction only a limited class of regular languages can be supported.

3.3 Recent Developments

Tight Reductions. Chen and Wee [53] proposed a new approach for structuring semi-functional
objects as well as organising dual system proofs leading to IBE schemes with a tighter security
reduction. The basic idea is to replace Boneh-Boyen hash [22] (that was used in most dual system
IBE’s) by Waters’ hash [157] wherein identities are elements of {0,1}n and the hash for id =
(id1, . . . , idn) ∈ {0,1}n is of the form ∑ni=1 idiXi. Elements Xi may belong to some pairing group
or a dual pairing vector space or more generally to a dual system group (also introduced in [53])
designed specially for constructions with proofs in the dual system framework. Then by plugging
in the Naor-Reingold pseudorandom function (NR-PRF) [118] taking identities as inputs, sufficient
randomness can be generated for handling q (polynomial in the security parameter) key extraction
queries over a hybrid of just n games. Consequently, the security degradation is O(n). The
drawback in the Chen-Wee IBE scheme was that public parameters contain O(n) group elements.
Furthermore, their instantiations for dual system groups were based on composite order pairings
and dual pairing vector spaces over prime order pairings leading to a a blow up in the exact size of
the public parameters.

A recent work by Blazy, Kiltz and Pan [21] present a method to generically transform message
authentication codes (MAC) to (H)IBE. An instantiation of the MAC using NR-PRF leads to
an IBE scheme which is more efficient than Chen-Wee scheme while retaining the same security
properties. Moreover, they propose the first (almost) tightly secure HIBE scheme i.e., with a
security degradation of O(hn) where h is the maximum depth of the hierarchy as opposed to O(q)
security loss in previous dual system HIBE constructions.

It is not known whether these techniques are applicable to the broadcast setting or attribute-
based encryption. Furthermore, the problem of obtaining an anonymous HIBE scheme with a tight
security reduction remains open.
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General Framework for Dual System Encryption. Any predicate encryption (PE) scheme
is defined by a predicate P. A ciphertext in a PE scheme is associated to an attribute x in addition
to the message that it encrypts. Decryption by a secret key associated to attribute y succeeds
if and only if P(x, y) = 1. The predicate can be suitably chosen according to the application.
Wee[161] proposed an information-theoretic primitive called predicate encodings that characterise
the underlying algebraic structure of a number of predicate encryption schemes, including known
IBE and attribute-based encryption (ABE) schemes. Furthermore these primitives facilitate dual
system proofs. In a sense, they provide an abstraction where the functionality achieved is separated
from the design and security analysis. A secure PE scheme for predicate P can be obtained by
appropriately instantiating a predicate encoding scheme with P.

In a similar and independent work [8], Attrapadung proposed a generic framework for applying
dual system encryption techniques. At the core is a new abstract primitive called pair encoding
scheme for predicates. As an application of the techniques introduced, some predicate encryption
schemes that were known to be only selectively secure have been shown to be adaptively secure.
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Chapter 4

A Brief Survey of Identity-Based
Cryptography

In this chapter, we provide a brief review of previous and related works on identity-based encryp-
tion, hierarchical identity-based encryption and identity-based broadcast encryption. Since most
constructions are based on pairings, the survey is broadly divided into two sections – with and
without pairings. At the end, a short discussion of other primitives related to IBE is presented.
For a more comprehensive treatment of identity-based cryptography, the reader may consult [51]
and [102].

4.1 Pairing-Based Schemes

As mentioned in earlier chapters, most practical constructions of identity-based systems are ob-
tained from bilinear pairings. In the following section, we shall take a look at various pairings-based
constructions of IBE and related primitives.

4.1.1 Identity-Based Encryption

Initial pairing-based constructions of IBE are by Sakai, Ohgishi, Kasahara [142] and Boneh,
Franklin [25]. The latter also provided formal definitions of IBE and IND-ID-CPA and
IND-ID-CCA-security along with two constructions, one achieving IND-ID-CPA-security and the
other IND-ID-CCA-security in the random oracle model based on the decisional bilinear Diffie-
Hellman (DBDH) assumption. A flaw in their security proof was pointed our by Galindo [78] who
also presented a corrected version of the proof. A problem that remained open was to construct
IBE schemes provably secure without random oracles. Early attempts at building such schemes
include the of Canetti, Halevi and Katz [40] which introduced the notion of selective security mod-
elling a weaker security goal. A more efficient selectively secure scheme was proposed by Boneh
and Boyen [22]. Evidence [23] suggested the existence of an adaptively secure IBE scheme with a
polynomial time security reduction without random oracles but the scheme was too inefficient to
be of practical use.
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In 2005, Waters [157] presented the first IBE scheme provably secure in the adaptive identity
model without random oracles (under DBDH assumption). This scheme is one of the most impor-
tant and efficient schemes known so far with decryption requiring only 2 pairings in addition to
having short ciphertexts and keys. Total Size of the public parameters was O(n) where n represents
the length in bits of an identity. Security loss was O(q) where q is the number of key extract queries
made by an attacker and the proof required an ‘artificial abort’ step that leads to weaker concrete
security. Bellare and Ristenpart [17] provided an alternate proof of security without the artificial
abort. With adaptive security without random oracles being the basic target, few other problems
remained open.

1. Are there constructions of IBE with tight security reductions?

2. Is it possible to construct IBE schemes with constant sized public parameters, ciphertexts
and keys?

An efficient solution to both problems was first proposed by Gentry [83]. The work proposed
a CPA-secure IBE scheme followed by a CCA-secure variant obtained using the techniques of
Cramer and Shoup [62]. However, Gentry’s scheme was proved secure based on a non-standard
assumption parameterised by q. Problem 2 was addressed by Waters [158] who introduced dual
system encryption leading to a fundamental change in proof techniques. The resulting IBE had
short parameters, ciphertexts and keys with security from the standard and static decisional linear
and DBDH assumptions. Security loss, however, was still O(q).

An immediate follow-up work [114] took the route of composite-order pairings. The inherent
structure of such pairing groups possibly help in getting a clearer understanding of the technique.
(Waters remarks that his scheme [158] was first obtained for composite order groups.) The approach
taken by [114] is to look at a realization of the IBE scheme of [22] in the setting of composite order
groups so as to obtain adaptive-id security. They also gave a conversion of their composite-order
IBE scheme to an IBE scheme using prime-order asymmetric pairing with six elements in both
ciphertexts and keys requiring six pairings for decryption. Security was based on 2 static but non-
standard assumptions LW1, LW2 (Section 2.3.2.1) and DBDH. Later work by Lewko [111] proposed
methods to simulate the features of composite order groups in prime order pairings via dual pairing
vector spaces more powerful than earlier techniques of Freeman [73]. Using these methods, Lewko
presents a conversion of the composite order pairing-based IBE scheme of [114] into the prime-
order setting primarily motivated by efficiency considerations. However the resulting IBE scheme
was based on symmetric pairings and consisted of six elements in the ciphertext as well as keys.
Decryption required six pairing operations making the scheme rather inefficient. Chen et al. [52]
proposed an adaptation of Lewko’s technique in the asymmetric prime order pairing setting leading
to an IBE construction with 4 group element in ciphertexts/keys with 4 pairings for decryption. The
efficiency improvement mainly stems from the fact reductions in asymmetric setting can be based
on SXDH as opposed to DLin in the symmetric pairing groups. Further optimisations were not
possible as the dual pairing vector space had to be of dimension 4 in order to simulate the properties
of composite order pairing groups. A concurrent work by Ramanna, Chatterjee and Sarkar [136]
took a different approach – they first converted Waters’ IBE [158] to the asymmetric setting and
via detailed analysis obtained several simplifications. As a result, they obtained an IBE scheme
with 4 group elements plus a tag component (as in Waters’ scheme) in ciphertexts/keys with only 3
pairing operations used for decryption. Security was based on DDH1, the static but non-standard
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DDH2v (refer to Section 2.3.2.1) and the DBDH assumptions. The most efficient dual system IBE
scheme with security based on standard assumptions is due to Jutla and Roy [103]. They take the
route of quasi adaptive non-interactive zero knowledge (NIZK) proofs. They obtained short NIZK
proofs for linear subspaces leading to efficient signatures from the SXDH assumption. Then using
Naor’s observation regarding the relationship between IBE and signatures [25], they constructed
an IBE scheme with ciphertexts and keys containing 3 and 5 group elements respectively.

An interesting solution to Problem 1 was proposed in a recent work by Chen and Wee [53]. Their
main result was an IBE scheme with a security degradation of O(n) where n is the bit-length of
identities. Instantiations were provided using both composite order groups and (asymmetric) prime
order pairings. The prime order variant is secure under d-linear assumptions. The proof involves a
novel use of Naor-Reingold pseudorandom functions (PRFs) [118] to simulate polynomially many
key extraction queries with just n instances of d-Lin. However, public parameters in the asymmetric
pairing variant contain O(n) many vectors of dimension 2 thus making it inefficient in comparison
to the scheme of Jutla and Roy [103]. On the other hand, this work introduced a new method
for parameter hiding in dual pairing vector spaces which led to the first efficient DPVS-based
HIBE scheme with constant sized ciphertexts. Another work by Blazy et al. [21] presented a
generic transform from affine message authentication codes (MACs) to (H)IBE. They presented
two instantiations of affine MACs – one from Naor-Reingold PRFs and the other from hash proof
systems [61]. The first kind of MACs lead to IBE schemes with a tight security reduction to
d-Lin assumptions with shorter ciphertexts and keys compared to [53]. The transform applied
on the latter kind of MACs gave rise to efficient IBE schemes with O(q) degradation from d-Lin
assumptions. However, for the case d = 1 (i.e., SXDH) the scheme is less efficient than that of Jutla
and Roy [103]. The authors further defined the notion of delegateable affine MACs that can be
transformed to HIBE schemes. The most interesting aspect of this work is the construction of an
asymmetric key primitive (HIBE) from a symmetric key primitive (MAC).

CCA-Security. While all the aforementioned works aim primarily at obtaining IND-ID-CPA-
secure IBE schemes, an important goal is to obtain efficient IBE schemes secure in the sense of
IND-ID-CCA. Boneh and Franklin [25] use the Fujisaki-Okamoto transform [74] to convert their
basic IND-ID-CPA-secure scheme to a IND-ID-CCA-secure scheme. This technique, however, ap-
plied only in the random oracle setting. An elegant method to obtain CCA-security without ROs
was introduced by Canetti, Halevi and Katz [41] (CHK-transform). The core idea was a generic
transformation from an (h + 1)-level HIBE to an h-level HIBE using a strongly unforgeable one-
time signature scheme where h is the maximum depth of the hierarchy. Boneh and Katz [30]
suggested using MAC in place of the one-time signature for improved efficiency. Another (non-
generic) transformation that applies specifically in the pairing based setting is that of Boyen, Mei
and Waters [35]. They described a method to convert (pairing-based) IBE schemes with some struc-
ture to PKE schemes. But their method can be extended to obtain h-level HIBEs from (h+1)-level
HIBEs.

Due to the existence of efficient generic methods to obtain CCA-security, little research has
been carried out on obtaining direct constructions of IND-ID-CCA-secure IBE schemes. Two recent
works by Jutla and Roy [103, 104] propose quasi-adaptive NIZKs based on which they construct
publicly verifiable CCA-secure IBE schemes. Public verifiability is a notion which requires the
well-formedness of the ciphertext to be publicly verifiable. This can be useful in applications where
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malformed ciphertexts can be filtered at a network level. Earlier generic techniques did not support
public verifiability and moreover the CCA-secure scheme of [104] had shorter ciphertexts compared
to what is obtained by the CHK-transform [41] applied on the IBE of [103].

4.1.2 Hierarchical Identity-Based Encryption

The concept of hierarchical identity-based encryption was introduced (by Horwitz and Lynn [96]) to
reduce the burden of key generation on the PKG by arranging the users into a tree structure rooted
at the PKG. An entity with a secret key can generate keys for any lower level entity. HIBE and its
security was then formalised by Gentry and Silverberg [86] who also proposed the first HIBE scheme
provably secure based on the DBDH assumption using random oracles. As mentioned earlier, the
security degraded exponentially with the length of the challenge identity. Canetti, Halevi and
Katz [40] obtained the first HIBE whose security did not depend on the use of random oracles.
They defined a primitive called binary tree encryption and used it to construct HIBE. However,
the trade-off was that the scheme was only secure in the selective identity model. Moreover, the
decryption was too inefficient to be of practical use. The first efficient HIBE schemes within the
selective model was proposed by Boneh and Boyen [22] with ciphertext length being proportional
to the identity depth. Out of the two schemes they propose, security of the first construction is
based on the DBDH assumption. The second one is more efficient and is proved secure under
the non-standard decisional bilinear Diffie-Hellman inversion (DBDHI) assumption. Boneh, Boyen
and Goh [24] considered the problem of constructing HIBEs with constant-sized ciphertexts and
provided an elegant solution. The idea was to extend the Boneh-Boyen hash U + idV for vectors
of identities id ∈ I ≤h with length at most h, the maximum depth of the hierarchy. The resulting
hash, which we refer to as BBG-hash, is defined as U +∑`j=1 idj where id = (id1, . . . , id`) with ` ≤ h.
The BBG-hash has proved extremely useful in designing schemes with constant sized ciphertext.
Almost all known CC-HIBE schemes that appeared later have either used this hashing technique
or a variant. Furthermore, the constant size ciphertexts were particularly useful in cryptographic
applications such as forward secure encryption [40] and broadcast encryption [117]. The only
problem was that the scheme was selectively secure.

The first HIBE that attained adaptive security without random oracles was the one proposed
by Waters [157] as an extension of an efficient IBE scheme. However, the size of the public pa-
rameters was too high – O(hn) where n is the length of each individual identity. Later, Chatterjee
and Sarkar [45] and Naccache [116] independently showed how to obtain trade-offs between the
public parameter size and the security degradation. Another work by Chatterjee and Sarkar [49]
combined the BBG technique with Waters’ hash and obtained a constant size ciphertext HIBE with
adaptive security without random oracles. In all the above schemes, proofs of security relied on
the partitioning strategy as a result of which security degraded exponentially with the maximum
depth of the HIBE. The degradation was O(qh) where q is the number of key extraction queries
made by the attacker.

Gentry and Halevi [84] presented the first HIBE scheme to achieve adaptive security without
an exponential loss in security. Although the reduction was tight, the assumption on which it was
based on a very complex parameterised assumption.

The first practical method of constructing HIBE schemes where security does not degrade with
the depth of the HIBE is due to Waters [158] who introduced the very important technique of dual-
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system encryption. Security was based on the decisional linear (DLin) assumptions and DBDH with
a security degradation of O(q). Lewko and Waters [114] provided the first CC-HIBE scheme based
on composite-order pairings following the dual-system approach. The main disadvantage of this
scheme is that it uses composite order pairings. A translation of their HIBE into the asymmetric
pairing setting was obtained independently in [137, 107]. Security of both constructions were based
on static but non-standard assumptions in Type-3 pairing groups. The most efficient HIBE schemes
achieving constant sized ciphertexts were proposed by Ramanna and Sarkar [139] and Chen and
Wee [53] with security under the SXDH assumption. While the former has shorter ciphertexts
and public parameters, the latter has shorter keys and faster algorithms for key generation and
delegation in addition to security from the progressively weaker d-linear assumptions. A recent
work by Blazy, Kiltz and Pan [21] proposes a HIBE scheme with a tighter security reduction to
d-linear assumptions. More precisely, their reduction incurs a security loss of O(hκ) where κ is the
security parameter.

Anonymous HIBE schemes provide means to extend PEKS to more sophisticated primitives such
as public key encryption with temporary keyword search (PETKS) and identity-based encryption
with keyword search (IBEKS). The first construction of anonymous HIBE without random oracles
was given by [36] with security in the selective-id model. Later constructions by [144, 63] could
achieve security in the adaptive-id setting but were based on composite-order pairings. Two other
constructions [70, 129] were based on asymmetric pairings but with security in the selective-id
model. The first efficient anonymous CC-HIBE schemes were the ones proposed in [137, 107]. Both
the schemes are based on Type-3 pairings and obtain security from non-standard assumptions.
The first efficient anonymous CC-HIBE with security from standard assumptions (SXDH) was
obtained in [139]. The work [21] also proposes an anonymous HIBE with adaptive security with
O(q) degradation from the d-Linear assumptions.

HIBE schemes also be derived as special cases of attribute based encryption (ABE) schemes
and predicate encryption (PE) schemes with delegation capabilities [120, 146]. Delegatable PE
schemes with linear-sized ciphertexts include the delegateable hidden vector encryption scheme of
Shi and Waters [146] based composite order pairings and hierarchical inner product encryption
(HIPE) schemes proposed in [120, 112, 121, 122, 124] based on dual pairing vector spaces. Some
of these schemes achieve constant-sized ciphertexts and prefix decryption while others have prefix
decryption and anonymity.

4.1.3 Identity-Based Broadcast Encryption

The notion of broadcast encryption was introduced by Fiat and Naor in [72]. They describe a
symmetric key scheme that achieves bounded collusion resistance. The first fully collusion secure
BE (for stateless receivers) was proposed by Naor, Naor and Lotspiech [117]. They describe two
symmetric key based BE constructions. Dodis and Fazio [68] used techniques from (hierarchical)
identity-based encryption to instantiate the subset cover framework thereby leading to the first
fully collusion resistant public key broadcast encryption (PKBE) schemes. The ciphertext size in
their constructions is linear in the number of privileged users.

Boneh, Gentry and Waters [28] proposed the first PKBE system achieving constant size cipher-
texts. The scheme can be proved secure without random oracles but in the weaker selective model.
Delerablee, Paillier and Pointcheval introduced dynamic broadcast encryption in [65] and proposed
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two (partially) adaptively secure constructions. In dynamic BE schemes, a (new) user can join at
any point of time. The confidentiality of a broadcasted message prior to joining of the new user
must not be compromised after the join. The join operation requires that the sender is made aware
of the public key corresponding to the new user.

The first adaptively secure schemes were proposed by Gentry and Waters [87] in both the
public key and identity based settings. They describe two kinds of schemes – one achieving security
without random oracles with ciphertext size linear in the number of privileged users and the other
consisting of constant size ciphertexts with security relying on the use of random oracles. More
recently, the case of adaptive CCA-security was considered in [132, 131]. The construction proposed
in the later work has the constant-size ciphertext feature while the former allows users to join the
system dynamically.

All the schemes mentioned so far are secure under some non-standard and parametrised as-
sumptions. The first BE scheme secure proved secure under static assumptions was proposed by
Waters [158] using the dual system encryption method. The scheme has constant size ciphertexts
but the user key size is linear in the total number of users. A revocation system with constant sized
keys was proposed in [113] with ciphertext size growing linearly in the number of revoked users and
security from static assumptions.

The concept of identity-based broadcast encryption (IBBE) was formalised by Barbosa,
Farshim [11] and independently by Baek, Safavi-Naini, Susilo [10]. They called it multi-receiver
identity-based encryption (MR-IBE). The work [10] described a pairing based construction based on
the Boneh-Franklin IBE [25] that could be proved selectively secure in the random oracle model.
A key encapsulation scheme for multiple parties obtained by extending the OR-construction of
Smart [152] to the identity-based setting was presented in [11]. Security relies on the use of random
oracles.

The construction in [128] (a corrected and improved version of [48]) achieves a trade-off between
the ciphertext size and the user key size. Ciphertexts are of size ∣S∣/N , and user secret keys are of
size N where N is a parameter of the protocol (representing the maximum number of identities that
the adversary is allowed to corrupt during simulation). This was the first scheme with sub-linear
sized ciphertexts.

Abdalla et al. [2] provided a generic construction from “wicked IBE” with constant-sized ci-
phertexts but user storage quadratic is m, the maximum number of recipients of a ciphertext. Both
schemes ([128] and [2]) are selectively secure without random oracles. In 2007, Delerablee [64], pro-
posed an IBBE construction with constant size ciphertexts and secret keys. The public parameters
have size O(m). Security was proved in the selective identity model.

Gentry and Waters [87] were the first to propose adaptively secure IBBE systems achieving linear
and sub-linear sized ciphertexts. However, their proofs were based on non-standard assumptions
parameterised by m.

Note: A basic functionality of any identity-based system is that it is dynamic. The PKG should
be able to generate keys for any identity from the identity space; further, an identity-based system
should allow for encryption to be possible to an identity even before a key for that identity has
been generated. By extension, any proper identity-based broadcast encryption scheme should also
be dynamic and this is true of the schemes that we describe.
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4.1.4 Attribute-Based Encryption

Attribute-Based Encryption (ABE) systems are the most well studied candidates of functional
encryption systems with public index. There is a huge body of work on ABE. Since the main focus
of this work is not ABE, we only mention some works on ABE relevant to the problem addressed
in Chapter 8.

Fuzzy Identity-Based Encryption, introduced by Sahai and Waters [141], was as an initial
step towards attribute-based encryption. Goyal, Pandey, Sahai and Waters [91] introduced two
complimentary forms of ABE named Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
and Key-Policy Attribute-Based Encryption (KP-ABE). In a CP-ABE system, keys are associated
with sets of attributes and ciphertexts are associated with access policies. In a KP-ABE system,
the situation is reversed: keys are associated with access policies and ciphertexts are associated
with sets of attributes. Subsequent constructions of ABE schemes focused on one of the following
goals - efficiency gains, stronger security guarantee, functional capabilities, security in standard
model.

Then followed several constructions of key-policy ABE (KP-ABE) systems [126, 112, 121] and
ciphertext-policy ABE (CP-ABE) systems [19, 112, 121, 159, 110]. ABE schemes in the public
index model include [91, 126, 159, 110] and the works [105, 147, 120, 123] consider ABE systems
without public index.

The first adaptively secure CP-ABE and KP-ABE schemes for monotone access structures
without random oracles were proposed by Lewko et al. [112]. This construction was based on
composite-order groups. Later, Okamoto and Takashima [121] proposed ABE schemes for non-
monotone access structures that are adaptively secure under a the standard DLin assumptions in
prime order pairing groups. Both the works obtained adaptive security from static assumptions by
imposing a bound on the maximum number of times an attribute can occur in access policies and
indices at the cost of losing out on efficiency compared to selectively secure schemes. Later work
by Lewko and Waters [110] showed how to remove this restriction. However, their proofs had to
rely on non-static assumptions.

All the above mentioned works only considered functions over fixed size inputs. Waters [160]
first considered ABE over arbitrary sized inputs and proposed a KP-ABE scheme over regular
languages. Here the index is a string and policy is a deterministic finite automaton, both over
a common alphabet. Since DFA’s accept regular languages that may contain strings of any size,
Waters’ ABE system can support access control over messages of arbitrary size. The KP-ABE
scheme of [160] is selectively secure under the non-static decisional `-expanded bilinear Diffie-
Hellman assumption.

4.2 Identity-Based Constructions without Pairings

Number-theoretic constructions. Among the first constructions of IBE, Cocks IBE [59] did
not use pairings. The scheme was based on quadratic residues. A drawback was that ciphertexts
were rather large due to the bit-by-bit encryption strategy used. Boneh, Gentry and Hamburg [26]
proposed an IBE scheme based on quadratic residues that had shorter ciphertexts at the cost of
losing out on efficiency in comparison to Cocks IBE. Furthermore, security relied on the use of
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random oracles. However, this line of research sparked little interest and hence not followed up in
later works.

Lattice-based constructions. With the introduction of lattices for cryptanalysis, researchers
began to explore the possibilities of their use in building cryptographic primitives. Lattices are
discrete subgroups of the n-dimensional Euclidean space Rn. Lattices used in cryptography are
mostly defined as subgroups of vector spaces over a finite field. An example of a hard problem over
a lattice is the shortest vector problem wherein the lattice is specified by a basis and the task is
to find a lattice point closest to the origin or equivalently, the shortest vector in the lattice. Other
examples include closest vector problem, learning with errors, and so on. The main motivation for
using lattices is three-fold.

• Security can be based on worst-case hardness of lattice problems

• Lattice algorithms have efficient and parallel implementations

• There are no known quantum algorithms (until now) to solve lattice-based hard problems

Initial cryptographic constructions included public key encryption and collision-resistant hash func-
tions. Later, techniques were introduced to realise IBE from lattices. The first IBE was obtained
via a notion called pre-image sampling introduced in by Gentry, Peikert and Vaikuntanathan [85].
They started with a signature scheme from pre-image sampling and derived an IBE from it on
the basis of Naor’s transform. Cash et al. [42] showed how to delegate lattice bases and hence
obtain lattice-based hierarchical IBE schemes. Following this work, many improved constructions
of (H)IBE were proposed by Agrawal, Boneh and Boyen [4, 5]. While lattices provide theoretically
satisfying security, they are far less efficient compared to pairing-based constructions.

Multilinear maps from lattices. The concept of multilinear maps in cryptography was first
used by Boneh and Silverberg [33]. They showed the possibility of realising certain primitives
more efficiently using such maps and further conjectured that such maps would be hard to find
at least in the realm of algebraic geometry. Garg, Gentry and Halevi [79] introduced the notion
of graded encoding schemes based on ideal lattices, which are approximations of multilinear maps.
Soon afterwards, graded encoding schemes found several applications in cryptography including
some primitives that could not be instantiated with pairings. An important application presented
in [33, 79] is a single round n-way Diffie-Hellman key exchange where n users share a secret key
in a single round with each user receiving a message. Further applications include constrained
pseudorandom functions [34], broadcast encryption with short parameters [79, 33, 34], attribute
encryption schemes for general circuits [81, 90], indistinguishability obfuscation [80] and many
more. Multilinear maps have opened up many avenues for cryptographic constructions and some of
these constructions subsume the functionalities we try to achieve in this work. However, very little
cryptanalysis has been done on them. Furthermore, the implementation issues related to lattices
mentioned in the previous paragraph also apply here.
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4.3 Other IBE-Related Primitives

A number of primitives apart from HIBE, IBBE and ABE are related to identity-based encryption.
Examples include key agreement protocols [142, 151, 56, 130], searchable encryption [1], etc. More
abstract constructs includes identity-based (lossy) trapdoor functions [15]. Out of these we touch
upon only three topics – signatures and methods to deal with the key escrow problem.

Signatures A signature scheme allows a user to sign a message using a secret signing key. The
message-signature pair can be checked for validity using a (related) public verification key. Moni
Naor observed (in [25]) that any identity-based encryption scheme gives rise to a signature scheme.
The basic idea is as follows: the message space for the signature scheme is nothing but the identity
space of the IBE. The signature for a message m is the secret key generated with m as the identity.
Verification of the signature is done by generating a random ciphertext for identity m and testing
whether decryption is successful or not with the key/signature. Verification key and signing key
correspond to the public parameters and master secret (respectively) of the IBE scheme.

Naor’s strategy has been applied on a number of different IBE schemes. Boneh, Lynn and
Shacham [31] signatures were the first of this kind obtained from Boneh, Franklin IBE [25] with
security in the ROM under the Gap Diffie-Hellman assumption. This construction was further
used in constructing aggregate signature schemes [27]. Waters [157] converted the his IBE scheme
to a signature scheme that achieved security under the computational Diffie-Hellman assumption
without random oracles. Interestingly, the dual system encryption methodology lead to signatures
schemes [158, 52, 103] with security under decisional assumptions as opposed to computational
assumptions on which previous constructions were based.

In a traditional (public-key) signature scheme, the verification key of a user is certified by some
central authority. To eliminate the need for certification, the concept of identity-based signatures
(IBS) was proposed by Shamir [145]. The problem of constructing IBS seems relatively easy com-
pared to constructing IBE schemes. Shamir himself proposed an IBE construction whereas the
first IBE construction appeared years later. Similar to IBE, there is a setup and key generation
algorithm. In addition there are two algorithms for signing and verification. Further constructions
of identity-based signature schemes appeared in [94, 13, 16].

Dealing with Key Escrow All IBE schemes suffer from one common problem. The PKG can
generate key for any user and hence decrypt all ciphertexts sent to that user. This is the so-
called key escrow problem. Among the many solutions proposed for dealing with this problem,
the most interesting ones are certificate-less encryption (CLE) and certificate-based encryption
(CBE). AlRiyami and Paterson [6] introduced the notion of CLE in which the secret key for an
identity is generated based on two quantities – the PKG’s master secret and the corresponding
user’s secret information. The term certificate-less stems from the search for a PKE without the
need for certificates and at the same time not have the key escrow problem of IBE. They formalise
the security model for CLE and also propose a construction secure in that model within the random
oracle model. However, constructing schemes without random oracles remained a difficult task and
thus lead to several alternative security models for CLE that are weaker than the original model [6].
Dent [66] provides a summary of these models. Early works [97, 115] trying to obtain CLE without
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random oracles could not achieve security in the full model. The first scheme achieving security
without ROs in the full security model was by [67]. There have been several follow up works on
certificateless encryption.

Certificate-based encryption (introduced by Gentry in [82]) is reminiscent of public key encryp-
tion but with implicit certification on user public keys using identity-based techniques. Gentry also
provided an instantiation of CBE based on Boneh-Franklin IBE. Subsequent work [162] established
equivalence results between IBE, CBE and CLE schemes. Their generic transformations of do not
rely on random oracles but at the same time do not hold even in the weaker security definitions for
CLE, let alone the full security model of AlRiyami and Paterson. Later work [7] showed a generic
transformation from CLE to CBE along with improved constructions for CLE and hence CBE.
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Chapter 5

Efficient Dual System IBE and
Related Primitives

As mentioned in the earlier chapters, dual system encryption introduced by Waters is an important
technique for proving adaptive security of identity-based encryption and related primitives. Waters
IBE scheme in [158] is based on symmetric pairings. Security of the scheme is based on the DLin
and DBDH assumptions. It is of interest to convert this to asymmetric pairings. For one thing, this
will enable faster and smaller implementations which will arise from the advantages of asymmetric
pairings over their symmetric variants. There is, however, another reason. Use of asymmetric
pairings brings forward the possibility of reducing the number of group elements in ciphertexts and
keys. In fact, Waters [158] himself mentions: “using the SXDH assumption we might hope to shave
off three group elements from both ciphertexts and private keys”. The rationale for this comment
is that in Type-3 pairings, the DDH assumption holds for both G1 and G2 (collectively called the
SXDH assumption). Using SXDH will potentially lead to a simpler scheme requiring a smaller
number of group elements.

Following up on the above mentioned remark by Waters, we have systematically investigated
the various possibilities for using asymmetric pairings. To start the study, we performed a straight-
forward conversion to the setting of asymmetric pairings. The scheme in [158] is quite complex.
Several scalars are used in the public parameters, encryption and key generation. These have defi-
nite and inter-connected roles in the security proof. Our first task was to pin down the relationships
between these scalars and separate them out. This enabled us to work with one group of scalars
with minimal changes to other groups.

With a good understanding of the roles of the scalars, we are able to apply simplifications in a
stage-wise manner. The first simplification gives an IBE scheme (IBE1) which shrinks ciphertexts
and keys by two elements each and whose security can be based on DDH1 (DDH assumption in
G1), DLin and the DBDH assumptions. We argue that the DDH2 assumption cannot be directly
used. So, the afore-mentioned suggestion by Waters cannot be fulfilled. On the other hand, we
show that using a natural and minimal extension of the DDH2 assumption, a significantly more
efficient scheme (IBE6) can be obtained.

Waters’ original scheme [158] used random tags in the ciphertext and the decryption key. Sim-
plification of this scheme by both Lewko-Waters [114] and Lewko [109] yielded IBE schemes which
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did not use such tags. In contrast, all our simplifications retain the tags used in the original descrip-
tion [158]. Even then, we are able to obtain significant simplifications and efficiency improvements.

IBE6 has the interesting feature that exactly one randomiser each is used for encryption and
key generation which is minimal in case of ciphertext. However, it is not known whether the key
generation could be made deterministic within the dual system framework.

To show that our simplification retains the flexibility of the original technique by Waters, we
present an analogue of the HIBE scheme along with a security proof in Section 5.7. This HIBE
scheme, denoted HIBE6 inherits all the security properties from [158], but, provides improved
efficiency. From this HIBE scheme we construct an adaptively secure BE scheme BE6 with constant-
size ciphertexts. The construction is given in Section 5.8.1 and the security proof in Section 5.8.2.

5.1 Framework for Conversion

Our goal is to transform Waters-2009 IBE scheme to the asymmetric setting so that we can reduce
the number of components both in the ciphertext and the key. To that end, we first perform a
straightforward conversion of Waters IBE from the setting of symmetric pairing to the setting of
asymmetric pairing. (See [158] for the original description of Waters 2009 scheme.)

Let G = (p,G1,G2,GT , e, F1, F2) be a Type 3 pairing. Since elements of G1 have shorter repre-
sentation compared to G2, we choose ciphertext elements to be from G1 and secret key components
from G2. The public parameters will consist of elements of G1 whereas the master secret key will
consist of elements of G2. We note that if the final goal were to construct a signature scheme, one
would choose the secret key from G1.

A straightforward conversion (named W -IBE) will have the same structure as the one described
in [158]. Message space is GT and identities are elements of Zp. The algorithms would be defined
as follows.

W -IBE .Setup(κ) Choose P1
U←Ð G×

1 , P2
U←Ð G×

2 , α, b, a1, a2
U←Ð Zp. Let v, v′ and v′′ be random

elements of Zp and define V2 = vP2, V ′
2 = v′P2 and V ′′

2 = v′′P2. Let τ = v + a1v
′ and τ ′ = v +

a2v
′′. Set T1 = τP1 and T ′1 = τ ′P1. Pick elements Q1, U1,W1

U←Ð G1 and Q2, U2,W2 ∈ G2 with
dlogP2

(Q2, U2,W2) = dlogP1
(Q1, U1,W1). The structure of the PP and the MSK are as follows.

PP : (P1, bP1, a1P1, a2P1, ba1P1, ba2P1, T1, T
′
1, bT1, bT

′
1,Q1,W1, U1, e(P1, P2)ba1α).

MSK: (P2, αP2, a1αP2, V2, V
′

2 , V
′′

2 ,Q2,W2, U2).

W -IBE .Encrypt(M, id,PP): Randomisers s1, s2, t, ctag
U←Ð Zp are chosen. Define s = s1 + s2. The

ciphertext is (C0,C1, . . . ,C7,E1,E2, ctag) with the components defined as follows.

C0 =M ⋅ e(P1, P2)ba1αs2

C1 = bsP1, C2 = ba1s1P1, C3 = a1s1P1, C4 = ba2s2P1,
C5 = a2s2P1,C6 = s1T1 + s2T

′
1, C7 = s1bT1 + s2bT

′
1 − tW1

E1 = t(idQ1 + ctagW1 +U1), E2 = tP1

W -IBE .KeyGen(id,MSK,PP): Choose r1, r2, z1, z2, ktag
U←Ð Zp and define r = r1 + r2. The key

SKid is (K1, . . . ,K7, ktag) where the elements are defined as follows.
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K1 = a1αP2 + rV2, K2 = −αP2 + rV ′
2 + z1P2, K3 = −z1bP2, K4 = rV ′′

2 + z2P2,
K5 = −z2bP2, K6 = r2bP2, K7 = r1P2

D = r1(idQ2 + ktagW2 +U2).

The decryption algorithm W -IBE .Decrypt (as described by Waters) requires 9 pairings and succeeds
only if ctag in the ciphertext is not equal to ktag of the decryption key, an event which occurs with
overwhelming probability. See [158] for the details.

We now look at the definition of semi-functional ciphertext and key for Waters’ scheme.

W -IBE .SFEncrypt(PP,MSK,C′): Let C′ = (C ′
0, . . . ,C

′
7,E

′
1,E

′
2, ctag) be a ciphertext normally gen-

erated by the Encrypt algorithm for message M and identity id. Choose µ
U←Ð Zp. Let V ′

1 = v′P1

and V ′′
1 = v′′P1 so that V ′

1 ∼ V ′
2 and V ′′

1 ∼ V ′′
2 . The semi-functional ciphertext generation algorithm

will modify the normal ciphertext as: C0 = C ′
0, C1 = C ′

1, C2 = C ′
2, C3 = C ′

3, E1 = E′
1, E2 = E′

2 and

C4 = C ′
4 + ba2µP1, C5 = C ′

5 + a2µP1, C6 = C ′
6 − a2µV

′′
1 , C7 = C ′

7 − ba2µV
′′

1 .

W -IBE .SFKeyGen(PP,MSK,SKid): Let SK′id = (K ′
1, . . . ,K

′
7,D

′, ktag) be the secret key normally

generated by the KeyGen algorithm for identity id. Choose γ
U←Ð Zp. The semi-functional key

generation algorithm will modify the normal key as: K3 =K ′
3, K5 =K ′

5, K6 =K ′
6, K7 =K ′

7, D =D′

and
K1 =K ′

1 − a1a2γP2, K2 =K ′
2 + a2γP2, K4 =K ′

4 + a1γP2.

It is easy to see that one can decrypt a semi-functional ciphertext with a normal key and a normal
ciphertext with a semi-functional key. However, decryption of a semi-functional ciphertext with a
semi-functional key will fail because the message will be blinded by the factor e(P1, P2)ba1a2µγ .

Security proof. The security argument for the scheme proceeds through q + 3 games where q is
the number of key extraction queries made by the adversary. These games are

Greal,G0, . . . ,Gq,Gfinal.

The transition between these games can be seen as three different reductions.

First reduction: The transition from Greal to G0 is made by replacing the challenge ciphertext
by a semi-functional ciphertext. It is argued that detecting this change is hard.

Second reduction: There is a sequence of q changes from Gk−1 to Gk (for k = 1, . . . , q). The
k-th change is as follows. For the queries numbered 1 to k − 1, the adversary is given a
semi-functional key; for queries numbered k+1 to q, the adversary is given a normal key. The
k-th key is changed from normal to semi-functional. It is required to show that the adversary
cannot detect this change with non-negligible probability.

Third reduction: This tackles the transition from Gq to Gfinal. At this point, all responses
to key queries are semi-functional and so is the challenge ciphertext. In the last transition,
the challenge ciphertext is changed so that it encrypts a random message such that deciding
whether it is the encryption of a message or whether it is statistically independent of the PP
and the responses is hard.
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The first and second reductions are based on the hardness of the DLin problem whereas the third
reduction is based on the hardness of the DBDH problem. In the proof, the second reduction is
the most complex step. The subtle point is that the simulator should not be able to generate
a semi-functional ciphertext for the k-th identity which will allow it to easily determine whether
the key for this identity is semi-functional or not. This is ensured by using algebraic techniques
from [22] to create ktag using a pair-wise independent function so that the simulator is able to
create a semi-functional ciphertext for idk only with ctag = ktag, in which case decryption fails
unconditionally and hence the simulator gains no information.

5.2 An Analysis

Our conversion to asymmetric pairing and subsequent simplifications are based on an analysis of
the various scalars used in the scheme and their respective roles in the proof. Based on the scheme
itself and a study of the three reductions used by Waters, we make the following observations.

1. PP uses the scalars a1, a2 and b, while MSK uses the scalars α and a1.

2. Key generation uses scalar randomisers r1, r2 and z1, z2. The scalar r is set to r1 + r2. We
will call this the split of r.

3. Ciphertext generation uses the scalar randomisers s1, s2 and t. The scalar s is set to s1 + s2.
We will call this the split of s.

4. The first two reductions in Waters proof are based on the DLin assumption. The first reduc-
tion uses the split of s whereas the second reduction uses the split of r.

For simplification using asymmetric pairings, the following points are to be noted. These have been
inferred from a study of the security proof in [158].

1. The scalar α needs to be retained.

2. There are three basic possibilities for simplification: remove the split of s; remove the split of
r; remove z1, z2.

3. Getting rid of a1 and a2 and using a single a will eliminate the requirement of the split of s.
This also means that the separate z1 and z2 are not required and instead a single z can be
used.

4. Removing the split of r does not have a direct influence on the other scalars.

5. Removing the split of r and also z1, z2 means that the scalar b is no longer required.

6. In all but one of our schemes, the scalar t is kept either as part of the ciphertext or as
part of the key. In the final scheme, we show that the scalar t can also be removed. For this
scheme, there is a single randomiser s for the ciphertext and a single randomiser r for the key.
Note that further reduction in randomness for the ciphertext is not possible as otherwise the
ciphertext becomes unique. However, it may be possible to make key generation deterministic.
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7. If the first reduction is to be based on DLin, then the split of s and a1,a2 must be retained.
If the split is removed, then we can base the first reduction on DDH1.

8. If the split of r is retained, then the second reduction has to be based on DLin. If it is
removed, we can no longer base the second reduction on DLin. However, it can neither be
based on DDH2 for the following reason. An instance of DDH2 will provide P1 and some
elements of G2. Apart from P1 no other element of G1 is provided. The PP consists of
elements of G1 which have to be related to the instance in some way. Just having P1 does
not provide any way to construct the PP in the second reduction. So, removing the split of r
implies that the second reduction can be based on neither DLin nor DDH2. The assumption
DDH2v introduced in Chapter 2 provides the necessary mechanism for carrying the proof
through. We provide a discussion on DDH2v in Section 5.5.2.

9. The tags are chosen randomly and they play a crucial role in the security argument. We do
not consider removing tags. If the tags are removed, then it will be necessary to introduce
copies of the identity-hash (as done in [114]) to obtain the functionality of tags in the semi-
functional components. This leads to an increase in the number of elements in the ciphertext
and key.

Based on the above points, we explore the different natural ways in which W -IBE can be simplified.
These are discussed below.

IBE1: Remove the split of s. This eliminates the requirement of having separate a1, a2 and z1, z2.
Reductions of ciphertext and key are by two elements each. Removing the split of s allows
the first reduction to be based on DDH1. Since the split of r is retained, the second reduction
is still based on DLin.

IBE2. Retain the split of s; this means that separate a1 and a2 are required. Remove the split
of r and also remove z1 and z2; this means that b can be removed. Leads to reductions of
ciphertext and key by 3 elements each. The first reduction of the proof can be based on DLin,
but, the second reduction cannot be based on either DLin or DDH2.

IBE3: Remove the split of s; retain the split of r but, remove z. Reductions of ciphertext and key
are by 3 elements each. In the proof, the first reduction can be based on DLin. The second
reduction cannot be based on DDH2. Neither can it be based on DLin. This requires a more
involved reasoning which we provide in Section 5.4.

IBE4: Remove the splits of both r and s, but, retain z. Ciphertext and key are reduced by 3
elements each. In the proof, the first reduction can be based on DDH1, but, the second
reduction cannot be based on either DLin or DDH2.

IBE5 : Remove the splits of both r and s and also remove z. Ciphertext and keys are reduced by
4 elements each. As in the previous case, the first reduction of the proof can be based on
DDH1, but, the second reduction cannot be based on either DLin or DDH2.

IBE6 : In Schemes 1 to 5, the randomiser t is present in the ciphertext. In IBE6 , the splits of
both r and s are removed; z is removed and the role of t is played by s. This leads to a
scheme where there is exactly one randomiser for encryption and exactly one randomiser for
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key generation. Compared to Waters’ IBE [158], reduction of the ciphertext is by 5 elements
and the reduction of the key is by 4 elements. The first reduction of the proof can be based
on DDH1, while the second reduction is based on assumption DDH2v.

In Table 5.1, we provide the use of scalars in the various schemes. This illustrates the manner in
which the simplification has been obtained.

scheme PP MSK key gen enc

Waters-09 [158] α,a1, a2, b α, a1 r1, r2, (r = r1 + r2), z1, z2 s1, s2, (s = s1 + s2), t
IBE1 α,a, b α, b r1, r2, (r = r1 + r2), z s, t

Scheme 2 α,a1, a2 α r s1, s2, (s = s1 + s2), t
Scheme 3 α,a, b α, b r1, r2, (r = r1 + r2) s, t

Scheme 4 α,a, b α, b r, z s, t

Scheme 5 α,a α r s, t

IBE6 α,a α r s

Table 5.1: Usage of scalars in various schemes. Note that all the schemes use ktag for key generation
and ctag for encryption.

5.3 Scheme IBE1

We describe here our first construction IBE1 and its proof of security.

5.3.1 Construction

IBE1.Setup(κ): Choose P1
U←Ð G×

1 and P2
U←Ð G×

2 ; elements Q1,W1, U1
U←Ð G1 and Q2,W2, U2 ∈ G2

such that dlogP2
(Q2, U2,W2) = dlogP1

(Q1, U1,W1). Let v, v′ be chosen randomly from Zp and set
V2 = vP2, V ′

2 = v′P2. Pick α,a, b at random from Zp. Set τ = v + av′ so that τP2 = V2 + aV ′
2 .

PP : (P1, aP1, bP1, abP1, τP1, bτP1,Q1,W1, U1, e(P1, P2)bα).
MSK: (P2, αP2, bP2, V2, V

′
2 ,Q2, U2,W2).

IBE1.Encrypt(M, id,PP): Choose random s, t, ctag from Zp. Ciphertext C is
(C0,C1, . . . ,C5,E1,E2, ctag) where the elements are computed as follows.

C0 =M ⋅ e(P1, P2)bαs,
C1 = bsP1, C2 = basP1, C3 = asP1, C4 = −τsP1, C5 = −bτsP1 + tW1,
E1 = t(idQ1 + ctagW1 +U1), E2 = tP1.

IBE1.KeyGen(id,MSK,PP): Choose random r1, r2, z, ktag from Zp and let r = r1 + r2. SKid is
(K1, . . . ,K5,D, ktag) where the elements are computed as follows.

K1 = αP2 + rV2, K2 = rV ′
2 − zP2, K3 = bzP2, K4 = br2P2, K5 = r1P2,

D = r1(idQ2 + ktagW2 +U2).
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IBE1.Decrypt(C, id,SKid,PP): Decryption succeeds only when ctag ≠ ktag, an event which occurs
with overwhelming probability. Let ϑ = (ctag−ktag)−1. The masking factor is computed as follows.

e(P1, P2)bαs = e(C1,K1)e(C2,K2)e(C3,K3)e(C4,K4)e(C5 − ϑE1,K5)e(ϑE2,D)

By breaking down the computation into several stages, we can show the correctness of decryp-
tion. Using the relations r = r1 + r2 and V2 + aV ′

2 = τP2, we have

A1 = e(C1,K1)e(C2,K2)e(C3,K3)e(C4,K4)e(C5,K5)
= e(P1, P2)bαse(P1, V2)bsre(P1, V

′
2)absre(P1, P2)−basze(P1, P2)basz

× e(P1, P2)−τbsr2e(P1, P2)−τbsr1e(W1, P2)tr1

= e(P1, P2)bαse(P1, V2 + aV ′
2 − τP2)bsre(W1, P2)tr1

= e(P1, P2)bαse(P1,W2)tr1

The last step follows from the fact that W1 ∼W2. Also, we have

A2 = (e(E1,K5)
e(E2,D) )

ϑ

= (e(t(idQ1 + ctagW1 +U1), r1P2)
e(tP1, r1(idQ2 + ktagW2 +U2))

)
1/(ctag−ktag)

= (e(W1, P2)tr1ctag
e(P1,W2)tr1ktag

)
1/(ctag−ktag)

= e(P1,W2)tr1

The masking factor is given by A1/A2.

5.3.2 Security Proof

Before proving security, we define algorithms that generate semi-functional ciphertexts and keys.
These are used only in the security reduction and they cannot be computed without knowledge of
the secret elements.

IBE1.SFEncrypt(PP,MSK,C′): Let C′ = (C ′
0,C

′
1,C

′
2,C

′
3,E

′, ctag) be a normal ciphertext. Choose

µ
U←Ð Zp. The semi-functional ciphertext is (C0,C1,C2,C3,E, ctag) where C0 = C ′

0, C1 = C ′
1,

C2 = C ′
2 + µP1, C3 = C ′

3 − µV ′
1 and E = E′.

IBE1.SFKeyGen(PP,MSK,SK′id): Let SK′id = (K ′
1,K

′
2,K

′
3,D, ktag) be a normal key. Choose a

random γ from Zp. The semi-functional key is (K1,K2,K3,D, ktag) where K1 = K ′
1 − aγP2, K2 =

K ′
2 + γP2, K3 =K ′

3 and D =D′.

One can decrypt a semi-functional ciphertext with a normal key and a normal ciphertext with
a semi-functional key. This is easily seen by verifying that

e(bµP1,K2)e(µP1,K3)e(−µV ′
1 ,K4)e(−bµV ′

1 ,K5) = 1T
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and e(C1,−aγP2)e(C2, γP2) = 1T where K2,K3,K4,K5 and C1,C2 are normal key and cipher-
text components respectively. However, decryption of a semi-functional ciphertext with a semi-
functional key will fail because the message will be blinded by an additional factor of e(P1, P2)bµγ .

Theorem 5.3.1. If (εDDH1, t1)-DDH1, (εDLin2, t2)-DLin2 and (εDBDH, t3)-DBDH assumptions hold
in G1, G2 and GT respectively, then IBE1 is (ε, t, q)-IND-ID-CPA-secure where ε ≤ εDDH1+ q ⋅εDLin2+
εDBDH, t1 = t +O(qρ), t2 = t +O(qρ) and t3 = t +O(qρ). ρ is the maximum time required for one
scalar multiplication in G1 and G2.

Proof. As is usual, the proof goes through a sequence of games. Let Greal denote the real security
game. G0 is just like Greal except that the challenge ciphertext is a semi-functional encryption of
the chosen message. Let q be the number of key extraction queries made by the adversary during
the attack. Define Gk for 1 ≤ k ≤ q such that the first k keys returned to the adversary are semi-
functional and the rest are normal. Let Gfinal be defined similar to Gq except that now the challenge
ciphertext is a semi-functional encryption of a random message. Let X◻ denote the event that the
adversary wins in G◻. Note that since the message is chosen at random, the bit β (in ind-cpa)
would be information theoretically hidden from the attacker and therefore Pr[Xfinal] = 1/2.

Using lemmas 5.3.1, 5.3.2 and 5.3.3, we have for any polynomial time attacker A ,

Advind-cpa
IBE1 (A ) = Pr[Xreal] −

1

2
= Pr[Xreal] −Pr[Xfinal]

≤ ∣Pr[Xreal] −Pr[X0]∣ +
q

∑
k=1

(∣Pr[Xk−1] −Pr[Xk]∣) + ∣Pr[Xq] −Pr[Xfinal]∣

≤ εDDH1 + qεDLin2 + εDBDH.

In what follows, let B1 denote a DDH1-solver, B2 a DLin2-solver and B3 is a DBDH-solver.

Lemma 5.3.1. Pr[Xreal] −Pr[X0] ≤ εDDH1.

Proof. We will show how to build a DDH1-solver B1 using A ’s ability to distinguish between Greal
and G0. The algorithm B1 receives (G, P1, sP1, aP1, P2, (as + µ)P1) as an instance of DDH1. The

goal is to decide whether µ = 0 or µ
U←Ð Zp. We describe how B1 will simulate each phase of the

security game.

Setup: B chooses random elements α, b, yv, y
′
v, yq, yw, yu from Zp and sets the parameters as

follows.

P1 = P1, aP1 = aP1,Q1 = yqP1,W1 = ywP1, U1 = yuP1,

P2 = P2, V2 = yvP2, V
′

2 = y′vP2.

This implicitly sets τ = yv+ay′v. Using this, the element τP1 can be computed as yvP1+y′v(aP1). The
simulator computes the remaining parameters using b, α and gives the following public parameters
to A .

PP = {G, P1, P2, aP1, bP1, baP1, τP1, bτP1,Q1,W1, U1, e(P1, P2)bα}.
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Note that a and s (randomiser for challenge ciphertext) come from the assumption and are not
known to B.

Phase 1: A makes a number of key extract queries. B knows the master secret and using that
it returns a normal key generated using the KeyGen algorithm for every key extract query made by
A .

Challenge: B receives the target identity îd and two messages M0 and M1 from A . It chooses
β ∈ {0,1} at random. To encrypt Mβ, B chooses t, ĉtag at random from Zp and computes the
ciphertext elements as follows.

C0 =Mβ ⋅ e(sP1, P2)bα,
C1 = b(sP1), C2 = b(as + µ)P1, C3 = (as + µ)P1, C4 = −yv(sP1) − y′v(as + µ)P1,
C5 = −byv(sP1) − by′v(as + µ)P1 + tW1

E1 = t(îdQ1 + ĉtagW1 +U1), E2 = tP1.

B returns Ĉ = (C0,C1,C2,C3,C4,C5,E1,E2, ĉtag) to A . If µ = 0, it is easy to see that Ĉ a a
normal ciphertext. Otherwise, we have

C2 = basP1 + bµP1, C3 = asP1 + µP1

C4 = −(yv + ay′v)sP1 − y′vµP1 = −τsP1 − µV ′
1

C5 = −b(yv + ay′v)sP1 − by′vµP1 + tW1 = −bτsP1 + tW1 − bµV ′
1 .

Then Ĉ is a semi-functional encryption of Mβ. If Ĉ is normal then B1 simulates Greal and if it is
semi-functional, B1 simulates G0. Note that, to check whether Ĉ is semi-functional or not, B itself
could try to decrypt it with a semi-functional key for îd. However since aP2 is not known to B, it
cannot create such a key.

Phase 2: As in first phase, B returns a normal key for every query.

Guess: The adversary returns its guess β′ to B.

If β = β′, then B1 returns 1 and otherwise returns 0. We have,

∣Pr[Xreal] −Pr[X0]∣ = ∣Pr[β = β′∣µ = 0] = Pr[β = β′∣µ U←Ð Zp]∣

= ∣Pr[B1 returns 1∣µ = 0] = Pr[B1 returns 1∣µ U←Ð Zp]∣
= AdvDDH1

G (B1)
≤ εDDH1

Lemma 5.3.2. For k ∈ [1, q], ∣Pr[Xk−1] −Pr[Xk]∣ ≤ εDLin2.

Proof. The algorithm B2 receives (P1, F1,H1, P2, F2,H2, x1P2, x2F2, (x1 + x2)H2 + γP2) as an in-

stance of the DLin problem. The task is to decide whether γ = 0 or γ
U←Ð Zp.

Setup: B chooses random elements α,a, λ, ν, y′v, yq, yw, yu from Zp and sets the parameters as
follows.

P1 = P1, bP1 = F1, P2 = P2, bP2 = F2, V2 = −aH2, V
′

2 =H2 + y′vP2
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Q1 = −λF1 + yqP1, U1 = −νF1 + yuP1,W1 = F1 + ywP1

This sets τ = ay′v which is known to the simulator. The remaining parameters required to provide
PP to A are computed using a, α and τ and other elements of the DLin instance as shown below.

abP1 = aF1, τP1 = ay′vP1, bτP1 = ay′vF1, e(P1, P2)bα = e(F1, P2)α

Phases 1 and 2: Let id1, id2, . . . , idq denote the identities for which A requests the corresponding
secret keys. In Gk, B changes the answer to k’th query from a normal key to a semi-functional
one. Let SK′idi = (K ′

1,K
′
2,K

′
3,K

′
4,K

′
5,D

′, ktag) be a normally generated key for idi. Note that B
can create such a key because it knows the master secret. For i < k, the simulator should return a
semi-functional key for idi. B chooses γ ∈ Zp at random, sets

K1 =K ′
1 − aγP2, K2 =K ′

2 + γP2, K3 =K ′
3, K4 =K ′

4, K5 =K ′
5, D =D′

and then returns the modified key SKidi to A . For i > k, B returns the normal key generated
using the algorithm KeyGen.

When i = k, i.e., for identity idk, suppose that a normal key SK′idk is generated with r′1, r
′
2, z

′ as
the randomisers and ktag = λidk + ν. The simulator then modifies the key elements as follows.

K1 =K ′
1 − a((x1 + x2)H2 + γP2), K2 =K ′

2 + (x1 + x2)H2 + γP2 + y′v(x1P2), K3 =K ′
3 + y′v(x2F2)

K4 =K ′
4 + x2F2, K5 =K ′

5 + x1P2, D =D′ + (yq idk + ywktag + yu)(x1P2)

implicitly setting r1 = r′1 + x1, r2 = r′2 + x2, r = r′ + x1 + x2 and z = z′ + y′vx2. Now B returns the
secret key SKidk = (K1, . . . ,K5,D, ktag).

If γ = 0, we have

K1 = αP2 + r′V2 − a(x1 + x2)H2

= αP2 − ar′H2 − a(x1 + x2)H2

= αP2 − (r′ + x1 + x2)aH2

= αP2 + rV2

and

K2 =K ′
2 +Z2 + y′v(x1P2)

= r′V ′
2 − z′P2 + (x1 + x2)H2 + y′v(x1P2)

= r′H2 + r′y′vP2 − z′P2 + (x1 + x2)H2 + y′v(x1P2) + y′vx2P2 − y′vx2P2

= (r′ + x1 + x2)H2 + (r′ + x1 + x2)y′vP2 − (z′ + y′vx2)P2

= rV ′
2 − zP2

indicating that SKidk is a normally distributed key and so B perfectly simulates Gk−1. When

γ
U←Ð Zp, it is easy to see that SKidk would be a semi-functional key for idk in which case B is

simulating Gk.

Challenge: B receives the challenge identity îd and two messages M0 and M1 from A . It

chooses β
U←Ð {0,1}. It cannot generate a semi-functional ciphertext for the challenge identity
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without knowledge of bV ′
1 but setting ĉtag = λîd + ν enables it to do so. For a variable X over Zp,

λX + ν is a pairwise independent function for uniform λ and ν. Since λ and ν are hidden from
the attacker, both ĉtag and ktag will be independently and uniformly distributed as required. B
first generates a normal ciphertext C′ = (C ′

0,C
′
1,C

′
2,C

′
3,C

′
4,C

′
5,E

′
1,E

′
2, ĉtag) with randomisers s, t′

and ĉtag = λîd + ν using the Encrypt algorithm. Then it picks µ ∈ Zp at random and modifies C′ as
follows.

C0 = C ′
0, C1 = C ′

1, C2 = C ′
2 + µF1, C3 = C ′

3 + µP1, C4 = C ′
4 − µH1 − µy′vP1

C5 = C ′
5 + µywH1 − µy′vF1, E1 = E′

1 + µ(yq îd + ywĉtag + yu)H1, E2 = E′
2 + µH1.

Since the simulator does not know bH1 it has to construct C5 by setting tP1 = t′P1+µH1 implicitly.
We need only verify that C5 is well-formed; rest of the elements are constructed according to the
original semi-functional algorithms.

C5 = C ′
5 + µywH1 − µy′vF1

= −bτsP1 + t′W1 + µywH1 − µy′vF1

= −bτsP1 + t′(F1 + ywP1) + µywH1 − µy′vF1

= −bτsP1 + t′bP1 + t′ywP1 + µywH1 − µy′vF1 + bµH1 − bµH1

= −bτsP1 + b(t′P1 + µH1) + yw(t′P1 + µH1) − bµ(y′vP1 +H1)
= −bτsP1 + tW1 − bµV ′

1 .

B returns Ĉ = (C0,C1,C2,C3,C4,C5,E1,E2, ĉtag) to A .

In the key extraction phase, in order to generate a semi-functional ciphertext for idk, the simu-
lator must be able to compute bV ′

1 or create t(idkQ1+ctagW1+U1) = (ctag−λidk−ν)(t′F1+bµH1)+
(yq idk + ywctag + yu)(t′P1 + µH1) which is possible only when ctag = λidk + ν. Decryption of this
ciphertext with SKidk will fail unconditionally and hence the simulator gains no information.

If A wins i.e., β = β′, then B2 returns 1 and otherwise returns 0. We have,

∣Pr[Xk−1] −Pr[Xk]∣ = ∣Pr[β = β′∣γ = 0] = Pr[β = β′∣γ U←Ð Zp]∣

= ∣Pr[B2 returns 1∣γ = 0] = Pr[B2 returns 1∣γ U←Ð Zp]∣
= AdvDLin2

G (B2)
≤ εDLin2

Lemma 5.3.3. Pr[Xq] −Pr[Xfinal] ≤ εDBDH.

Proof. B3 receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, Z) as an instance of the DBDH problem.

Setup: With b, yv, y
′
v, yq, yw, yu chosen at random from Zp, B3 sets the parameters as

P1 = P1, P2 = P2, abP1 = b(aP1), V2 = yvP2, V
′

2 = y′vP2, τP1 = yvP1 + y′v(aP1)

Q1 = yqP1,W1 = ywP1, U1 = yuP1, e(P1, P2)bα = e(xP1, aP2)b
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implicitly setting a = a, α = xa and τ = yv +ay′v. The remaining parameters can be computed easily.
B3 returns PP to A .

Phases 1 and 2: When A asks for the secret key for the i’th identity idi, B3 chooses at random
r1, r2, z

′, ktag, γ′ ∈ Zp with r = r1 + r2. It implicitly sets γ′ = x− γ and z = z′ +x. Here the simulator
knows γ′ and not γ. It then computes a semi-functional key for idi as follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2,
K2 = rV ′

2 − z′P2 − γ′P2 = rV ′
2 − z′P2 − xP2 + γP2 = rV ′

2 − zP2 + γP2,
K3 = bz′P2 + b(xP2) = bzP2, K4 = br2P2, K5 = r1P2,
D = r1(idiQ2 + ktagW2 +U2).

Observe that B3 cannot create a normal key without knowing α.

Challenge: B3 receives the challenge identity îd and two messages M0 and M1 from A . It chooses
β ∈ {0,1} and ĉtag, µ′, t ∈ Zp at random and generates a semi-functional challenge ciphertext as
follows. Here B3 implicitly sets µ′ = µ + as and it does not know µ.

C0 =Mβ ⋅Zb, C1 = b(sP1)
C2 = bµ′P1 = basP1 + bµP1,C3 = µ′P1 = asP1 + µP1

C4 = −yv(sP1) − µ′y′vP1 = −yvsP1 − asy′vP1 − µy′vP1 = −τsP1 − µV ′
1

C5 = −byv(sP1) − bµ′y′vP1 + tW1 = −byvsP1 − basy′vP1 − bµy′vP1 + tW1 = −τsP1 + tW1 − µV ′
1

E1 = t(îdQ1 + ĉtagW1 +U1), E2 = tP1.

The challenge ciphertext Ĉ = (C0,C1,C2,C3,C4,C5,E1,E2, ĉtag) is returned to A . If Z equals
e(P1, P2)xas then Ĉ will be a semi-functional encryption of Mβ; if Z is a random element of GT

then Ĉ will be a semi-functional encryption of a random message. B3 returns 1 if β = β′; otherwise
it returns 0. We have,

∣Pr[Xq] −Pr[Xfinal]∣ = ∣Pr[β = β′∣Z = e(P1, P2)xas] = Pr[β = β′∣Z U←Ð GT ]∣
= AdvDBDH

G (B3)
≤ εDBDH

5.4 Intermediate IBE Constructions

In this section, we provide the descriptions of schemes IBE2, IBE3, IBE4 and IBE5 . Only the
constructions are provided here. These schemes primarily serve the purpose of showing the stepping
stones in moving from IBE1 to IBE6 . Along with the construction, we also describe the semi-
functional ciphertexts and keys for all the schemes despite the fact that these are only used in the
security proofs. The reason is that the structure of semi-functional components provides an idea
of the kind of assumptions a security reduction might rely on. In addition, it provides a picture of
how different scalars (including the ones in the semi-functional portions) interact with one another.
We use a compact notation to denote normal and semi-functional ciphertexts and keys. The group
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elements shown in curly brackets { } are the semi-functional components. To get the schemes itself,
these components should be ignored.

We fix some common notation and parameters for all the four schemes. G =
(p,G1,G2,GT , e, F1, F2) is an asymmetric pairing chosen according to the security parameter κ.

P1
U←Ð G×

1 and P2
U←Ð G2 are generators chosen randomly. Q1,W1, U1

U←Ð G1 and Q2,W2, U2 ←Ð G2

are chosen such that dlogP2
(Q2,W2, U2) = dlogP1

(Q1,W1, U1).

5.4.1 Scheme IBE2

Choose α,a1, a2, v, v
′, v′′

U←Ð Zp and define V2 = vP2, V
′

2 = v′P2, V
′′

2 = v′′P2. Define τ1 = v + a1v
′ and

τ2 = v + a2v
′′ so that τ1P2 = V2 + a1V

′
2 and τ2P2 = V2 + a2V

′′
2 .

The public parameters and master secret are given by

PP : (G, P1, a1P1, a2P1, τ1P1, τ2P1,Q1,W1, U1, e(P1, P2)α),
MSK: (P2, αP2, V2, V

′
2 , V

′′
2 ,Q2,W2, U2).

Ciphertext: Ciphertext is given by C = (C1,C2,C3,C4,E1,E2, ctag) where

s1, s2, t, ctag
U←Ð Zp, s = s1 + s2, {µ

U←Ð Zp}
C0 =M ⋅ e(P1, P2)αs,
C1 = sP1, C2 = a1s1P1, C3 = a2s2P1 {+a2µP1}, C4 = −(τ1s1 + τ2s2)P1 + tW1 {−a2µV

′′
1 },

E1 = t(idQ1 + ctagW1 +U1), E2 = tP1

Here V ′′
1 ∈ G1 is such that dlogP1

V ′′
1 = dlogP2

V ′′
2 and µ

U←Ð Zp.

Key: Pick r, ktag
U←Ð Zp, {γ U←Ð Zp} and generate the key SKid = (K1,K2,K3,K4,D, ktag) as

follows.

K1 = αP2 + rV2 {−a1a2γP2}, K2 = rV ′
2 {+a2γP2}, K3 = rV ′′

2 {+a1γP2}, K4 = rP2

D = r(idQ2 + ktagW2 +U2)

Security: With the DLin assumption, it is possible to show that Greal and G0 are indistinguish-
able. We give a brief sketch of the proof. Let (P1, F1,H1, x1P1, x2F1, P2, F2,H2, Z1) be an instance

of DLin that the simulator B receives. It chooses α, yq, yw, yu, yv, y
′
v, y

′′
v

U←Ð Zp and constructs the
parameters as P1 = P1, a1P1 = F1, a2P1 = H1,Q1 = yqP1,W1 = ywP1, U1 = yuP1, V2 = yvP2, V

′
2 =

y′vP2, V
′′

2 = y′′vP2, implicitly setting τ1 = yv + a1y
′
v and τ2 = yv + a1y

′′
v . Since B has the master secret

it can create a normal key for any identity. It answers all the key extraction queries with normal
keys. In the challenge phase it receives two messages M0,M1 and an identity îd. It then chooses

β
U←Ð {0,1}. A normal ciphertext C ′

0, . . . ,C
′
4,E

′
1,E

′
2, ctag for identity îd and message Mβ is first

generated using randomisers s′1, s
′
2, t and then modified as follows:

C0 = C ′
0 ⋅ e(x1P1, P2)α,C1 = C ′

1 + x1P1,C2 = C ′
2 − x2F1

C3 = C ′
3 +Z1,C4 = C ′

4 − yvx1P1 + y′vx2F1 − y′′vZ1,E1 = E′
1,E2 = E′

2
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implicitly setting s1 = s′1 − x2, s2 = s′2 + x1 + x2 and s = s1 + s2 = s′ + x1. If Z1 = (x1 + x2)H1 then

the ciphertext is normal; otherwise Z1 = (x1 +x2 + c)H1 for some c
U←Ð Zp whence the ciphertext is

semi-functional with µ being set to c.

Now let’s take a look at the second reduction and it’s proof using DDH2 and DLin2 assumptions.
First consider the DDH2 assumption. Let (P1, P2, x1P2, x2P2, Z2) be an instance of DDH2. As
mentioned earlier, except for P1 such an instance consists of elements of G2. The PP, on the other
hand, consists entirely of elements of G1. There is no way that the PP can be based on the given
instance and so getting a reduction is not possible. Now consider the DLin assumption. In this
scheme, the randomiser r is not split. As such there is no way to base this reduction on the DLin
assumption.

5.4.2 Scheme IBE3

Let α,a, b
U←Ð Zp. Also, let V2, V

′
2

U←Ð G2 and τ ∈ Zp be defined such that τP2 = V2 + aV ′
2 . The

public parameters and master secret are given by

PP : (G, P1, P2, bP1, abP1, τP1, bτP1,Q1,W1, U1, e(P1, P2)bα),
MSK: (αP2, bP2, V2, V

′
2 ,Q2,W2, U2).

V ′
1 will have the usual meaning.

Ciphertext: Pick s, t, ctag
U←Ð Zp,{µ

U←Ð Zp} and set the ciphertext as C =
(C0,C1, . . . ,C4,E1,E2, ctag) where

C0 =M ⋅ e(P1, P2)bαs,
C1 = bsP1, C2 = basP1{+bµP1}, C3 = −τsP1 {−µV ′

1}, C4 = −bτsP1 + tW1 {−bµV ′
1},

E1 = t(idQ1 + ctagW1 +U1), E2 = tP1.

Key: Compute the key SKid = (K1, . . . ,K4,D) as follows.

r1, r2, ktag
U←Ð Zp, r = r1 + r2, {γ U←Ð Zp}

K1 = αP2 + rV2 {−aγP2}, K2 = rV ′
2 {+γP2}, K3 = br2P2, K4 = r1P2.

D = r1(idQ2 + ktagW2 +U2).

Security: The first reduction goes through with the DDH1 assumption. We provide a brief
sketch. Suppose that (P1, aP1, sP1, P2, Z1) is the instance of DDH1. It simulates the game in the

following way – choose α, b, yv, y
′
v, yq, yu, yw

U←Ð Zp and set P1 = P1, aP1 = aP1,Q1 = yqP1,W1 =
ywP1, U1 = yuP1, P2 = P2V2 = yvP2, V

′
2 = y′vP2. Construct the challenge ciphertext as

C0 =Mβ ⋅ e(sP1, P2)bα,C1 = b(sP1),C2 = bZ1,C3 = −yv(sP1) − y′vZ1,C4 = −byv(sP1) − by′vZ1 + tW1.

Computing E1 and E2 is straightforward. Note that the randomiser s comes from the assumption.

For the second reduction, we cannot rely on DDH2 assumption for the same reason as that for
Scheme 2. In this case, there is a split of the randomiser r. So, one may hope to base the reduction
on the DLin problem.
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Consider an instance of the DLin assumption: (P1, F1,H1, P2, F2,H2, x1P2, x2F2, Z2). The sim-

ulator B chooses α, b, y′v, yq, yu, yw
U←Ð Zp and computes the parameters as P1 = P1, P2 = P2, bP1 =

F1, V2 = −aH2, V
′

2 = aH2 + y′vP2 so that Z2 could be embedded in K1 and K2. Observe that τ = ay′v.
We can successfully construct K1, K3 and K4 setting r1 = r′1 + x1, r2 = r′2 + x2 and r = r′ + x1 + x2,
but composing K2 with the same r is impossible. Any other way of using DLin assumption also
results in failure.

5.4.3 Scheme IBE4

Pick α,a, b
U←Ð Zp. τ, V2, V

′
2 are as defined in IBE3. The public parameters and master secret are

given by

PP : (G, P1, P2, aP1, abP1, τP1,Q1,W1, U1, e(P1, P2)α),
MSK: (αP2, bP2, V2, V

′
2 ,Q2,W2, U2).

Ciphertext: Pick s, t
U←Ð Zp, {µ

U←Ð Zp} and compute C = (C1,C1, . . . ,C4,E1,E2, ctag) as

C0 =M ⋅ e(P1, P2)αs,
C1 = sP1, C2 = asP1{+µP1}, C3 = basP1{+bµP1}, C4 = −τsP1 + tW1 {−µV ′

1},
E1 = t(idQ1 + ctagW1 +U1), E2 = tP1.

Key: Let r, z
U←Ð Zp, {γ U←Ð Zp}. The secret key SKid = (K1, . . . ,K4,D) is defined as follows.

K1 = αP2 + rV2 {−aγP2}, K2 = rV ′
2 − bzP2 {+γP2}, K3 = zP2, K4 = rP2,

D = r(idQ2 + ktagW2 +U2).

Here, the first reduction goes through with the DDH1 assumption. The argument is similar
to that of Scheme 3. As before, the second reduction cannot be based on the DDH2 assumption.
Since there is no split of the randomiser r, there is no way to base the second reduction on the
DLin assumption.

5.4.4 Scheme IBE5

Choose α,a
U←Ð Zp. Let V2, V

′
2 ∈ G2 and τP2 = V2 + aV ′

2 . V ′
1 will have the usual meaning. The PP

and MSK are given by

PP : (G, P1, P2, aP1, τP1,Q1,W1, U1, e(P1, P2)α),
MSK: (αP2, V2, V

′
2 ,Q2,W2, U2).

Ciphertext: Choose s, t, ctag
U←Ð Zp, {µ U←Ð Zp} and set C = (C0,C1,C2,C3,E1,E2, ctag) as

below.

C0 =M ⋅ e(P1, P2)αs, C1 = sP1, C2 = asP1 {+µP1}, C3 = −τsP1 + tW1 {−µV ′
1},

E1 = t(idQ1 + ctagW1 +U1), E2 = tP1.
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Key: Let r
U←Ð Zp, {γ

U←Ð Zp}. The secret key SKid is given by the tuple (K1,K2,K3,D, ktag)
where

K1 = αP2 + rV2 {−aγP2}, K2 = rV ′
2 {+γP2}, K3 = rP2,

D = r(idQ2 + ktagW2 +U2).

Security: The first security reduction can be based on DDH1 assumption but the second reduc-
tion does not hold with either DDH2 or the DLin assumption.

5.5 Scheme IBE6

We describe here the construction of IBE6 = (IBE6 .Setup, IBE6 .KeyGen, IBE6 .Encrypt, IBE6 .Decrypt)
and also provide a proof of security based on DDH1, the new assumption DDH2v and DBDH.

5.5.1 Construction

IBE6 .Setup(κ): Choose P1
U←Ð G×

1 , P2
U←Ð G×

2 , Q1,W1, U1
U←Ð G1, Q2,W2, U2 ←Ð G2 such that

dlogP1
(Q1, U1,W1) = dlogP2

(Q2, U2,W2). Also, pick α
U←Ð Zp. Let a, v, v′

u←Ð Zp. Set V2 = vP2,
V ′

2 = v′P2 and τ = v + av′ so that τP2 = V2 + aV ′
2 . Set the parameters as follows.

PP : (P1, aP1, τP1,Q1,W1, U1, e(P1, P2)α).
MSK: (P2, αP2, V2, V

′
2 ,Q2,W2, U2).

IBE6 .Encrypt(M, id,PP): Choose random s, ctag from Zp; C is (C0,C1,C2,C3,E, ctag) where the
elements are defined as follows.

C0 =M ⋅ e(P1, P2)αs,
C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1, E = s(idQ1 + ctagW1 +U1).

IBE6 .KeyGen(id,MSK,PP): Choose random r, ktag from Zp; SKid is (K1,K2,K3,D, ktag) where
the elements are defined as follows.

K1 = αP2 + rV2, K2 = rV ′
2 , K3 = rP2, D = r(idQ2 + ktagW2 +U2).

IBE6 .Decrypt(C, id,SKid,PP): As before, decryption succeeds only when ctag ≠ ktag. Define ϑ =
(ctag − ktag)−1. Decryption is done by unmasking the message as follows.

M = C0

e(C1,K1 + ϑD)e(C2,K2)e(C3 − ϑE,K3)

The correctness of decryption is shown by the following calculations. We break up the denom-
inator for unmasking the message into two parts - A1 and A2 such that A1A2 gives the masking
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factor.

A1 = e(C1, ϑD)e(−δE,K3)
= e(C1,D)ϑe(−E,K3)ϑ

= e(sP1, r(idQ2 + ktagW2 +U2))ϑe(−s(idQ1 + ctagW1 +U1), rP2)ϑ

= e(−(idQ1 + ktagW1 +U1), P2)−rsϑe(idQ1 + ctagW1 +U1, P2)−rsϑ

= e(ϑ(ctag − ktag)W1, P2)rs

= e(W1, P2)−rs

A2 = e(C1,K1)e(C2,K2)e(C3,K3)
= e(sP1, αP2 + rV2)e(asP1, rV

′
2)e(τsP1 + sW1, rP2)

= e(P1, P2)αse(P1, V2 + aV ′
2 − τP2)rse(W1, P2)rs

= e(P1, P2)αse(W1, P2)rs

Conversion to Signature Scheme: There is a “dual” of IBE6 where the ciphertext elements
are in G2 and decryption keys consist of elements of G1. Using Naor’s observation, this dual of
IBE6 can be converted to a secure signature scheme. The signatures will be composed of elements
of G1 and will be smaller than the signatures obtained by the conversion of Waters’ 2009 scheme
to a signature scheme. In a similar manner, one can convert the dual of the HIBE in Section 5.7
to obtain a HIBS scheme where signatures consist elements of G1.

Extension to HIBE and BE: Waters extends the IBE scheme in [158] in a natural way to a
HIBE scheme. We show that our simplification of Waters scheme retains the original flexibility. In
Section 5.7, we describe a HIBE, named HIBE6 , which extends IBE6 . This HIBE scheme is secure
under the DDH1, DDH2v and the DBDH assumptions and provides lesser and smaller parameters
and better efficiencies of key generation, delegation, encryption and decryption compared to the
HIBE in [158].

The full version of Waters paper described a broadcast encryption (BE) scheme based on the
dual system IBE in [158]. In Section 5.8, we describe a BE scheme BE6 built upon on IBE6 along
with a security proof based on the hardness of the DDH1, DDH2v and DBDH problems. The new
BE scheme provides adaptive security and is more efficient (in terms of header size) than previously
known BE schemes providing adaptive security [87, 158].

5.5.2 On the Assumption DDH2v

Here, we present a discussion on why DDH2 is not directly applicable to IBE6 and explain the need
for using the new assumption (DDH2v). Consider an instance of DDH2 – (P1, P2, x1P2, x2P2, Z1)
where Z1 = x1x2P2 or Z1

U←Ð G1. The instance has a single element P1 from G1. For our proofs,
we will require some information about x1P1 to be carried as part of the instance. If the instance
is directly augmented by x1P1, then the problem becomes easy, since one can compute the pairing
e(x1P1, x2P2) and compare to e(P1, Z2). Suppose that instead of x1P1 we include the elements zP1
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and zx1P1 where z is chosen randomly from Zp. This pair of elements carries some information
about x1P1, but, not the element itself. An instance will now be (P1, zP1, zx1P1, P2, x1P2, x2P2, Z2).
It, however, is easy to check whether Z2 equals x1x2P2 by checking whether e(zx1P1, x2P2) equals
e(zP1, Z2). This suggests that the information about zP1 itself needs to be blinded by another
randomiser. So, instead of having zP1 directly, the elements dP1, dzP1 and dP2 are included where
d is a random element of Zp. The information about x1P1 is carried by the elements dP1, dzP1, zx1P1

and dP2. Augmenting an instance of DDH2 with these elements embeds information about x1P1

but, does not seem to provide any way to use this information to determine whether Z2 is real or
random. The entire thing is formulated as DDH2v assumption.

In DDH2v, there is a two-level blinding of x1P1. We have seen that providing x1P1 directly or
using a single-level blinding makes the problem easy. So, a two-level blinding is the minimum that
one has to use to get to an assumption about hardness.

The assumption DDH2v (the “v” stands for variant) is no harder than DDH2. This is because
an instance of DDH2v contains an embedded instance of DDH2 and an algorithm to solve DDH2
can be invoked on this embedded instance to solve the instance of DDH2v. On the other hand,
there is no clear way of using an algorithm to solve DDH2v to solve DDH2. Intuitively, this is due
to the fact that an instance of DDH2v contains some information about x1P1 whereas an instance
of DDH2 does not contain any such information.

In our security proofs, we will use the assumption DDH2v. Since assumption DDH2v does not
appear earlier in the literature, it is a non-standard assumption. Having said this, we would also
like to remark that DDH2v arises naturally as a minimal assumption when one tries to augment
an instance of DDH2 with some information about x1P1 while maintaining the hardness of the
problem. For a formal definition of DDH2v, look at Section 2.3.2.1.

In Section 2.3.4, we provide a proof of the security of assumption DDH2v in the generic group
model. We feel that assumption DDH2v will have applications elsewhere for schemes based on
asymmetric pairings.

5.5.3 Security of Scheme IBE6

Now, we describe algorithms IBE6 .SFEncrypt and IBE6 .SFKeyGen that generate semi-functional
ciphertexts and keys for IBE6 .

IBE6 .SFEncrypt(PP,MSK,C′): Let C′ = (C ′
0,C

′
1,C

′
2,C

′
3,E

′, ctag) be a ciphertext normally gener-
ated by the Encrypt algorithm for message M and identity id. Let V ′

1 be an element of G1 such

that dlogP1
V ′

1 = dlogP2
V ′

2 . Choose µ
U←Ð Zp. The semi-functional ciphertext generation algorithm

will modify the normal ciphertext as: C0 = C ′
0, C1 = C ′

1, E = E′ and

C2 = C ′
2 + µP1, C3 = C ′

3 − µV ′
1 .

IBE6 .SFKeyGen(PP,MSK,SK′id): Let SK′id = (K ′
1,K

′
2,K

′
3,D

′, ktag) be a normal secret key gener-

ated by the KeyGen algorithm for identity id. Pick γ
U←Ð Zp. The semi-functional key generation

algorithm will modify the normal key as: K3 =K ′
3, D =D′ and

K1 =K ′
1 − aγP2, K2 =K ′

2 + γP2.
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Below we state the security theorem for IBE6 .

Theorem 5.5.1. If (εDDH1, t1)-DDH1, (εDLin2, t2)-DDH2v and (εDBDH, t3)-DBDH assumptions hold
in G1, G2 and GT respectively, then IBE6 is (ε, t, q)-IND-ID-CPA-secure where ε ≤ εDDH1+q ⋅εDDH2v+
εDBDH, t1 = t +O(qρ), t2 = t +O(qρ) and t3 = t +O(qρ). ρ is the maximum time required for one
scalar multiplication in G1 and G2.

Proof. Let Greal, Gk (for 0 ≤ k ≤ q) and Gfinal be as defined in the security proof for scheme IBE1.

Using lemmas 5.5.1, 5.5.2 and 5.5.3, we have for any polynomial time attacker A ,

Advind-cpa
IBE6 (A ) = ∣Pr[Xreal] −Pr[Xfinal]∣

≤ ∣Pr[Xreal] −Pr[X0]∣ +
q

∑
k=1

(∣Pr[Xk−1] −Pr[Xk]∣) + ∣Pr[Xq] −Pr[Xfinal]∣

≤ εDDH1 + q ⋅ εDDH2v + εDBDH

In the sequel, let B1 denote a DDH1-solver, B2 a DDH2-solver and B3 is a DBDH-solver.

Lemma 5.5.1. ∣Pr[Xreal] −Pr[X0]∣ ≤ εDDH1.

Proof. The algorithm B1 receives (P1, sP1, aP1, P2, (as+µ)P1) as an instance of DDH1. We describe
how it will simulate each phase of the security game.

Setup: B1 chooses elements α, yv, y
′
v, yq, yw, yu

U←Ð Zp and sets the parameters as follows.

P1 = P1, aP1 = aP1,Q1 = yqP1,W1 = ywP1, U1 = yuP1

P2 = P2, V2 = yvP2, V
′

2 = y′vP2,Q2 = yqP2,W2 = ywP2, U2 = yuP2

The element τP1 is computed as yvP1 + y′v(aP1) implicitly setting τ = yv + ay′v. The simulator
computes the remaining parameters using α and gives the following public parameters to A .

PP = (G, P1, P2, aP1, τP1,Q1,W1, U1, e(P1, P2)α)

Phase 1: A makes a number of key extract queries. B1 knows the master secret and using that
it returns a normal key for every key extract query made by A .

Challenge: B1 receives the target identity îd and two messages M0 and M1 from A . It chooses

a random bit β
U←Ð {0,1}. To encrypt Mβ, B1 picks ĉtag

U←Ð Zp and computes the ciphertext
elements as follows.

C0 =Mβ ⋅ e(sP1, P2)α,
C1 = sP1, C2 = (as + µ)P1, C3 = −yv(sP1) − y′v(as + µ)P1 + yw(sP1),
E = (îdyq + ĉtagyw + yu)(sP1).
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B1 returns Ĉ = (C0,C1,C2,C3,E, ĉtag) to A .

If µ = 0, the challenge ciphertext is normal; otherwise the ciphertext is semi-functional with µ
coming from the instance.

Note that, to check whether Ĉ is semi-functional or not, B1 itself could try to decrypt it with
a semi-functional key for îd. However since aP2 is not known to B1, it cannot create such a key.

Phase 2: As in first phase, B1 returns a normal key for every query.

Guess: The adversary returns its guess β′ to B1.

If β = β′, then B1 returns 1 and otherwise returns 0. We have,

∣Pr[Xreal] −Pr[X0]∣ = ∣Pr[β = β′∣µ = 0] = Pr[β = β′∣µ U←Ð Zp]∣

= ∣Pr[B1 returns 1∣µ = 0] = Pr[B1 returns 1∣µ U←Ð Zp]∣
= AdvDDH1

G (B1)
≤ εDDH1

Lemma 5.5.2. ∣Pr[Xk−1] −Pr[Xk]∣ ≤ εDDH2v.

Proof. Let (P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, (x1x2 + γ)P2) be the instance of DDH2v that
B2 receives.

Setup: B2 chooses random elements a,α, λ, ν, y′v, yq, yu, yw
U←Ð Zp and sets the parameters as

follows. P1 = P1, P2 = P2, Q2 = −λ(dP2)+yqP2, U2 = −ν(dP2)+yuP2, W2 = dP2+ywP2, V2 = −a(x1P2)
and V ′

2 = x1P2 + y′vP2 setting τ = ay′v using which one can compute τP1 = ay′vP1. The public
parameters Q1,W1, U1 can be computed since B2 has dP1. The remaining parameters required to
provide PP to A are computed using a, α and other elements of the problem instance.

Phases 1 and 2: A key extraction query for identity idi for i ∈ [1, q] is answered in the following
way. For i < k, a semi-functional key is returned and for i > k a normal key is returned. Note
that normal and semi-functional keys can be generated since B2 has the MSK and knows a. For

i = k, a normal key K ′
1,K

′
2,K

′
3,D

′ is generated using randomiser r′
U←Ð Zp, ktag = λidk +ν and then

modified as:

K1 =K ′
1 − a(x1x2 + γ)P2, K2 =K ′

2 + (x1x2 + γ)P2 + y′v(x2P2), K3 =K ′
3 + x2P2,

D =D + (yq id + ywktag + yu)(x2P2),

thus implicitly setting r = r′ + x2. Since dx2P2 is not known to B2 it can create D only when
ktag = λidk +ν. If µ = 0 then the key for idk will be normal and otherwise it will be semi-functional.
Note that a semi-functional ciphertext for idk with any value of ctag except for λidk + ν cannot
be generated without the knowledge of dx1zP1 which is neither available from the assumption nor
can be computed by B2. This rules out the obvious way of checking whether the key for idk is
semi-functional or not.
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Challenge: B2 receives two messages M0,M1 and a challenge identity îd during the challenge

phase. It chooses β
U←Ð {0,1}, generates a normal ciphertext with randomiser s′

U←Ð Zp, ĉtag =
λîd + ν and changes the ciphertext elements as follows. Since λ and ν are chosen independently
and uniformly at random, the function λX + ν is a pairwise independent function for a variable X
over Zp. This causes the tag values of the challenge ciphertext and the k-th key to appear properly
distributed from the adversary’s view.

C0 = C ′
0 ⋅ e(zx1P1, P2)α

C1 = C ′
1 + zx1P1, C2 = C ′

2 + a(zx1P1) + dzP1, C3 = C ′
3 − ay′v(zx1P1) + yw(zx1P1) − y′v(dzP1),

E = E′ + (yq id + ĉtagyw + yu)(zx1P1),

setting s = s′ + zx1 and µ = dz. It is easy to check that C3 is well-formed.

C3 = C ′
3 − ay′v(zx1P1) + yw(zx1P1) − y′v(dzP1)

= −ay′v(s′ + zx1)P1 + s′W1 + yw(zx1P1) + dzx1P1 − dzx1P1 − y′vdzP1

= −ay′vsP1 + s′W1 + zx1(dP1 + ywP1) − dz(x1P1 + y′vP1)
= −ay′vsP1 + sW1 − µV ′

1

In the event that A wins the game i.e., β = β′, B2 returns 1. Otherwise B2 returns 0.

∣Pr[Xk−1] −Pr[Xk]∣ = ∣Pr[β = β′ in Gk−1] = Pr[β = β′ in Gk]∣

= ∣Pr[β = β′∣γ = 0] = Pr[β = β′∣γ U←Ð Zp]∣

= ∣Pr[B2 returns 1∣γ = 0] = Pr[B2 returns 1∣γ U←Ð Zp]∣
= AdvDDH2v

G (B2)
≤ εDDH2v

Lemma 5.5.3. ∣Pr[Xq] −Pr[Xfinal]∣ ≤ εDBDH.

Proof. B3 receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, e(P1, P2)xas+c) as an instance of the DBDH
problem.

Setup: With yv, y
′
v, yq, yw, yu

U←Ð Zp, B3 sets the parameters as

P1 = P1, P2 = P2, aP1 = aP1, V2 = yvP2, V
′

2 = y′vP2, τP1 = yvP1 + y′v(aP1)

Q1 = yqP1,W1 = ywP1, U1 = yuP1, e(P1, P2)α = e(xP1, aP2)

implicitly setting a = a, α = xa and τ = yv +ay′v. The remaining parameters can be computed easily.
B3 returns PP to A .

Phases 1 and 2: When A asks for the secret key for the i’th identity idi, B3 samples r, ktag, γ′
U←Ð

Zp implicitly setting γ′ = x − γ. It then computes a semi-functional key for idi as follows.
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K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2,
K2 = rV ′

2 − γ′P2 + xP2 = rV ′
2 − xP2 + γP2 + xP2 = rV ′

2 + γP2,
K3 = rP2,D = r(idiQ2 + ktagW2 +U2).

Here B3 knows γ′ but not γ. Also, observe that B3 does not know α and hence cannot create a
normal key.

Challenge: B3 receives the challenge identity îd and two messages M0 and M1 from A . It

chooses β
U←Ð {0,1} and ĉtag, µ′

U←Ð Zp and generates a semi-functional challenge ciphertext as
follows. Here B3 implicitly sets µ′ = µ + as and it does not know µ.

C0 =Mβ ⋅ e(P1, P2)xas+c,
C1 = sP1, C2 = µ′P1 = asP1 + µP1,
C3 = −yv(sP1) − µ′y′vP1 + yw(sP1) = −yvsP1 − asy′vP1 − µy′vP1 + sW1 = −τsP1 − µV ′

1 + sW1,

E = (yq îd + ywĉtag + yu)(sP1).

The challenge ciphertext Ĉ = (C0,C1,C2,C3,E, ĉtag) is returned to A . If c = 0 then Ĉ will be a

semi-functional encryption of Mβ; if c
U←Ð Zp, then then Ĉ will be a semi-functional encryption of

a random message given by M ⋅ e(P1, P2)c.
B3 returns 1 if β = β′; otherwise it returns 0. Hence,

∣Pr[Xq] −Pr[Xfinal]∣ = ∣Pr[A wins in Gk−1] = Pr[A wins in Gk]∣
= ∣Pr[β = β′ in Gk−1] = Pr[β = β′ in Gk]∣

∣Pr[β = β′∣c = 0] = Pr[β = β′∣c U←Ð Zp]∣
= AdvDBDH

G (B3)
≤ εDBDH

5.6 Efficiency Comparisons

A comparison of the features of various IBE schemes based on dual system technique is shown in
Tables 5.2 and 5.3. The columns #PP, #MSK, #cpr, #key provide the number of group elements
in the public parameters, the master secret key, ciphertexts and decryption keys. The public
parameters and ciphertexts consist of elements of G1 while the master secret key and decryption
keys consist of elements of G2. Encryption efficiency counts the number of scalar multiplications
in G1 while decryption efficiency counts the number of pairings that are required. Key generation
(a less frequent activity) efficiency is given by the number of scalar multiplications in G2. IBE6 is
the most efficient among all dual system IBE schemes known prior to this work.

The figures in the table indicate that both IBE1 and Lewko’s IBE scheme [111] gain a speed
up of about 33% over Waters scheme in terms of number of pairings required for decryption. But
since IBE1 uses Type-3 pairings, the speed up will in fact be higher. On the other hand, IBE6 is
about twice as fast as Lewko-Waters IBE and both constructions are based on Type-3 pairings.
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scheme #PP #MSK #cpr #key enc eff dec eff key gen assump

Waters-09 [158] 13 5 9 8 14 9 12 DLin, DBDH

Lewko-12 [111] 24 30 6 6 24 6 6 DLin

IBE1 9 8 7 6 10 6 9 DDH1, DLin, DBDH

Table 5.2: Comparison of dual system IBE schemes secure under standard assumptions. Waters-09
and Lewko-11 are originally described using symmetric pairings; the figures are for direct conversion
to asymmetric pairings. .

scheme #PP #MSK #cpr #key enc eff dec eff key gen assump

Lewko-Waters [114] 9 6 6 6 9 6 10 LW1, LW2, DBDH

IBE6 6 7 4 4 7 3 6 DDH1, DDH2v, DBDH

Table 5.3: Comparison of dual system IBE schemes secure under non-standard but static assump-
tions. Note that DDH1 is a weaker assumption than LW1 and DDH2v is weaker than LW2. .

Compared to Waters scheme, the gain in efficiency of decryption is about 66% for IBE6 . Again
since IBE6 uses Type-3 pairings, the gain in speed will be much higher.

5.7 Extending IBE6 to a HIBE Scheme

The nature of the extension is completely analogous to the way the IBE in [158] has been extended
to a HIBE. The setting is of an asymmetric bilinear map G = (p,G1,G2,GT , e, F1, F2). Messages
are elements of GT . Identities are tuples of Zp of lengths varying from 1 to some maximum size
h. As in [158], we assume that if two identities agree on some component, then they agree on all
previous components.

5.7.1 Construction

The HIBE scheme HIBE6 described below is an extension of IBE6 . We describe the various func-
tionalities of this scheme.

HIBE6 .Setup(κ): Choose generators P1
U←Ð G×

1 and P2
U←Ð G×

2 . Let α,a, v, v′ be random elements

of Zp. Set V2 = vP2, V ′
2 = v′P2 and τ = v+av′ so that τP2 = V2+aV ′

2 . Pick (Q1,j , U1,j)hj=1,W1
U←Ð G1

and (Q2,j , U2,j)hj=1,W2 ←Ð G2 such that dlogP1
((Q1,j , U1,j)hj=1,W1) = dlogP2

((Q2,j , U2,j)hj=1,W2).

PP : (P1, aP1, τP1,Q1,1, . . . ,Q1,h,W1, U1,1, . . . , U1,h, e(P1, P2)α).
MSK: (αP2, P2, V2, V

′
2 ,Q2,1, . . . ,Q2,h,W2, U2,1, . . . , U2,h).

Actually, only αP2 is the master secret. The other components of MSK has to be provided with
the decryption key so as to enable further key delegation.

HIBE6 .Encrypt(M, id = (id1, . . . , id`),PP): Choose random s, ctag1, . . . , ctag`
U←Ð Zp. Ciphertext is

given by C = (C0,C1,C2,C3, (Ej , ctagj)`j=1) where the individual components are defined as follows.
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C0 =M ⋅ e(P1, P2)αs,
C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1,
Ei = s(idiQ1,i + ctagiW1 +U1,i) for 1 ≤ i ≤ `.

HIBE6 .KeyGen(id = (id1, . . . , id`),MSK,PP): Choose r1, . . . , r`, ktag1, . . . , ktag`sampUZp and set
r = r1 + ⋯ + r`. SKid consists of the elements (P2, V2, V

′
2 ,Q2,1, . . . ,Q2,h,W2, U2,1, . . . , U2,h) along

with the tuple (K1,K2, (K3,j ,Dj , ktagj)`j=1) where

K1 = αP2 + rV2, K2 = rV ′
2

K3,i = riP2 for i = 1, . . . , `,
Di = ri(idiQ2,i + ktagiW2 +U2,i) for i = 1, . . . , `.

The elements (P2, V2, V
′

2 ,Q2,1, . . . ,Q2,h,W2, U2,1, . . . , U2,h) are provided to enable further delegation.

HIBE6 .Delegate(id = (id1, . . . , id`),SKid, id`+1,PP): Other than the tags, all elements of SKid

corresponding to identity components at the previous levels are re-randomised. The components
required for further delegation are not re-randomised.

Choose random r1, . . . , r`, r`+1, ktag`+1 from Zp and set r = r1+⋯+r`+r`+1. The new components
of the key for the identity tuple of length (` + 1) are as follows.

K3,`+1 = r`+1P2, D`+1 = r`+1(idiQ2,`+1 + ktag`+1W2 +U2,`+1)P2.

Re-randomisation of the previous components is done as follows.

K1 ←K1 + rV2, K2 ←K2 + rV ′
2

K3,i ←K3,i + riP2 for i = 1, . . . , `,
Di ←Di + ri(idiQ2,i + ktagiW2 +U2,i) for i = 1, . . . , `.

HIBE6 .Decrypt(C, id,SKid,PP): Decryption succeeds only when ctagi ≠ ktagi for all i ∈ {1, . . . , `}.
Let ϑi = (ctagi − ktagi)−1 for i = 1, . . . , `. First compute

A1 =
`

∏
i=1

e(ϑiEi,K3,i)

Then compute

A2 = e(C1,K1 +
`

∑
i=1

ϑiDi) e(C2,K2)e(C3,
`

∑
i=1

K3,i)

Unmask the message as M = (C0 ⋅A1)/A2.

5.7.2 Security Proof

We first define semi-functional ciphertexts and keys for the HIBE.

HIBE6 .SFEncrypt(C′,MSK): Let C′ = (C ′
0,C

′
1,C

′
2,C

′
3, (E′

j , ctagj)`j=1) be a ciphertext normally gen-
erated by the Encrypt algorithm for message M and identity id = (id1, . . . , id`). Let V ′

1 be an element

of G1 such that dlogP1
V ′

1 = dlogP2
V ′

2 . Choose µ
U←Ð Zp. The semi-functional ciphertext generation

algorithm will modify the normal ciphertext as: C0 = C ′
0, C1 = C ′

1, Ej = E′
j for 1 ≤ j ≤ ` and

C2 = C ′
2 + µP1, C3 = C ′

3 − µV ′
1 .
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HIBE6 .SFKeyGen(SK′id,MSK): Let SK′id = (K ′
1,K

′
2,K

′
3,j ,D

′
j , ktagj)hj=1) be a normal secret key

generated by the KeyGen algorithm for identity id = (id1, . . . , id`). Pick γ
U←Ð Zp. The semi-

functional key generation algorithm will modify the normal key as: K3,j = K ′
3,j , Dj = D′

j for
1 ≤ j ≤ ` and

K1 =K ′
1 − aγP2, K2 =K ′

2 + γP2.

For the security proof, we follow the path set out by [158]. Suppose that the attacker A makes
at most qR reveal queries and qA create and delegate queries. Security is proved via a hybrid
argument over a sequence of qR + 3 games. Let Greal be the ind-cpa2 HIBE security game defined
in Section 2.2.1.2. G0 is similar to Greal except that the challenge ciphertext is semi-functional.
In Gk (for 1 ≤ k ≤ qR), the first k keys are semi-functional and the rest are normal. During the
reduction, the keys are changed from normal to semi-functional just before they are revealed. Gfinal
is just like GqR except that the challenge ciphertext is a semi-functional encryption of a random
message. Define X◻ as the event that A wins in G◻. The following theorem summarizes the
security guarantee obtained for HIBE6 .

Theorem 5.7.1. If (εDDH1, t1)-DDH1, (εDDH2v, t2)-DDH2v and (εDBDH, t3)-DBDH assumptions
hold in G1, G2 and GT respectively, then HIBE6 is (ε, t, qR, qA)-IND-ID-CPA2-secure where ε ≤
εDDH1 + qRqA ⋅ εDDH2v + εDBDH, t1 = t + O(qRhρ), t2 = t + O(qRhρ) and t3 = t + O(qRhρ). ρ is the
maximum time required for one scalar multiplication in G1 and G2.

Proof. Using lemmas 5.7.1, 5.7.2 and 5.7.3, we have for any polynomial time attacker A ,

Advind-cpa2
HIBE6 (A ) = ∣Pr[Xreal] −Pr[Xfinal]∣

≤ ∣Pr[Xreal] −Pr[X0]∣ +
qR

∑
k=1

(∣Pr[Xk−1] −Pr[Xk]∣) + ∣Pr[XqR] −Pr[Xfinal]∣

≤ εDDH1 + qRqA ⋅ εDDH2v + εDBDH

In the sequel, let B1 denote a DDH1-solver, B2 a DDH2-solver and B3 is a DBDH-solver.

Lemma 5.7.1. ∣Pr[Xreal] −Pr[X0]∣ ≤ εDDH1.

Proof. The algorithm B1 receives (P1, sP1, aP1, P2, (as+µ)P1) as an instance of DDH1. We describe
how it will simulate each phase in the security game.

Setup: B1 chooses random elements α, yv, y
′
v, yq1 , . . . , yqn , yw, yu1 , . . . , yun from Zp and sets the

parameters as follows.

P1 = P1, aP1 = aP1, P2 = P2, V2 = yvP2, V
′

2 = y′vP2

Wi = ywPi,Qi,j = yqjPi, Ui,j = yujPi for i = 1,2 and 1 ≤ j ≤ h
This implicitly sets τ = yv+ay′v. Using this, the element τP1 can be computed as yvP1+y′v(aP1). The
simulator computes the remaining parameters using α and gives the following public parameters
to A .

PP = {G, P1, P2, aP1, τP1,Q1,1, . . . ,Q1,h,W1, U1,1, . . . , U1,h, e(P1, P2)α}
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Phase 1: A makes a number of key extract queries. B1 knows the master secret and using that
it returns a normal key for every key extract query made by A .

Challenge: B1 receives the target identity îd = (îd1, . . . , îd̂̀) and two messages M0 and M1 from

A . It chooses β
U←Ð {0,1}. To encrypt Mβ, B1 chooses ĉtag1, . . . , ĉtag`

U←Ð Zp and computes the
ciphertext elements as follows.

C0 =Mβ ⋅ e(sP1, P2)α,
C1 = sP1, C2 = (as + µ)P1, C3 = −yv(sP1) − y′v(as + µ)P1 + yw(sP1),
Ej = (îdjyqj + ĉtagjyw + yuj)(sP1) for 1 ≤ j ≤ `.

B1 returns Ĉ = (C0,C1,C2,C3, (Ej , ĉtagj)hj=1) to A .

If µ = 0 then the challenge ciphertext is normal; otherwise Ĉ is semi-functional.

Note that, to check whether Ĉ is semi-functional or not, B1 itself could try to decrypt it with
a semi-functional key for îd. However since aP2 is not known to B1, it cannot create such a key.

Phase 2: As in first phase, B1 returns a normal key for every query.

Guess: The adversary returns its guess β′ to B1.

If β = β′, then B1 returns 1 and otherwise returns 0. We have,

∣Pr[Xreal] −Pr[X0]∣ = ∣Pr[β = β′∣µ = 0] = Pr[β = β′∣µ U←Ð Zp]∣

= ∣Pr[B1 returns 1∣µ = 0] = Pr[B1 returns 1∣µ U←Ð Zp]∣
= AdvDDH1

G (B1)
≤ εDDH1

Lemma 5.7.2. ∣Pr[Xk−1] −Pr[Xk]∣ ≤ qA ⋅ εDDH2v.

Proof. Let (P1, dP1, dzP1, zx1P1, P2, dP2, x1P1, x2P2, (x1x2 + γ)P2) be the instance of DDH2v that
B2 receives.

Setup: B2 chooses random elements a,α, (λj , νj , yqj , yuj)hj=1, y
′
v, yw

U←Ð Zp and sets the parameters
as follows. P1 = P1, P2 = P2, Q2,j = −λj(dP2) + yqjP2, U2,j = −νj(dP2) + yujP2 for 1 ≤ j ≤ h,
W2 = dP2 + ywP2, V2 = −a(x1P2) and V ′

2 = x1P2 + y′vP2 setting τ = ay′v using which one can compute
τP1 = ay′vP1. The public parameters Q1,1, . . . ,Q1,h,W1, U1,1, . . . , U1,h can be computed since B2

has dP1. The remaining parameters required to provide PP to A are computed using a, α and
other elements of the problem instance.

Phases 1 and 2: We first describe how create, delegate and reveal queries are handled. The
simulator B2 chooses θ ∈ {1,2, . . . , qA} at random and guesses that the k-th key revealed will be
the θ-th key either created directly or by delegation. It then creates a counter  for the number of
create/delegate queries and initializes it to zero. Recall that S denotes the set of created keys. B2

now considers two cases.
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Case  ≠ θ : If this is a create query for an identity id of depth ` then B2 chooses tags

ktag1, . . . , ktag`
U←Ð Zp and associates them along with id to the -th member of the set

S. Otherwise, if this is a delegate query with inputs id of depth ` − 1 and an identity id`,

then the simulator chooses one new tag ktag`
U←Ð Zp. The other ` − 1 tags ktag1, . . . , ktag`−1

are copied from the key we are delegating from. All these tags are associated with the -th
element of S.

Case  = θ : If this is a create query for an identity id = (id1, . . . , id`) of depth ` then B2 chooses

tags ktag1, . . . , ktag`−1
U←Ð Zp, sets ktag` = λ`id` + ν` and associates these tags along with id

to the -th member of the set S. Otherwise, if this is a delegate query with inputs id of
depth `− 1 and an identity id`, then the simulator sets ktag` = λ`id` + ν`. The other `− 1 tags
ktag1, . . . , ktag`−1 are copied from the key we are delegating from. B2 associates these tags
with the -th element of S.

Each element of the set S is now associated with tag values but not a key. This is sufficient
since the only elements that are not re-randomized during delegation are the tags. So the keys
can be constructed just before revealing. Now consider the ı-th reveal query for ı ∈ {1, . . . , qR} and
suppose that this query is for the -th key to be revealed. For ı > k the simulator has to create a
normal key and does so using the master secret and the tag values stored in the -th element of
S. For ı < k, B2 creates a semi-functional key by first creating a normal key using the tag values
stored in the -th element of S and then modifies it using its knowledge of aP2.

Now consider the case when ı = k. If  ≠ k then the simulator aborts and makes a random guess
of the distribution of γ. Otherwise, using the master secret, it generates a normal key SK′id for the
identity id = (id1, . . . , id`) with components K ′

1,K
′
2, (K ′

3,j ,D
′
j)`j=1 and tag values already assigned.

We know that ktag` = λ`id` + ν`. Let r′1, . . . , r
′
` be the randomisers used with r′ = r′1 + ⋯ + r′`. B2

then chooses γ ∈ Zp at random, sets

K1 =K ′
1 − a(x1x2 + γ)P2, K2 =K ′

2 + (x1x2 + γ)P2 + y′v(x2P2),
K3,j =K ′

3,j , Dj =D′
j for 1 ≤ j ≤ ` − 1,

K3,` =K ′
3,` + x2P2,

D` =D′
` + (yq` id` + ywktag` + yu`)(x2P2),

thus implicitly setting r` = r′` + x2 and r = r′ + x2. It returns the key SKid consisting of
K1,K2,K3,1, . . . ,K3,`,D1, . . . ,D`, ktag1, . . . , ktag` to A . The choice of ktag` = λ`id` + ν` allows
B2 to create D`. If Z2 = x1x2P2 then the key for id will be normal and otherwise it will be semi-
functional with γ = c where Z2 = (x1x2 + c)P2. Note that a semi-functional ciphertext for id with
any value of ctag` cannot be generated without the knowledge of dx1zP1 which is neither available
from the assumption nor can be computed by B2. This rules out the obvious way of checking
whether the key for id` is semi-functional or not.

Challenge: B2 receives two messages M0,M1 and a challenge identity îd = (îd1, . . . , îd`) during

the challenge phase. It chooses β
U←Ð {0,1}, generates a normal ciphertext with randomisers

s′
U←Ð Zp and ĉtagj = λj îdj + νj for 1 ≤ j ≤ `. Observe that the tags are chosen this way to be able

to create the ciphertext elements E1, . . . ,E`. The simulator then changes the ciphertext elements
as follows.
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C0 = C ′
0 ⋅ e(zx1P1, P2)α,

C1 = C ′
1 + x1zP1, C2 = C ′

2 + a(zx1P1) + dzP1, C3 = C ′
3 − ay′v(zx1P1) + yw(zx1P1) − y′v(dzP1),

Ej = E′
j + (yqj îdj + ĉtagjyw + yuj)(zx1P1) for 1 ≤ j ≤ `,

setting s = s′ + zx1 and µ = dz.
If A wins i.e., β = β′, then B2 returns 1 and otherwise returns 0. When  ≠ k then the guess

is random and the probability that A wins is 1/2. So we need only consider the event  = k which
happens with probability 1/qA. We therefore have,

∣Pr[Xk−1] −Pr[Xk]∣ = ∣Pr[β = β′∣γ = 0] −Pr[β = β′∣γ U←Ð Zp]∣

= ∣Pr[B2 returns 1∣γ = 0] −Pr[B2 returns 1∣γ U←Ð Zp]∣
= AdvDLin2

G (B2)
≤ εDLin2

Lemma 5.7.3. ∣Pr[XqR] −Pr[Xfinal]∣ ≤ εDBDH.

Proof. B3 receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, e(P1, P2)xas+c) as an instance of the DBDH
problem.

Setup: Sample b, yv, y
′
v, yq1 , . . . , yqh , yw, yu1 , . . . , yuh

U←Ð Zp, B3 sets the parameters as

P1 = P1, P2 = P2, aP1 = aP1, V2 = yvP2, V
′

2 = y′vP2, τP1 = yvP1 + y′v(aP1)

Q1,j = yqjP1,W1 = ywP1, U1,j = yujP1 for 1 ≤ j ≤ h, e(P1, P2)bα = e(xP1, aP2)

implicitly setting a = a, α = xa and τ = yv +ay′v. The remaining parameters can be computed easily.
B3 returns PP to A .

Phases 1 and 2: When A asks for the secret key for an identity vector id = (id1, . . . , id`), B3

chooses at random r1, . . . , r`, ktag1, . . . , ktag`, γ
′ ∈ Zp with r = r1+⋯+r` implicitly setting γ′ = x−γ.

It then computes a semi-functional key for id as follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2,
K2 = rV ′

2 − γ′P2 = rV ′
2 + xP2 + γP2 = rV ′

2 + γP2,
K3,j = rjP2,Dj = rj(idjQ2,j + ktagjW2 +U2,j) for 1 ≤ j ≤ `.

Observe that B3 does not know α and hence cannot create a normal key.

Challenge: B3 receives the challenge identity îd = (îd1, . . . , îd`) and two messages M0 and M1

from A . It chooses β ∈ {0,1} and ĉtag1, . . . , ĉtag`, µ
′, t ∈ Zp at random and generates a semi-

functional challenge ciphertext as follows. Here B3 implicitly sets µ′ = µ + as.

C0 =Mβ ⋅ e(P1, P2)xas+c,
C1 = sP1,C2 = µ′P1 = asP1 + µP1,
C3 = −yv(sP1) − µ′y′vP1 + yw(sP1) = −yvsP1 − asy′vP1 − µy′vP1 + sW1 = −τsP1 − µV ′

1 + sW1,

Ej = (yqj îdj + ywĉtagj + yuj)(sP1) for 1 ≤ j ≤ `.
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The challenge ciphertext Ĉ = (C0,C1,C2,C3,E1, . . . ,E`, ĉtag1, . . . , ĉtag`) is returned to A . If c = 0

then Ĉ will be a semi-functional encryption of Mβ; otherwise c
U←Ð Zp and Ĉ semi-functionally

encrypts Me(P1, P2)c which is a random element of GT .

B3 returns 1 if β = β′; otherwise it returns 0. Hence,

∣Pr[Xq] −Pr[Xfinal]∣ = ∣Pr[A wins in Gq] −Pr[A wins in Gfinal]∣
= ∣Pr[β = β′ in Gq] −Pr[β = β′ in Gfinal]∣

= ∣Pr[β = β′∣c = 0] = Pr[β = β′∣c U←Ð Zp]∣
= AdvDBDH

G (B3)
≤ εDBDH

5.8 Broadcast Encryption

This section discusses Scheme BE6 and its security. Refer to Definition 2.1.3 in Section 2.1.3 for a
definition of broadcast encryption and Section 2.2.2 for a description of the corresponding security
model.

5.8.1 Construction

BE6 .Setup(κ,n): A Type-3 pairing G = (p,G1,G2,GT , e, F1, F2) is generated based on the security

parameter κ. Let n be the total number of users and N = [1, n]. Generators P1
U←Ð G1 and

P2
U←Ð G2 are chosen. Also choose Q1,1, . . .Q1,n,W1

U←Ð G1 and Q2,1, . . . ,Q2,n,W2 ←Ð G2 such that
dlogP1

(Q1,1, . . . ,Q1,n,W1) = dlogP2
(Q2,1, . . . ,Q2,n,W2). Let α,a, v, v′ be uniform random elements

of Zp. Set V2 = vP2, V ′
2 = v′P2 and τ = v + av′ so that τP2 = V2 + aV ′

2 .

PK : (P1, aP1, τP1,Q1,1, . . . ,Q1,n,W1, e(P1, P2)α).
SK : (P2, αP2, V2, V

′
2 ,Q2,1, . . . ,Q2,n,W2).

BE6 .Encrypt(PK,S ⊆ N ,M): Choose random s from Zp; ciphertext C for the set S is
(C0,C1,C2,C3,E) where the elements are defined as follows.

C0 =M ⋅ e(P1, P2)αs,
C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1, E = s(∑i∈S Q1,i).

BE6 .KeyGen(SK, j ∈ N ): Choose random r from Zp; SKj is (K1,K2,K3,D,∀i≠jDi) where the
elements are defined as follows.

K1 = αP2 + rV2, K2 = rV ′
2 , K3 = rP2,

D = r(Q2,j +W2), Di = rQ2,i for i ∈ N and i ≠ j.
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BE6 .Decrypt(C,S,SKj): Decryption works only if j ∈ S. Unmask the message as

M = C0

e(C1,K1 −D −∑i∈S
i≠j
Di)e(C2,K2)e(C3 +E,K3)

.

5.8.2 Security Proof

The semi-functional ciphertexts and keys for the BE are defined as follows.

BE6 .SFEncrypt(PP,MSK,C′): Let C′ = (C ′
0,C

′
1,C

′
2,C

′
3,E) be a ciphertext normally generated by

the Encrypt algorithm for message M and subset S ⊆ N of users. Let V ′
1 be an element of G1 such

that V ′
1 ∼ V ′

2 . Choose µ
U←Ð Zp. The semi-functional ciphertext generation algorithm will modify

the normal ciphertext as: C0 = C ′
0, C1 = C ′

1, E = E′ and

C2 = C ′
2 + µP1, C3 = C ′

3 − µV ′
1 .

BE6 .SFKeyGen(PP,MSK,SK′j): Let SK′j = (K ′
1,K

′
2,K

′
3,D

′, (D′
i)i∈S,i≠j) be a secret key normally

generated by the KeyGen algorithm for user j. The semi-functional key generation algorithm will

choose γ
U←Ð Zp and modify the normal key as K3 =K ′

3, D =D′, Di =D′
i for all i ≠ j and

K1 =K ′
1 − aγP2, K2 =K ′

2 + γP2.

Theorem 5.8.1. If (εDDH1, t1)-DDH1, (εDDH2v, t2)-DDH2v and (εDBDH, t3)-DBDH assumptions
hold in G1, G2 and GT respectively, then BE6 is (ε, t, q)-IND-B-CPA-secure where ε ≤ εDDH1 +
qn ⋅ εDDH2v + εDBDH, t1 = t +O(qnρ), t2 = t +O(qnρ) and t3 = t +O(qnρ). ρ is the maximum time
required for one scalar multiplication in G1 and G2.

Proof. The proof is organised as a sequence of games. Greal denotes the real BE security game
ind-be-cpa as defined in Section 2.2.2. G0 is similar to Greal except that the ciphertext encrypted to
the challenge set is semi-functional. Suppose that the adversary queries for private keys of q users.
In Gk for 1 ≤ k ≤ q, the private keys returned for the first k queries are semi-functional and the rest
are normal. Gfinal is just like Gq except that the challenge ciphertext is an encryption of a random
message. Clearly, Pr[Xfinal] = 1/2. Let X◻ denote the event that A wins in G◻.

Using lemmas 5.8.1, 5.8.2 and 5.8.3, we have for any polynomial time attacker A ,

Advind-be-cpa
BE6 (A ) = ∣Pr[Xreal] −

1

2
∣

= ∣Pr[Xreal] −Pr[Xfinal]∣

≤ ∣Pr[Xreal] −Pr[X0]∣ +
q

∑
k=1

(∣Pr[Xk−1] −Pr[Xk]∣) + ∣Pr[Xq] −Pr[Xfinal]∣

≤ εDDH1 + qn ⋅ εDDH2v + εDBDH

Lemma 5.8.1. ∣Pr[Xreal] −Pr[X0]∣ ≤ εDDH1.
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Proof. The algorithm B1 receives (P1, sP1, aP1, P2, (as+µ)P1) as an instance of DDH1. We describe
how it will simulate each phase in the security game.

Setup: B1 chooses random elements α, yv, y
′
v, yq1 , . . . , yqn , yw

U←Ð Zp and sets the parameters as
follows.

P1 = P1, aP1 = aP1,Q1,i = yqiP1 for i ∈ [1, n],W1 = ywP1

P2 = P2, V2 = yvP2, V
′

2 = y′vP2.

This implicitly sets τ = yv + ay′v. Using this, the element τP1 can be computed as yvP1 + y′v(aP1).
The simulator computes the remaining parameters using α and gives the public key PK to A .

Key Extraction Phases 1 and 2: A issues a number of private key queries adaptively. For
every query, B1 returns a normal key computed using SK.

Challenge: B1 receives the challenge set Ŝ and two messages M0 and M1 from A . It chooses

β
U←Ð {0,1} and computes the ciphertext elements as follows.

C0 =Mβ ⋅ e(sP1, P2)α,
C1 = sP1, C2 = (as + µ)P1, C3 = −yv(sP1) − y′v(as + µ)P1 + yw(sP1),
E = (∑i∈Ŝ yqi)(sP1).

B1 returns Ĉ = (C0,C1,C2,C3,E) to A . If µ = 0 then the Ĉ is normal; otherwise µ
U←Ð Zp and it

is straightforward to verify that Ĉ is semi-functional.

Note that, to check whether Ĉ is semi-functional or not, B1 itself could try to decrypt it with
a semi-functional key for some user i ∈ Ŝ. However since no encoding of a in G2 is known to B1, it
cannot create such a key.

Guess: The adversary returns its guess β′ to B1.

B1 returns 1 if β = β′ and otherwise returns 0.

∣Pr[Xreal] −Pr[X0]∣ = ∣Pr[A wins in Greal] −Pr[A wins in G0]∣
= ∣Pr[β = β′ in Greal] −Pr[β = β′ in G0]∣

= ∣Pr[β = β′∣µ = 0] −Pr[β = β′∣µ U←Ð Zp]∣
= AdvDDH1

G (B1)
≤ εDDH1

Lemma 5.8.2. ∣Pr[Xk−1] −Pr[Xk]∣ ≤ n ⋅ εDDH2v.

Proof. Let (P1, dP1, dzP1, zx1P1, P2, dP2, x1P1, x2P2, (x1x2 + γ)P2) be the instance of DDH2v that
B2 receives.

Setup: B2 chooses random elements a,α, y′v, yq1 , . . . , yqn , yw
U←Ð Zp and sets the parameters as

follows. B2 guesses a value j′ ∈ [1, n]. P1 = P1, P2 = P2, Q2,j′ = −dP2 + yqj′P2, Q2,i = yqiP2 for i ≠ j′,
W2 = dP2 + ywP2, V2 = −a(x1P2) and V ′

2 = x1P2 + y′vP2 setting τ = ay′v using which one can compute
τP1 = ay′vP1. The public parameters Q1,1, . . . ,Q1,n,W1 can be computed since B2 has dP1. The
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remaining parameters required to provide PK to A are computed using a, α and other elements
of the problem instance.

Private Key Query Phases 1 and 2: The queries before the k-th query are answered with
a semi-functional key and for those after k-th query, normal keys are returned. Suppose that the
k-th query is for the private key of user j.

When j ≠ j′, the simulator B2 returns a normal key to A and randomly guesses whether γ = 0
or not. In such a case, the adversary has zero advantage in distinguishing between the games. Also
B2 has zero advantage in solving the DDH2v problem.

Next we consider the case j = j′ which happens with probability at least 1/n. For the k-th query
(for user j) a normal key SKj with elements K ′

1,K
′
2,K

′
3,D,∀i≠jDi is generated using randomiser

r′
U←Ð Zp and then modified as:

K1 =K ′
1 − a(x1x2 + γ)P2, K2 =K ′

2 + (x1x2 + γ)P2 + y′v(x2P2), K3 =K ′
3 + x2P2,

D =D′ + (yqj + yw)(x2P2), Di =D′
i + yqi(x2P2) for all i ≠ j.

Since j = j′,

D =D′ + (yqj + yw)(x2P2)
= r′(Q2,j +W2) + x2(yqj + yw)P2

= r′(−dP2 + yqjP2 + dP2 + ywP2) + x2(yqj + yw)P2

= (r′ + x2)(yqj + yw)P2

= (r′ + x2)(−d + yqj + d + yw)P2

= (r′ + x2)(Q2,j +W2).

This implicitly sets r = r′ + x2. If γ = 0 then the key SKj will be normal and otherwise it will be
semi-functional with γ coming from the instance. Note that a semi-functional ciphertext for any
set containing user j cannot be generated without V ′

1 and thus the obvious way of checking whether
SKj is semi-functional or not is ruled out.

Challenge: B2 receives two messages M0,M1 and a challenge set Ŝ. It chooses β
U←Ð {0,1},

generates a normal ciphertext with elements C ′
0,C

′
1,C

′
2,C

′
3,E

′ generated using the randomiser s′
U←Ð

Zp and changes the ciphertext elements as follows.

C0 = C ′
0 ⋅ e(zx1P1, P2)α,

C1 = C ′
1 + x1zP1, C2 = C ′

2 + a(zx1P1) + dzP1, C3 = C ′
3 − ay′v(zx1P1) + yw(zx1P1) − y′v(dzP1),

E = E′ + (∑i∈Ŝ yqi)(zx1P1),

setting s = s′ + zx1 and µ = dz. It is easy to check that C3 is well-formed.

Let abort denote the event that B2 aborts the game. Also, let Yreal and Yrand denote the events

that B2 returns 1 when γ = 0 and γ
U←Ð Zp respectively. Note that B2 returns a randomly chosen
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bit in the event that it aborts the game. We now have

AdvDDH2v
G (B2) = ∣Pr[Yreal] −Pr[Yrand]∣

= ∣Pr[Yreal∣abort]Pr[abort] +Pr[Yreal∣abort]Pr[abort]
−Pr[Yrand∣abort]Pr[abort] −Pr[Yrand∣abort]Pr[abort]∣

= ∣1
2
(1 − 1

n
) +Pr[Xk−1] (

1

n
) − 1

2
(1 − 1

n
) −Pr[Xk] (

1

n
)∣

= 1

n
∣Pr[Xk−1] −Pr[Xk]∣ ,

from which the lemma follows.

Lemma 5.8.3. ∣Pr[Xq] −Pr[Xfinal]∣ ≤ εDBDH.

Proof. B3 receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, e(P1, P2)xas+c) as an instance of the DBDH
problem.

Setup: With b, yv, y
′
v, yq1 , . . . , yqn , yw chosen at random from Zp, B3 sets the parameters as

P1 = P1, P2 = P2, aP1 = aP1, V2 = yvP2, V
′

2 = y′vP2, τP1 = yvP1 + y′v(aP1)

Q1,1 = yq1P1, . . . ,Q1,n = yqnP1,W1 = ywP1, e(P1, P2)bα = e(xP1, aP2)

implicitly setting a = a, α = xa and τ = yv +ay′v. The remaining parameters can be computed easily.
B3 returns PP to A .

Private Key Query Phases 1 and 2: When A asks for the secret key for user j, B3 chooses

r, γ′
U←Ð Zp implicitly setting γ′ = x − γ. It then computes a semi-functional key for j as follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2,
K2 = rV ′

2 − γ′P2 = rV ′
2 + xP2 + γP2 = rV ′

2 + γP2,
K3 = rP2, D = r(Q2,j +W2), Di = rQ2,i for i ≠ j.

Observe that B3 does not know α and hence cannot create a normal key.

Challenge: B3 receives the challenge set Ŝ and two messages M0 and M1 from A . It pick

β
U←Ð {0,1} and µ′

U←Ð Zp and generates a semi-functional challenge ciphertext as follows. Here
B3 implicitly sets µ′ = µ + as.

C0 =Mβ ⋅Z,
C1 = sP1,C2 = µ′P1 = asP1 + µP1,
C3 = −yv(sP1) − µ′y′vP1 + ywsP1 = −yvsP1 − asy′vP1 − µy′vP1 + ywsP1 = −τsP1 − µV ′

1 + sW1,
E = (∑i∈Ŝ yq,i)(sP1).

The challenge ciphertext Ĉ = (C0,C1,C2,C3,E, ĉtag) is returned to A . If c = 0 then Ĉ will be a
semi-functional encryption of Mβ to Ŝ; otherwise Ĉ semi-functionally encrypts a random message
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given by Mβ ⋅ e(P1, P2)c. We now have,

∣Pr[Xq] −Pr[Xfinal]∣ = ∣Pr[β = β′ in Gq] −Pr[β = β′ in Gfinal]∣

= ∣Pr[β = β′∣c = 0] −Pr[β = β′∣c U←Ð Zp]∣
= AdvDBDH

G (B1)
≤ εDBDH
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Chapter 6

Constant-Size Ciphertext HIBE

In this section we present three new HIBE schemes that can be implemented using Type-3 pairings
– LW -AHIBE , JR -AHIBE and JR -HIBE – all achieving constant-sized ciphertexts. The first two are
anonymous and the last one is non-anonymous. LW -AHIBE is obtained via a non-trivial extension
of Lewko-Waters Type-3 pairing based IBE scheme [114]. JR -AHIBE and JR -HIBE are constructed
from the IBE scheme of Jutla and Roy [103]. The literature already contains several different HIBE
schemes. So, the question arises as to why new ones are needed? We argue below that previous
direct constructions of HIBE schemes had one or more drawbacks related to either efficiency or
security. At the time they were proposed, our schemes could overcome most of these issues. Further,
JR -AHIBE and JR -HIBE are candidates of choice for any practical deployment.

The discussion in Section 1.2 suggests that from an efficiency point of view, HIBE schemes
with constant-size ciphertexts that can be instantiated with Type-3 pairings would offer the best
performances.

The first construction for CC-HIBE was given by Boneh, Boyen and Goh [24]. While the
scheme itself is quite elegant, its proof of security was in a very restricted attack model, the so-
called selective-identity model. This work introduced a way to hash identity vectors into the pairing
groups. We refer to this as the BBG-hash. Almost all known CC-HIBE schemes that appeared
later have either used this technique or a variant [49, 50, 114, 144, 63, 129, 108, 54]. Since we
are interested in CC-HIBE, we do not consider the line of work [86, 22, 157, 47, 158, 136] where
the length of the ciphertext depends on the length of the identity tuple. Another method for
obtaining constant-size ciphertext HIBE is to specialise constructions of hierarchical inner product
encryption. The resulting schemes are not efficient. We comment on this later.

The first construction of anonymous HIBE without random oracles was given by [36] with
security in the selective-id model. Later constructions by [144, 63] could achieve security in the
adaptive-id setting but were based on composite-order pairings. Two other constructions [70, 129]
used asymmetric pairings but with security in the selective-id model.
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6.1 Possible Approaches to the Construction of HIBE Schemes.

Scheme LW -AHIBE was one of the first HIBE schemes to achieve most of the nice provable properties
except for standard assumptions. Among the known CC-HIBE schemes, JR -AHIBE and JR -HIBE
are the most suitable ones for practical deployment.

Extension from IBE. It is quite natural that the construction of a HIBE scheme will be based
on an IBE scheme. Below we list other candidate IBE schemes and discuss why their extensions to
HIBE schemes do not achieve the same security and efficiency as our constructions.

To start with, it is desirable to avoid a security degradation which is exponential in the depth
of the HIBE. In the current state of the art, this means that one has to follow the dual-system
approach. So, any attempt to construct a CC-HIBE should start with an IBE which has been proved
secure using the dual-system technique. In the dual-system proof technique for both IBE and HIBE,
ciphertext and key in the scheme itself are called normal. As part of the proof, alternate forms of
ciphertext and key are defined. These are called semi-functional. In the proof, these are simulated
using instances of some hard problem and the argument proceeds by showing that an adversary’s
ability to distinguish between normal and semi-functional components can be translated into an
algorithm to solve the problem. During simulation, it is essential to ensure that all ciphertexts
and keys given to the attacker including the semi-functional components (possibly generated using
elements from the problem instance) have proper distributions i.e., as in the real construction. This
requirement creates the main hurdle in extending the known IBE schemes with dual system proofs
to CC-HIBE while retaining the security properties. We discuss this problem below in detail.

The IBE constructions of Waters [158] and its variants [136] do not have a structure that is
suitable for extension to CC-HIBE. This is because both the ciphertext and keys have associated
tags that are public and play a crucial role in dual system arguments. It is precisely these tags
that cause the problem in extending these IBEs to CC-HIBEs. While extending to a CC-HIBE,
sufficient information should be provided in either the public parameters or the keys to support
rerandomisation during key delegation. The tags either cannot be rerandomised or the elements
needed to enable their rerandomisation, when given out, lead to insecure schemes.

Lewko and Waters [114] presented a new variant of dual system technique by shifting the role
of tags into the semi-functional components. This enabled them to obtain a CC-HIBE scheme over
composite order pairing groups. They converted the IBE version of the scheme to the prime-order
asymmetric pairing setting (referred to as LW-IBE) but not the HIBE scheme. Security of both
their IBE schemes (for composite-order pairings as well as for Type-3 pairings) are based on static
but non-standard assumptions.

Our first construction LW -AHIBE is obtained by extending LW-IBE. LW -AHIBE is anonymous
and achieves security under static assumptions. The only drawback is that the assumptions are non-
standard. A parallel work by [108] independently obtained a CC-HIBE scheme from Lewko-Waters’
IBE in prime-order groups but with security based on different yet non-standard assumptions.

Another IBE scheme following the dual-system approach is due to Chen et al. [52]. This
work uses dual pairing vector spaces (DPVSs) [119, 120]. These are algebraic structures that have
properties found in composite order groups such as cancelling and parameter-hiding which are
useful for dual system arguments [111]. The Chen et al. IBE can be seen as a translation of Lewko-
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Waters’ composite-order pairing-based IBE [114] to the setting of asymmetric pairing using DPVS.
It is then natural to ask whether the Lewko-Waters composite-order CC-HIBE can be similarly
translated using the DPVS-approach to a CC-HIBE. Unfortunately, such a transformation does
not yield a CC-HIBE. This is due to the fact that for the proof to work, the dimension of the
vector spaces becomes proportional to the HIBE depth. Since ciphertexts contain vectors from
such spaces, the constant-size feature cannot be attained.

Our next two HIBE constructions are obtained by extending the IBE scheme of Jutla and
Roy [103] (JR-IBE). This IBE is one of the most efficient schemes within the dual system framework
achieving security under the standard SXDH assumption.

Chen and Wee [53] introduced new techniques for parameter-hiding in DPVS-based construc-
tions proposed a new CC-HIBE scheme based on these techniques in the full version [55]. How-
ever, our approach is different from that of [55]. Moreover, we provide both an anonymous HIBE
scheme (JR -AHIBE) and a non-anonymous HIBE scheme (JR -HIBE), whereas [55] provides only a
non-anonymous HIBE scheme; and third, compared to the non-anonymous HIBE scheme in [55],
JR -HIBE has smaller ciphertexts and more efficient encryption and decryption algorithms.

Hierarchical Inner-Production Encryption. HIBE schemes can also be seen as special cases
of hierarchical inner product encryption (HIPE) schemes. HIBE schemes obtained from two con-
structions of HIPE schemes by Okamoto and Takashima [122, 124] are comparable to our schemes
in terms of provable properties. The scheme in [122] is not anonymous but achieves constant-size
ciphertexts. The construction in [124] achieves anonymity and prefix decryption but not constant-
size ciphertexts. Note that none of the two HIBE schemes achieve all three properties (anonymity,
constant-size ciphertexts and prefix decryption) at the same time. Both schemes are based on dual
pairing vector spaces over symmetric pairing groups and are shown to be secure under decisional
linear (DLin) assumptions. Although constructions based on DPVSs can be extended to more so-
phisticated primitives such as attribute-based encryption, a drawback of using this approach is that
the ciphertext size depends on the dimension of some DPVS (chosen during system setup). This
restricts us from making any further optimisations on the size of the ciphertexts by “transferring”
some structure to the keys. Another drawback is as follows. Since the HIBE is an instantiation
of (zero) inner-product encryption, the length of the (attribute-)vector consisting of the identity
has to be twice the maximum depth (h) of the hierarchy to enable cancellation. Moreover, to
accommodate a dual system proof, the dimension of the vector space needs to be at least twice
this length i.e., 4h. This will result in larger keys. Needless to say, we may hope to obtain more
efficient HIBE schemes through direct constructions.

Predicate Encryption. As mentioned in Section 3.3, recent works by Wee [161] and Attra-
padung [8] provide generic constructions of predicate encryption schemes achieving full security
via dual system techniques. Many primitives such as IBE, spatial encryption and inner product
encryption can be viewed as specific cases of predicate encryption. In particular, a HIBE scheme
is a PE scheme defined by the equality predicate over hierarchical identities. Here, the attributes
associated with the ciphertexts and keys are nothing but the hierarchical identities. Both the works
use composite order groups for their construction. In principle it should be possible to obtain HIBE
schemes in Type-3 setting from these works. Doing this would require specialising a PE scheme to a
HIBE scheme and also converting from composite-order setting to the prime-order setting possibly
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by using the tools from [111, 52]. It is not clear though that the resulting HIBE schemes will have
efficiencies comparable to that of LW -AHIBE , JR -AHIBE or JR -HIBE . We believe that HIBE is an
important enough primitive to warrant research on obtaining direct and efficient constructions of
such schemes.

6.2 Anonymous HIBE from LW-IBE

The starting point of our work are the IBE schemes in [114]. Two IBE schemes are given in [114]
where the first one is in the setting of composite order groups and the second one is in the Type-3
setting. The IBE in the composite order setting is not anonymous (shown in [63]) due to the
following reason – the identity-hash in both the ciphertext and key live in the same subgroup;
moreover, elements used to create the hash are public thus providing a test for the recipient identity
for any ciphertext. On the other hand, the Type-3 variant, which we refer to as “LW-IBE”, is
anonymous. This is because ciphertexts live in G1, keys in G2 and the elements required to create
the hash in G2 are kept secret. Hence there would be no way to test whether a given ciphertext
is encrypted to a particular identity or not. However, there has been no proof of anonymity in
any follow-up work. The first contribution of the current work is to show that the LW-IBE is
anonymous. Two static (though non-standard) computational assumptions (which we denote as
LW1 and LW2) along with decision bilinear Diffie-Hellman (DBDH) assumption are used in [114]
to show the security of LW-IBE. For proving anonymity, we need to introduce a new computational
assumption, called A1, which is again static, but, non-standard.

The second contribution of this paper is to extend the LW-IBE to a constant-size ciphertext
HIBE. At a very basic level, the idea for obtaining constant-size ciphertexts is to use the identity
hashing technique suggested in [24] over existing IBE schemes. We will refer to this as BBG-hash
or BBG-extension. We do not take the path of converting the composite-order pairing based HIBE
of [114]. Techniques for such conversions have been proposed by Freeman [73] and Lewko [111].
The latter uses dual pairing vector spaces (DPVSs) constructed over pairing groups to simulate
features of composite order pairings. But it seems hard to retain the constant size of ciphertexts
using these conversion techniques. Instead, we start with LW-IBE and extend it to a CC-HIBE
by plugging in the BBG-hash. One complication in doing so arises. In the dual-system technique,
two kinds of ciphertexts and keys are defined – normal and semi-functional. Semi-functional
components are required only for proving security and are generated using some secret elements
during simulation. The main elements of a dual system proof would be appropriately defining semi-
functional components and generating them using a problem instance in the reduction ensuring
correct distribution of all elements provided to the attacker. Extending the decryption key of LW-
IBE to the decryption key of a HIBE in a straightforward manner does not retain the structure
required for a dual-system proof. Our way of tackling this is to add additional components to the
decryption key. On the face of it, this complicates the key generation and delegation mechanisms.
However, somewhat counter-intuitively, adding this extra level of complication allows the security
reductions to go through.

An offshoot of the extension is that the scheme becomes anonymous. This is because in LW-
IBE, the semi-functional space (for both ciphertexts and keys) is created using some secret elements
(part of the master secret). The same elements are implicitly used in creating ciphertexts and keys.
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In case of a direct extension to HIBE, all these elements may have to be revealed in the public
parameters to facilitate re-randomisation during delegation of keys. This makes the scheme non-
anonymous but at the same time affects dual system arguments for which keeping the elements
secret is essential. The way out is to make the scheme anonymous. We also provide a proof of
anonymity based on a static assumption.

The computational assumptions required to obtain CPA-security are those used in [114] along
with the new assumption required to show that the LW-IBE is anonymous. The last assumption
is used to prove the anonymity of the HIBE scheme.

6.2.1 Lewko-Waters IBE and its Security

This section reviews the asymmetric pairing-based IBE construction of Lewko-Waters [114]. The
description in [114] consists of the usual ciphertexts and keys as well as the so-called semi-functional
ciphertexts and keys. We use a compact notation to denote normal and semi-functional ciphertexts
and keys. The group elements shown in curly brackets { } are the semi-functional components. To
get the scheme itself, these components should be ignored.

Let G = (p,G1,G2,GT , e, P1, P2) be an asymmetric pairing. Pick Q1, U1
U←Ð G1 and Q2, U2 ∈ G2

be such that dlogP2
(Q2, U2) = dlogP1

(Q1, U1). Choose F2
U←Ð G×

2 , a, v, v′
U←Ð Zp and define V2 =

vF2, V
′

2 = v′F2. Let τ = v + av′ so that τF2 = V2 + aV ′
2 . Identities are elements of Zp. The public

parameters and master secret are given by

PP : (P1, aP1, τP1,Q1, aQ1, τQ1, U1, aU1, τU1, e(P1, P2)α)
MSK: (αP2, P2, V2, V

′
2 ,Q2, U2, F2).

The randomisers for the ciphertext and key are s and w, r1, r2 respectively. These are elements
of Zp. For the semi-functional components, µ,σ and γ, π are chosen at random from Zp. Elements
V ′

1 , F1 ∈ G1 are such that dlogP1
(F1, V

′
1) = dlogP2

(F2, V
′

2).

Ciphertext:

C0 =M ⋅ e(P1, P2)αs
C1,1 = s(idQ1 +U1), C1,2 = as(idQ1 +U1){+µσF1},
C1,3 = −τs(idQ1 +U1){−µσV ′

1}
C2,1 = sP1, C2,2 = asP1{+µF1}, C2,3 = −τsP1{−µV ′

1}

Key:

K1,1 = wP2 + r1V2{−aγF2}, K1,2 = r1V
′

2{+γF2}, K1,3 = r1F2

K2,1 = αP2 +w(idQ2 +U2) + r1V2{−aγπF2},
K2,2 = r2V

′
2{+γπF2}, K2,3 = r2F2

Lewko and Waters show that this scheme is adaptively secure without random oracles under
three non-standard but static assumptions – LW1, LW2 and DBDH-3. Since the elements Q2, U2

are in the master secret there seems to be no way to check whether a given ciphertext is encrypted
to a particular identity or not. In other words, this scheme is anonymous. We provide a proof in
the ANO-IND-ID-CPA model (described in Section 2.2.1.3) which encompasses both CPA-security
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and anonymity. For the proof of anonymity, a new static assumption named A1 (defined in Sec-
tion 2.3.2.1) is introduced. A discussion is provided below.

6.2.2 Discussion on Assumption A1

We introduce assumption A1 to show anonymity of Lewko-Waters’ IBE [114]
as well as our HIBE scheme LW -AHIBE described in Section 6.2.3. Given
(G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz − ax)F2), the task in A1 is to de-
cide whether Z1 = sdzF1 or random. Note that the challenge is an element Z1 ∈ G1. Suppose
we can successfully create e(F1, F2)sdzδ (for some δ such that δF2 is given in the instance) using
elements in the instance, then the problem becomes easy to solve – just check for equality with
e(Z1, δF2). If they are equal then Z1 is real; otherwise Z1 is random. Since s and d appear
in separate elements in G1, the only possible way is to compute e(Z1, zF2) and compare it to
e((dz − ax)F2, szF1) after cancelling out e(F1, F2)axsz. But this extra term cannot be cancelled
since a and x appear in separate elements of G2. So our assumption is meaningful and there does
not seem to be any way of efficiently solving A1.

The problem LW1 contains an embedded instance of DDH1. The elements sF1 and ab2F1 are
provided in the instance and it is required to determine whether Y1 equals ab2sF1 or Y1 is random.
Similarly, LW2 contains an embedded instance of DDH2: the elements bF2 and cF2 are provided in
the instance and it is required to determine whether Y2 equals bcF2 or Y2 is random. As a result,
an algorithm to solve DDH1 (resp. LW1) implies an algorithm to solve LW1 (resp. LW2) so that
we can say that LW1 (resp. LW2) is no harder than DDH1 (resp. DDH2). The other direction,
however, is not clear and it is due to this reason that the assumptions are considered non-standard.

Similar to the above, the problem A1 contains an embedded instance of DDH1. If P1 = zF1,
P2 = zF2, then the elements P1, dP1, sP1, Z1, P2 (present in the A1-instance) will form a proper
DDH1 instance where it is required to determine whether Z1 = sdP1 = sdzF1 or not. Hence a
DDH1 solver can be used to solve A1. On the other hand, the converse is not known to hold.

Theorem 6.2.1. If the (εLW1, t
′)-LW1, (εLW2, t

′)-LW2, (εDBDH-3, t
′)-DBDH-3 and (εA1, t

′)-A1 as-
sumptions hold, then LW-IBE is (ε, t, q)-ANO-IND-ID-CPA secure where

ε ≤ εLW1 + qεLW2 + εDBDH-3 + εA1

and t = t′ −O(qρ), where ρ is an upper bound on the time required for one scalar multiplication in
G1 or G2.

Proof. Let A be any t-time adversary against LW-IBE in the ano-ind-cpa. The proof follows a
hybrid argument over a sequence of q +4 games – Greal,G0,G1, . . . ,Gq,GM -rand,Gfinal – between A
and a simulator B, where the games are defined as follows.

• Greal: the real security game ano-ind-cpa.

• G0: challenge ciphertext is semi-functional.

• Gk (1 ≤ k ≤ q): first k keys returned to the adversary are semi-functional and the rest are
normal.
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• GM -rand: the challenge ciphertext encrypts a random message under one of the challenge
identities.

• Gfinal: both message and challenge identity are random in the challenge ciphertext.

Let Xreal, Xk, XM -rand and Xfinal denote the events that the adversary wins in Greal, Gk,
GM -rand and Gfinal for 0 ≤ k ≤ q respectively. Note that, in Gfinal, the challenge ciphertext
is an encryption of a random message under a random identity vector. Hence β is statistically
hidden from the adversary’s view implying that Pr[Xfinal] = 1/2. From [114], we know that
∣Pr[Xreal] −Pr[X0]∣ ≤ εLW1, ∣Pr[Xk−1] −Pr[Xk]∣ ≤ εLW2 and ∣Pr[Xq] −Pr[XM -rand]∣ ≤ εDBDH-3.

We now show that Pr[XM -rand] − Pr[Xfinal] ≤ εA1. Consider a simulator B playing the game
ano-ind-cpa with A . At this stage all keys are semi-functional and the message encrypted in
the challenge ciphertext is random. Let (G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz−
ax)F2, Z1) be the instance of A1 provided to B. Let Z1 = c ⋅ sdzF1. B has to determine whether

c = 1 or c
U←Ð Zp. The game is simulated as follows.

Set-Up: Pick α, v, v′, y, u
U←Ð Zp and set the parameters as

P1 = zF1, V2 = vF2, V
′

2 = v′F2, Q1 = y(dzF1), U1 = u(dzF1),
aP1 = azP1, aQ1 = y(adzF1), aU1 = u(adzF1),

Similarly compute the elements τP1, τQ1 and τU1. Compute e(P1, P2)α = e(zF1, zF2)α. B returns
PP to A . B knows P2 = zF2 and α but not Q2 and U2.

Key Extraction Phases 1 and 2: B picks w, r1, r2
U←Ð Zp, γ

U←Ð Z×p and π′
U←Ð Zp. It then

computes the key for the k-th identity idk as follows.

K1,1 = w(zF2) + r1V2 − γaF2, K1,2 = r1V
′

2 + γF2, K1,3 = r1F2

K2,1 = αzF2 +w(yidk + u)(dz − ax)F2 + r2V2 − γπ′(aF2),
K2,2 = r2V

′
2 +w(yidk + u)xF2 + γπ′F2, K2,3 = r2F2,

setting π = π′ + γ−1w(yidk + u)x. Since γ−1w(yidk + u)x is additively randomised by π′, π has
the correct distribution in A ’s view. B returns SKidk = ((K1,i,K2,i)i=1,2,3) to A . The following
calculation shows that K2,1 and K2,2 are well-formed.

The following calculation shows that K2,1 and K2,2 are well-formed.

K2,1 = αzF2 +w(yidi + u)(dz − ax)F2 + r2V2 − γπ′(aF2)
= αP2 +w(yidi + u)(dz − ax)F2 + r2V2 − γ(π − γ−1w(yidi + u)x)(aF2)
= αP2 +w(yidi + u)dzF2 −w(yidi + u)axF2 + r2V2 − aγπF2 +w(yidi + u)(axF2)
= αP2 +w(idiQ2 +U2) + r2V2 − aγπF2

K2,2 = r2V
′

2 +w(yidi + u)xF2 + γπ′F2

= r2V
′

2 +w(yidi + u)(xF2) + γ(π − γ−1
1 w(yidi + u)x)F2

= r2V
′

2 +w(yidi + u)(xF2) + γπF2 −w(yidi + u)xF2

= r2V
′

2 + γπF2.

Challenge: B receives two pairs of messages and identities (M0, îd0) and (M1, îd1) from A . It

chooses β
U←Ð {0,1} and a′, ξ

U←Ð Zp at random and generates a semi-functional challenge ciphertext
as follows.
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C0
U←Ð GT

C1,1 = (y îdβ + u)Z1, C1,2 = a′(y îdβ + u)Z1 + ξF1,

C1,3 = −v(yîdβ + u))Z1 − v′a′(y îdβ + u)Z1 − v′ξF1,
C2,1 = szF1, C2,2 = a′szF1, C2,3 = −v(szF1) − v′a′(szF1),

where a′ = a + µ′, µ = µ′sz and ξ = µσ′. The challenge ciphertext Ĉ =
(C0,C1,1,C1,2,C1,3,C2,1,C2,2,C2,3) is returned to A . The computations below illustrate that Ĉ
is a semi-functional encryption with σ = σ′ + cd(y îdβ + u).

C1,2 = a′(y îdβ + u)Z1 + ξF1

= (a + µ′)(y îdβ + u)csdzF1 + µσ′F1

= a(y îdβ + u)csdzF1 + µ′h(îdβ)csdzF1 + µσ′F1

= as(îdβQ1 +U1) + (µ′sz)(cd(y îdβ + u))F1 + µσ′F1

= as(îdβQ1 +U1) + µ(cd(y îdβ + u))F1 + µσ′F1

= as(îdβQ1 +U1) + µσF1

Observe that C1,1 = s(îdβQ1 + U1) = (c ⋅ (y îdβ + u))(sdzF1). If c = 1, then σ = σ′ + d(y îdβ + u) and
Ĉ is encrypted under îdβ. Otherwise, c is random, causing (y îdβ + u) and consequently the target
identity and σ to be random quantities.

Guess: A returns its guess β′ of β.

If the algorithm B returns 1 when β = β′ and 0 otherwise, it can solve the A1 instance with
advantage

AdvA1
G (B) = ∣Pr[β = β′∣Z1 is real] −Pr[β = β′∣Z1 is random]∣

= ∣Pr[XM -rand] −Pr[Xfinal]∣.

Now, A ’s advantage in winning the game is given by

Advano-ind-cpa
LW−IBE (A ) = ∣Pr[Xreal] −

1

2
∣

= ∣Pr[Xreal] −Pr[Xfinal]∣

≤ ∣Pr[Xreal] −Pr[X0]∣ +
q

∑
k=1

(∣Pr[Xk−1] −Pr[Xk]∣)

+ ∣Pr[Xq,1] −Pr[XM -rand]∣ + ∣Pr[XM -rand] −Pr[Xfinal]∣
≤ εLW1 + qεLW2 + εDBDH-3 + εA1

6.2.3 Extension to the Hierarchical Setting

In this section, we present our HIBE scheme, LW -AHIBE , resulting from a BBG-type extension of
the LW IBE scheme. A straightforward BBG-type extension would lead to problems in adopting
the dual system methodology. We introduce some new elements to overcome this problem. The
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construction is based on a Type-3 prime-order pairing with group order p. Identities are variable
length tuples of elements from Z×p with maximum length h.

The first step towards obtaining constant-size ciphertexts is to add elements (Q1,j)j∈[1,h], U1 ∈
G1 to the public parameters. These are used to create the identity hash – for an identity id =
(id1, . . . , id`), the hash is given by ∑`j=1 idjQ1,j + U1. This replaces the hash in LW-IBE without
affecting the number of elements in the ciphertext. To facilitate key extraction, the corresponding
elements in G2 also are provided. We introduce some notation here: the tuple (P1, (Q1,j)j∈[1,h], U1)
is denoted Q1 and let its G2 counterpart be Q2. Also present in the master secret of LW-IBE are
the elements V2, V

′
2 , F2 that provide cancellation analogous to the composite order setting. In the

HIBE setting, these elements along with Q2, must be made public to assist in re-randomisation
during delegation. Once these are made public, nothing is kept secret except for α. This acts as a
stumbling block against a dual system proof. In a proof within the dual system framework, some
secret elements are needed to create the so-called semi-functional components that are central to
this proof methodology. In the composite order setting, this is achieved by keeping one subgroup
hidden from the attacker which essentially forms the semi-functional space. Similarly, schemes
based on dual pairing vector spaces have some vectors in the dual bases hidden that assist in
generating the semi-functional space. But the strategy for HIBE extension of LW-IBE chalked out
above, requires everything to be made public (except α), which in turn limits our ability to define
a semi-functional space.

Our solution to this problem is to keep Q2 in the master secret. In a way, some elements of
the group G2 are hidden and provide the basis for generating semi-functional components. To
support delegation, suitably randomised copies of the key components are provided in the key
itself. This technique was introduced by Boyen and Waters [36] to construct an anonymous HIBE
scheme. V2, V

′
2 , F2 are public to help in re-randomisation during delegation; this ensures proper

distribution of the delegated key. Note that Q2 contains precisely the elements required to check
whether a ciphertext is encrypted to a particular identity or not. A by-product of keeping this
tuple secret is anonymity. Thus our scheme is secure in the ANO-IND-ID-CPA security model (refer
to Section 2.2.1.3).

We now present the scheme LW -AHIBE . A discussion on the security of LW -AHIBE can be
found in Section 6.2.4.

Construction

LW -AHIBE .Setup(κ): Let h denote the maximum depth of the HIBE. Choose random generators

P1 ∈ G1 and P2 ∈ G2; elements Q1,1, . . . ,Q1,h, U1
U←Ð G1 and Q2,1, . . . ,Q2,h, U2 ∈ G2 such that

Q2,j ∼ Q1,j for all 1 ≤ j ≤ h and U2 ∼ U1. Let F2 ∈ G2 be chosen at random and v, v′ be chosen
randomly from Zp. Set V2 = vF2, V ′

2 = v′F2. Pick α,a at random from Zp. Set τ = v + av′ so that
τF2 = V2 + aV ′

2 .

PP : (P1, aP1, τP1, U1, aU1, τU1, (Q1,j , aQ1,j , τQ1,j)j∈[1,h],
V2, V

′
2 , F2, e(P1, P2)α).

MSK: (αP2, P2,Q2,1, . . . ,Q2,h, U2).

LW -AHIBE .Encrypt(M, id = (id1, . . . , id`),PP): Choose s
U←Ð Zp. Let Hi(id) = id1Qi,1+⋯+ id`Qi,`+
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Ui for i = 1,2. The ciphertext is given by C = (C0,C1,1,C1,2,C1,3,C2,1,C2,2,C2,3) where the elements
are computed as follows.

C0 =M × e(P1, P2)αs,
C1,1 = sH1(id), C1,2 = asH1(id), C1,3 = −τsH1(id)
C2,1 = sP1, C2,2 = asP1, C2,3 = −τsP1

LW -AHIBE .KeyGen(id = (id1, . . . , id`),MSK,PP): Choose w1,w2, r1, r2, r3, r4, (z1,j , z2,j)j∈[`+1,h]
U←Ð

Zp. The key consists of 6(n − ` + 2) group elements computed as follows.

K1,1 = w1P2 + r1V2, K1,2 = r1V
′

2 , K1,3 = r1F2

K2,1 = αP2 +w1H2(id) + r2V2, K2,2 = r2V
′

2 , K2,3 = r2F2

Dj,1 = w1Q2,j + z1,jV2, Dj,2 = z1,jV
′

2 , Dj,3 = z1,jF2 for ` + 1 ≤ j ≤ h

J1,1 = w2P2 + r3V2, J1,2 = r3V
′

2 , J1,3 = r3F2

J2,1 = w2H2(id) + r4V2, J2,2 = r4V
′

2 , J2,3 = r4F2

Ej,1 = w2Q2,j + z2,jV2, Ej,2 = z2,jV
′

2 , Ej,3 = z2,jF2 for ` + 1 ≤ j ≤ h.

The secret key for id is given by SKid = (S1,S2), where S1 = (K1,i,K2,i,Dj,i)j∈[`+1,h],i=1,2,3 and
S2 = (J1,i, J2,i,Ej,i)j∈[`+1,h],i=1,2,3. Notice that S2-components are almost same as S1-components
except that the secret α is not embedded in S2. The set S2 is exclusively used for re-randomisation.

LW -AHIBE .Delegate(id = (id1, . . . , id`),SKid, id`+1,PP): Let id ∶ id`+1 denote the ` + 1-
length identity vector (id1, . . . , id`, idell+1) obtained by appending id`+1 to id. Choose

r′1, r
′
2, r

′
3, r

′
4, (z′1,j , z′2,j)j∈[`+2,h]

U←Ð Zp and w′
1,w

′
2

U←Ð Z×p . The components of the key for the identity
id ∶ id`+1 are computed as follows.

K1,1 ←K1,1 +w′
1J1,1 + r′1V2 K2,1 ←K2,1 + id`+1D`+1,1 +w′

1(J2,1 + id`+1E`+1,1) + r′2V2

K1,2 ←K1,2 +w′
1J1,2 + r′1V ′

2 K2,2 ←K2,2 + id`+1D`+1,2 +w′
1(J2,2 + id`+1E`+1,2) + r′2V ′

2

K1,3 ←K1,3 +w′
1J1,3 + r′1F2 K2,3 ←K2,3 + id`+1D`+1,3 +w′

1(J2,3 + id`+1E`+1,3) + r′2F2

J1,1 ← w′
2J1,1 + r′3V2 J2,1 ← w′

2(J2,1 + id`+1E`+1,1) + r′4V2

J1,2 ← w′
2J1,2 + r′3V ′

2 J2,2 ← w′
2(J2,2 + id`+1E`+1,2) + r′4V ′

2

J1,3 ← w′
2J1,3 + r′3F2 J2,3 ← w′

2(J2,3 + id`+1E`+1,3) + r′4F2

For j = ` + 2, . . . , h,
Dj,1 ←Dj,1 +w′

1Ej,1 + z′1,jV2 Dj,2 ←Dj,2 +w′
1Ej,2 + z′1,jV ′

2 Dj,3 ←Dj,3 +w′
1Ej,3 + z′1,jF2

Ej,1 ← w′
2Ej,1 + z′2,jV2 Ej,2 ← w′

2Ej,2 + z′2,jV ′
2 Ej,3 ← w′

2Ej,3 + z′2,jF2

The above procedure essentially re-randomises all components of the key. As a result the distribu-
tion of a key obtained using delegation is the same as the distribution of a key obtained using the
key generation procedure. To note the re-randomisation consider the following change of scalars
for the modified key.

w1 ← w1 +w′
1w2; w2 ← w′

2w2;
r1 ← r1 + r′1 +w′

1r3; r3 ← w′
2r3 + r′3;

r2 ← r2 + r′2 + id`+1z1,`+1 +w′
2(r4 + id`+1z2,`+1); r4 ← w′

2(r4 + id`+1z2,`+1) + r′4;
z1,j ← z1,j + z′1,j +w′

1z2,j+1 for j = ` + 2, . . . , h z2,j ← w′
2z2,j + z′2,j for j = ` + 2, . . . , h

These new randomisers are properly distributed by the choice of w′
1,w

′
2, r

′
1, r

′
2, r

′
3, r

′
4, (z′1,j), (z′2,j).
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LW -AHIBE .Decrypt(C, id = (id1, . . . , id`),SKid,PP): Decryption is done as follows.

M = C0 ×
e(C1,1,K1,1)e(C1,2,K1,2)e(C1,3,K1,3)
e(C2,1,K2,1)e(C2,2,K2,2)e(C2,3,K2,3)

(6.1)

Correctness of decryption of the HIBE scheme follows directly from that of LW-IBE since the
decryption procedure remains the same – the additional delegation components do not play any
role in decryption. Observe that computing the ratio of pairings in Equation (6.1) using J1,i, J2,i

(i = 1,2,3) instead of K1,i,K2,i results in 1T (the identity of GT ).

6.2.4 Security of LW -AHIBE

We first provide some basic intuition underlying the proof with respect to different stages of security
analysis (within the dual system framework), highlighting the similarities and differences with LW-
IBE security proof. Then, a detailed security analysis of LW -AHIBE is presented in Section 6.2.4.2.

6.2.4.1 Ideas Underlying the Security Proof

The first step is to define semi-functional (sf) ciphertexts and keys. The definition of sf-ciphertext
remains the same as LW-IBE. The keys of LW -AHIBE are significantly different from LW-IBE. We
formulate the definition of sf-keys on the basis of the following observations.

• Sf-components for (K1,i,K2,i)i=1,2 are identical to LW-IBE since only these components par-
ticipate in decryption.

• It is required to define sf-components for (Dj,1,Dj,2)j∈[`+1,h] though they are only used during
delegation to create the identity-hash. This is because they share the randomiser w1 with
K1,i,K2,i and this randomiser comes from a problem instance in the reductions.

• Once sf-components are defined for S1, it is natural to ask: is it necessary to define sf-parts
for S2? The answer is yes since otherwise the fourth reduction fails, where P2, U2, (Q2,j) are
masked by a quantity that forces the keys to be semi-functional. We have already seen this
in the context of LW-IBE (see Theorem 6.2.1).

We would like to emphasise that the definition of semi-functional components (in both ciphertexts
and keys), complexity assumptions and the reductions are all inter-linked. Changing the structure
of sf-keys may determine the assumption required or affect simulation in some reduction. Also, for
the reductions to go through, the sf-components may have to be defined in a particular way. The
structure of sf-components we have is in a sense, optimal, subject to assumptions and simulations
we provide.

An outline of the four main reductions in the augmented security proof (including anonymity)
of LW-IBE is as follows.

First reduction: The goal of this reduction is to show that an attacker cannot distinguish
between a normal ciphertext and an sf-ciphertext. It is achieved via a reduction from the
LW1 problem. An LW1 instance is embedded in the challenge ciphertext attempting to exploit
the adversary’s ability to detect the change in order to solve the problem.
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Second reduction: In this reduction, it is shown that if the adversary can decide whether the
response to the k-th key extraction query is normal or semi-functional, then LW2 problem
can be solved. The k-th key is constructed from an instance of LW2 problem in such a way
that the key is normal if the instance is ‘real’ and semi-functional otherwise.

Third reduction: Here, the message that the challenge ciphertext encrypts, is changed to a
random element of GT . It is shown that solving the DBDH-3 problem is no harder than
distinguishing between an sf-encryption of the real message from an sf-encryption of a random
element of GT .

Fourth reduction: Challenge ciphertext encrypts a random message under a random identity.
The identity-hash is created using the challenge in an instance of A1 problem thus making it
real or random according to the distribution of the challenge.

This strategy does not directly extend to the hierarchical setting. Several challenges emerge as we
try to prove security of LW -AHIBE .

The first and the third reductions for LW -AHIBE are the closest to the corresponding reductions
for LW-IBE appearing in [114]. In these reductions, the simulations of the public parameters; the
ciphertext elements; and the components of the key which are present in LW-IBE; are exactly the
same as for LW-IBE. The only technicality is to ensure that the extra components of the key can be
properly simulated without changing the corresponding assumptions (LW1 for the first reduction
and DBDH-3 for the third reduction).

The second reduction presents some technical novelty. We need to extend the dual-system
technique to handle this reduction. In this reduction, it is shown that the adversary cannot decide
whether the response to the k-th key extraction query is normal or semi-functional. Compared
to the LW-IBE, the key has additional components which are required for delegation and re-
randomisation; moreover, these have semi-functional parts. A new technique is required to handle
these simulations.

Partial semi-functionality: Consider the second reduction where the k-th key is made semi-
functional. LW-IBE reduction embeds a pairwise independent function in the k-th key as well as
the challenge ciphertext to ensure independent distribution of the scalars involved in the respective
sf-components. This function is determined by the parameters used to create the identity-hash. An
attempt to use the same strategy for LW -AHIBE , however, causes a problem. The reason is that
the identity-hash is now present in three places – challenge ciphertext, S1 and S2. In addition, all
these have sf-components. One possible way to deal with this is to embed a 3-wise independent
function i.e., a degree-2 polynomial in the identity. As result the one extra group element is required
in PP as well as MSK. Also, encryption and key generation would each require an extra scalar
multiplication and a squaring in the underlying field. The other way to get around the problem is
to use two separate instances to generate the two hashes in the key. We follow the latter approach
since the efficiency of the scheme remains unaffected although the degradation is increased by a
factor of 2. The key is changed from normal to semi-functional in two steps – first make S1 semi-
functional followed by S2. We call a key partial semi-functional if S1 is semi-functional and S2 is
normal. Also, let PSFKeyGen denote the algorithm that generates a partial semi-functional key.
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The second step of the dual-system technique changes the key in the k-th response from normal
to semi-functional (without the adversary noticing this). In our case, this is done in two sub-steps
– the first step changes from normal to partial semi-functional and the second step changes from
partial semi-functional to semi-functional. This leads to a slight degradation in the security bound
by a factor of 2.

The fourth reduction is to show anonymity of the HIBE scheme. This is almost the same as
the reduction that we have provided to show the anonymity of the LW-IBE. The only difference is
that the extra elements of the key have to properly simulated.

Discussion. It is natural to ask whether it is at all required to define semi-functional terms for S2

components of a key that do not play any role in decryption. The answer is yes and the reason is as
follows. Since all the elements required to create the id-hash in G2 are hidden, there is no way to test
the identity to which a ciphertext is encrypted. The scheme seems to be anonymous but to prove
it, we need to ensure that a semi-functional encryption to a target identity is indistinguishable from
a semi-functional encryption to a random identity vector. (We need semi-functionality in order to
deal with the key extraction queries.)

Normally, the K-components of the key are used for decrypting a ciphertext. When these are
paired with the ciphertext components we obtain the blinding factor for the message that only
depends on α and the randomiser s. Instead if we try decrypting using J-components of the key
(which do not have any α terms), we get 1T , the identity of GT . Hence the J-components help in
testing whether the ciphertext is indeed encrypted under id or not. The presence of such a test
does not help in proving anonymity property. Therefore, it is essential to make S2-components of
all keys semi-functional before arguing about anonymity.

6.2.4.2 Detailed Proof

As is typical in the dual-system technique, we first describe semi-functional ciphertexts and keys.
These are required only in the reductions and not in the actual scheme.

LW -AHIBE .SFEncrypt(PP,MSK,C′): Let C′ = (C ′
0,C

′
1,1,C

′
1,2,C

′
1,3,C

′
2,1,C

′
2,2,C

′
2,3) be a ciphertext

normally generated by the Encrypt algorithm for message M and identity id. Let V ′
1 , F1 be elements

of G1 such that V ′
1 ∼ V ′

2 and F1 ∼ F2. Choose µ,σ
U←Ð Zp. Modify the normal ciphertext as: C0 = C ′

0,
C1,1 = C ′

1,1, C2,1 = C ′
2,1 and

C1,2 = C ′
1,2 + µσF1, C1,3 = C ′

1,3 − µσV ′
1 ,C2,2 = C ′

2,2 + µF1, C2,3 = C ′
2,3 − µV ′

1 .

LW -AHIBE .SFKeyGen(PP,MSK,SK′id): Let SK′id = (S1,S2) be the secret key generated by
the KeyGen algorithm for identity id = (id1, . . . , id`) with S1 = (K1,i,K2,i,Dj,i)j∈[`+1,h],i=1,2,3,

S2 = (J1,i, J2,i,Ej,i)j∈[`+1,h],i=1,2,3. Let γ1, π, γ2, η, (πj , ηj)j∈[`+1,h]
U←Ð Zp. The semi-functional key

generation algorithm will modify the normal key as:

K1,1 =K1,1 − aγ1F2, K1,2 =K1,2 + γ1F2, J1,1 = J1,1 − aγ2F2, J1,2 = J1,2 + γ2F2,
K2,1 =K2,1 − aγ1πF2, K2,2 =K2,2 + γ1πF2, J2,1 = J2,1 − aγ2ηF2, J2,2 = J2,2 + γ2ηF2,

For j = ` + 1, . . . , h
Dj,1 =Dj,1 − aγ1πjF2, Dj,2 =Dj,2 + γ1πjF2, Ej,1 = Ej,1 − aγ2ηjF2, Ej,2 = Ej,2 + γ2ηjF2.
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The rest of the components remain unchanged.

LW -AHIBE .PSFKeyGen(PP,MSK,SK′id = (S1,S2)): In a partial semi-functional key, S2 is normal
and S1 is semi-functional.

Note that definitions are similar to [114] except for the delegation and re-randomisation com-
ponents. Since decryption is not affected by these components of the key, all the requirements for
semi-functional keys and ciphertexts are satisfied. A pair of semi-functional ciphertext and key is
called nominally semi-functional if σ = π (condition that makes decryption successful).

Structure of the Proof. We consider the security model defined in Section 2.2.1.3. The proof
is organised as a hybrid over a sequence of 2q + 4 games defined as follows.

Greal: ano-ind-cpa game defined in Section 2.2.1.3.

G0,1: the challenge ciphertext is semi-functional and all the keys returned to the adversary are
normal.

Gk,0 (for 1 ≤ k ≤ q): k-th key is partial semi-functional, the first k −1 keys are semi-functional; the
rest of the keys are normal.

Gk,1 (for 1 ≤ k ≤ q): similar to Gk,0 except that the k-th key is (fully) semi-functional.

GM -rand: all keys are semi-functional and the challenge ciphertext encrypts a random message to
the challenge identity.

Gfinal: similar to GM -rand except that the challenge ciphertext now encrypts to a random identity
vector.

These games are ordered as Greal, G0,1, G1,0,G1,1, . . . ,Gq,0,Gq,1, GM -rand, Gfinal in our hybrid argu-
ment. Let X◻ be events that A wins in G◻.

For the proof it will be convenient to use the following short-hand: denote by h(id) the sum

∑`j=1 yj idj + u and by g(id) the sum ∑`j=1 λj idj + ν, where y1, . . . , yn, u, λ1, . . . , λn, ν are elements of
Zp to be chosen in the proofs.

Theorem 6.2.2. If the (εLW1, t
′)-LW1, (εLW2, t

′)-LW2, (εDBDH-3, t
′)-DBDH-3 and (εA1, t

′)-A1 as-
sumptions hold, then LW -AHIBE is (ε, t, q)-ANO-IND-ID-CPA secure where

ε ≤ εLW1 + 2qεLW2 + εDBDH-3 + εA1

and t = t′ −O(qρ), where ρ is an upper bound on the time required for one scalar multiplication in
G1 or G2.

Proof. For any t-time adversary A against LW -AHIBE in the ano-ind-cpa, its advantage in winning
the game is given by

Advano-ind-cpa
LW -AHIBE (A ) = ∣Pr[Xreal] −

1

2
∣ .
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We know that Pr[Xfinal] = 1
2 and hence we have

Advano-ind-cpa
LW -AHIBE (A ) = ∣Pr[Xreal] −Pr[Xfinal]∣

≤ ∣Pr[Xreal] −Pr[X0]∣ +
q

∑
k=1

(∣Pr[Xk−1,1] −Pr[Xk,0]∣) +
q

∑
k=1

(∣Pr[Xk,0] −Pr[Xk,1]∣)

+ ∣Pr[Xq,1] −Pr[XM -rand]∣ + ∣Pr[XM -rand] −Pr[Xfinal]∣
≤ εLW1 + 2qεLW2 + εDBDH-3 + εA1

The last inequality follows from the lemmas 6.2.1, 6.2.2, 6.2.3, 6.2.4 and 6.2.5. In all the lemmas,
A is a t-time adversary against LW -AHIBE and B is an algorithm running in time t′ that interacts
with A and solves one of the three problems LW1, LW2, DBDH-3 or A1.

Lemma 6.2.1. ∣Pr[Xreal] −Pr[X0,1]∣ ≤ εLW1.

Proof. The algorithm B receives the following instance of LW1

(F1, bsF1, sF1, aF1, ab
2F1, bF1, b

2F1, asF1, b
2sF1, b

3F1, b
3sF1, F2, bF2, Z1).

B has to determine whether Z1 = ab2sF1 or Z1
U←Ð G1. We will call Z1 “real” in the former case

and “random” otherwise. B simulates the security game as described below.

Set-Up: B chooses α, y, v′, (yj , λj)j∈[1,h], u, ν
U←Ð Zp and sets the parameters.

P1 = b2F1 + yF1,Q1,j = λj(b2F1) + yjF1 for 1 ≤ j ≤ h,U1 = ν(b2F1) + uF1

V2 = bF2, V
′

2 = v′F2.

This implicitly sets P2 = (b2 + y)F2, v = b and τ = b+ av′. Compute aP1 = ab2F1 + y(aF1) and τP1 =
b3F1 + v′(ab2F1) + y(bF1) + yv′(aF1). The elements (aQ1,j , τQ1,j)j∈[1,h], aU1, τU1 are constructed
similarly. Set e(P1, P2)α = (e(b3F1 + y(bF1), bF2)e(P1, yF2))α. The simulator gives the following
public parameters to A .

PP = (P1,Q1,1, . . . ,Q1,h, U1, aP1, aQ1,1, . . . , aQ1,h, aU1, τP1, τQ1,1, . . . , τQ1,h, τU1, e(P1, P2)α).

Phases 1 and 2: A makes a number of key extract queries. B does not know P2,Q2,j , U2 which
are part of the master secret. The secret key for a query on id is constructed as follows. B chooses
r′1, r

′
2, r

′
3, r

′
4, (z′1,j , z′2,j)j∈[`+1,h],w1,w2 ∈ Zp at random and computes

K1,1 = w1yF2 + r′1(bF2), K1,3 = r′1F2 −w(bF2), K1,2 = v′K1,3,,
K2,1 = αyF2 + r′2(bF2) +wh(id)F2, K2,3 = r′2F2 − (w1g(id) + α)(bF2), K2,2 = v′K2,3,,
Dj,1 = w1yjF2 + z′1,j(bF2), Dj,3 = z′1,jF2 −w1λj(bF2), Dj,2 = v′Dj,3 for ` + 1 ≤ j ≤ h,

J1,1 = w2yF2 + r′3(bF2), J1,3 = r′3F2 −w2(bF2), J1,2 = v′J1,3,
J2,1 = r′4(bF2) +w2h(id)F2, J2,3 = r′4F2 −w2g(id)(bF2), J2,2 = v′J2,3,
Ej,1 = w2yjF2 + z′2,j(bF2), Ej,3 = z′2,jF2 −w2λj(bF2), Ej,2 = v′Ej,3 for ` + 1 ≤ j ≤ h,

implicitly setting
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r1 = r′1 −w1b, r2 = r′2 − (w1g(id) + α)b,
r3 = r′3 −w2b, r4 = r′4 −w2g(id)b,
z1,j = z′1,j −w1λjb, z2,j = z′2,j −w2λjb for j = ` + 1, . . . , h.

The following computation shows that the components are well-formed.

K1,1 = wyF2 + r′1(bF2) K2,1 = αyF2 + r′2(bF2) +wh(id)F2

= wyF2 + (r1 +wb)bF2 = αyF2 + (r2 + (wg(id) + α)b)bF2 +wh(id)F2

= w(yF2 + b2F2) + r1(bF2) = α(yF2 + b2F2) + r2(bF2) +w(g(id)b2F2 + h(id)F2)
= wP2 + r1V2 = αP2 +wH2(id) + r2V2

D1,j = wyjF2 + z′j(bF2)
= wyjF2 + (z1,j +wλjb)(bF2)
= w(yjF2 + λjb2F2) + z1,j(bF2)
= wQ2,j + z1,jV2

Following the same logic, it can be verified that J1,1, J2,1,Ej,1 are well-formed. Remaining compo-
nents clearly have the right form.

Challenge: B receives two pairs (M0, îd0) and (M1, îd1) from A . It chooses β ∈ {0,1} at
random. B computes the ciphertext for Mβ under îdβ as follows.

C0 =Mβ ⋅ (e(b3sF1 + y(bsF1), bF2)e(b2sF1 + y(sF1), yF2))
α =Mβ ⋅ e(P1, P2)αs

C1,1 = g(îdβ)(b2sF1) + h(îdβ)(sF1), C1,2 = g(îdβ)Z1 + h(îdβ)(asF1)
C1,3 = −g(îdβ)(b3sF1) − h(îdβ)(bsF1) − v′g(îdβ)Z1 − v′h(îdβ)(asF1)
C2,1 = b2sF1 + y(sF1), C2,2 = Z1 + y(asF1)
C2,3 = −b3sF1 − y(bsF1) − v′Z1 − v′(asF1).

B returns Ĉ = (C0,C1,1,C1,2,C1,3,C2,1,C2,2,C2,3) to A .

If Z1 = ab2sF1, then it is easy to see that Ĉ is normal. Otherwise, Z1 = (ab2s + µ)F1 for some

µ
U←Ð Zp and Ĉ is semi-functional with µ = µ and σ = g(îdβ). The calculation below shows that

C1,2 is a properly formed (semi-functional) component.

C1,2 = g(îdβ)Z1 + h(îdβ)(asF1)
= g(îdβ)(ab2s + µ)F1 + h(îdβ)(asF1)
= as(g(îdβ)b2F1 + h(îdβ)F1) + µg(îdβ)F1

= asH1(îdβ) + µσF1

Verification of the well-formedness of C1,3, C2,2 and C2,3 follows the same pattern. Scalars
(λj)j∈[1,h], ν are information theoretically hidden from A ’s view and hence σ = g(id) appears
to be uniformly and independently distributed with respect to all other information provided to
A .

Note that, to check whether Ĉ is semi-functional or not, B itself could try to decrypt it with
a semi-functional key for îdβ. Any such attempt will fail due to the following reason – aF2 is
unavailable to B; it could try to cancel out −aγF2 in K1,1 or γF2 in K1,2 with some other elements;
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but we do not see how to achieve this keeping the link between K1,1 and K1,2 (via γ) intact, without
knowing aF2.

Guess: The adversary returns its guess β′ to B.

If Z1 is real, Ĉ is normal and hence B simulates Greal. Otherwise, Z1 is random and Ĉ is semi-
functional in which case, B simulates G0,1. Suppose that B returns 1 if β = β′ and 0 otherwise.
Then it can solve the LW1 problem with advantage

AdvLW1
G (B) = ∣Pr[β = β′∣Z1 is real] −Pr[β = β′∣Z1 is random]∣ = ∣Pr[Xreal] −Pr[X0,1]∣ ≤ εLW1.

Lemma 6.2.2. ∣Pr[Xk−1,1] −Pr[Xk,0]∣ ≤ εLW2 for 1 ≤ k ≤ q.

Proof. Let (F1, dF1, d
2F1, bxF1, dbxF1, d

2xF1, F2, dF2, bF2, cF2, Z2) be the instance of LW2 that B

receives. Let Z2 = (bc + γ)F2. B’s task is to decide whether γ = 0 (Z2 is real) or γ
U←Ð Zp (Z2 is

random).

Set-Up: B chooses α,a, yv, y1, . . . , yh, u, λ1, . . . , λh, ν
U←Ð Zp and computes parameters as follows.

P1 = dF1, Q1,j = λj(dF1) + yjF1 for 1 ≤ j ≤ h, U1 = ν(dF1) + uF1, V2 = −a(bF2) + dF2 + yvF2

and V ′
2 = bF2 setting v = −ab + d + yv, v′ = b and τ = d + yv. The element τP1 can be computed

as τP1 = d2F1 + yv(dF1). The parameters τQ1,j for 1 ≤ j ≤ h and τU1 are given by τQ1,j =
λj(d2F1) + yj(dF1) + yvλj(dF1) + yvyjF1 and τU1 = ν(d2F1) + u(dF1) + yvν(dF1) + yvuF1. The
remaining parameters required to provide PP to A are computed using a, α and elements of the
problem instance. Elements of the master secret key can also be obtained from the instance and
randomisers chosen at setup.

Phases 1 and 2: The key extraction queries for identities id1, . . . , idq are answered in the following
way. If i < k, a semi-functional key is returned and if i > k a normal key is returned. B creates
semi-functional keys using the master secret, a and F2.

For i = k, B computes of S1 using the problem instance in the following manner. Let idk =
(id1, . . . , id`). B chooses w′

1, r
′
2, z

′
1,`+1, . . . , z

′
1,h

U←Ð Zp.

K1,1 = w′
1P2 − aZ2 + yv(cF2), K1,2 = Z2, K1,3 = cF2

K2,1 = αP2 +w′
1(g(idk)(dF2) + h(idk)F2) + r′2V2 − ag(idk)Z2 + yvg(idk)(cF2) − h(idk)cF2

K2,2 = r′2V ′
2 + g(idk)Z2, K2,3 = r′2F2 + g(idk)(cF2)

and for j = ` + 1, . . . , h, set

Dj,1 = w′
1Q2,j + z′1,jV2 − yj(cF2) − aλjZ2 + yvλj(cF2)

Dj,2 = z′1,jV ′
2 + λjZ2, Dj,3 = z′1,jF2 + λj(cF2)

thus implicitly setting w1 = w′
1 − c, r1 = c, r2 = r′2 + g(idk)c and z1,j = z′1,j + λjc for ` + 1 ≤ j ≤ h.

Let S1 = (K1,i,K2,i,Dj,i)j∈[`+1,h],i=1,2,3. The second set S2 = (J1,i, J2,i,Ej,i)j∈[`+1,h],i=1,2,3 is
created normally. B returns SKidk = (S1,S2) as the key for idk. If Z2 = bcF2 then the key for idk
is normal.
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We show that K2,1 is well-formed. Verifying the remaining parts can be done analogously.

K2,1 = αP2 +w′
1(g(idk)(dF2) + h(idk)F2) + r′2V2 − ag(idk)Z2 + yvg(idk)(cF2) − h(idk)cF2

= αP2 + (w1 + c)H2(idk) + (r2 − g(idk)c)(−a(bF2) + dF2 + yvF2)
+ g(idk)(−abcF2 + yvcF2) − h(idk)cF2

= αP2 + (w1 + c)H2(idk) + r2V2 − g(idk)cdF2 + g(idk)(abcF2 − cyvF2)
− g(idk)(abcF2 − yvcF2) − h(idk)cF2

= αP2 + (w1 + c)H2(idk) + r2V2 − g(idk)cdF2 − h(idk)cF2

= αP2 + (w1 + c)H2(idk) + r2V2 − cH2(idk)
= αP2 +w1H2(idk) + r2V2.

If Z2 = (bc + γ)F2 the key will be partial semi-functional with γ1 = γ, π = g(idk) and πj = λj
for ` + 1 ≤ j ≤ h. It is straightforward to check that SKidk is a properly formed partial sf-key.
Also, since (λj)j∈[1,h], ν are information theoretically hidden from the adversary, π, (πj)j∈[`+1,h] are
uniformly and independently distributed in A ’s view.

B could attempt checking whether SKidk is semi-functional by creating a sf-ciphertext for idk.
Since V ′

1 = bF1 is not available to B, the only way of doing this will lead to σ being the same
as π (challenge ciphertext is created via this method). The ciphertext-key pair will be nominally
semi-functional and thus provides no information to B.

Challenge: A provides two message-identity pairs, (M0, îd0) and (M1, îd1) to B. It chooses

β
U←Ð {0,1}, generates the challenge ciphertext as shown below.

C0 =Mβ ⋅ e(dbxF1, dF2)α
C1,1 = g(îdβ)(dbxF1) + h(îdβ)(bxF1)
C1,2 = ag(îdβ)(dbxF1) + ah(îdβ)(bxF1) − g(îdβ)(d2xF1)
C1,3 = −yvg(îdβ)(dbxF1) − h(îdβ)(dbxF1) − yvh(îdβ)(bxF1)
C2,1 = dbxF1, C2,2 = a(dbxF1) − d2xF1, C2,3 = −yv(dbxF1).

This sets s = bx, µ = −d2x and σ = g(îdβ). Since λ1, . . . , λh and ν are chosen uniformly at random
from Zp, λ1X1 +⋯+ λhXh + ν is a pairwise independent function for variables X1, . . . ,Xh over Zp.
As a result, π = λ1id1 + ⋯ + λ`id` + ν and σ = λ1 îd1 + ⋯ + λ̂̀îd̂̀+ ν are independent and uniformly

distributed. B returns Ĉ = (C1,i,C2,i)i=1,2,3.

To show that Ĉ is indeed distributed properly, we show that C1,3 is well-formed. Along the
same lines, one can check the well-formedness of C1,2, C2,2 and C2,3.

C1,3 = −yvg(îdβ)(dbxF1) − h(îdβ)(dbxF1) − yvh(îdβ)(bxF1)
= −yvg(îdβ)(dbxF1) − yvh(îdβ)(bxF1) − h(îdβ)(dbxF1) − g(îdβ)d2bxF1 + g(îdβ)d2bxF1

= −yvbxH1(îdβ) − dbxH1(îdβ) + g(îdβ)d2x(bF1)
= −τH1(îdβ) + σµV ′

1

Guess: A returns a bit β′ as its guess for β.

When the instance is real, B simulates Gk−1,1 and otherwise simulates Gk,0. B returns 1 if
A wins the game i.e., β = β′; otherwise it returns 0. Hence, B can solve the LW2 instance with
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advantage

AdvLW2
G (B) = ∣Pr[β = β′∣Z2 is real] −Pr[β = β′∣Z2 is random]∣ = ∣Pr[Xk−1,1] −Pr[Xk,0]∣.

from which the statement of the lemma follows.

Lemma 6.2.3. ∣Pr[Xk,0] −Pr[Xk,1]∣ ≤ εLW2 for 1 ≤ k ≤ q.

The proof is reminiscent of Lemma 6.2.2. The reason is as follows: the structure of S2 is identical
to S1 if the αP2 term is removed from K2,1. Moreover, the simulator chooses α and creates αP2

independent of the instance. Hence the simulation will be similar except that the instance is now
embedded in S2 and S1 is made semi-functional independent of the instance.

Lemma 6.2.4. ∣Pr[Xq,1] −Pr[XM-rand]∣ ≤ εDBDH-3.

Proof. B receives (F1, aF1, bF1, sF1, F2, aF2, bF2, sF2, ZT ) as an instance of the DBDH-3 problem

where ZT = e(F1, F2)abs (real) or ZT
U←Ð GT (random).

Set-Up: With y, v, v′, y1, . . . , yh, u chosen at random from Zp, B sets the parameters as

P1 = yF1, P2 = yF2, aP1 = y(aF1), V2 = vF2, V
′

2 = v′F2, τP1 = yvF1 + yv′(aF1)

Q1,j = yjP1 = yjyF1 for 1 ≤ j ≤ h,U1 = uP1 = uyF1, e(P1, P2)α = e(aF1, bF2)y
2

implicitly setting α = ab and τ = v + av′. The remaining parameters can be computed easily. B
returns PP to A .

Phases 1 and 2: When A asks for the secret key for the i’th identity idi = (id1, . . . , id`), B
chooses at random w1,w2, r1, r2, r3, r4, (z1,j , z2,j)hj=1 and γ′1, γ1, γ2, (πj)hj=1, η, (ηj)hj=1 from Zp and
computes a semi-functional key for idi as follows.

K1,1 = w1P2 + r1V2 − γ1(aF2), K1,2 = r1V
′

2 + γ1F2, K1,3 = r1F2

K2,1 = γ′1(aF2) +w1h(idi)(P2) + r2V2, K2,2 = r2V
′

2 + y(bF2) − γ′1F2, K2,3 = r2F2,
Dj,1 = w1Q2,j + z1,jV2 − γ1πj(aF2), Dj,2 = z1,jV

′
2 + γ1πjF2, Dj,3 = z1,jF2 for ` + 1 ≤ j ≤ h.

J1,1 = w2P2 + r3V2 − γ2(aF2), J1,2 = r3V
′

2 + γ2F2, J1,3 = r3F2

J2,1 = w2h(idi)(P2) + r4V2 − γ2η(aF2), J2,2 = r4V
′

2 + γ2ηF2, J2,3 = r4F2,
Ej,1 = w2Q2,j + z2,jV2 − γ2ηj(aF2), Ej,2 = z2,jV

′
2 + γηjF2, Ej,3 = z2,jF2 for ` + 1 ≤ j ≤ h.

Here the relation aγ′1 = by − γ1π is implicitly set by the simulator. Calculations provided below
justify that K2,1 and K2,2 have the correct distribution. Other elements have the correct form and
distribution.

K2,1 = γ′1(aF2) +w1h(idi)(P2) + r2V2 K2,2 = r2V
′

2 + y(bF2) − γ′1F2

= (by − γ1π)(aF2) +w1h(idi)(P2) + r2V2 = r2V
′

2 + y(bF2) − (by − γ1π)F2

= ab(yF2) +w1h(idi)(P2) + r2V2 − aγ1πF2 = r2V
′

2 + y(bF2) − byF2 + γ1πF2

= αP2 +w1h(idi)(P2) + r2V2 − aγ1πF2. = r2V
′

2 + γ1πF2.

Observe that B does not know α or αF2 and hence cannot create a normal key.

Challenge: B receives two pairs (M0, îd0) and (M1, îd1) from A . It samples β
U←Ð {0,1},

µ′
U←Ð Zp and generates a semi-functional challenge ciphertext as follows.
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C0 =Mβ ×ZT
C1,1 = yh(îdβ)sF1, C1,2 = h(îdβ)µ′F1, C1,3 = −vyh(îdβ)(sF1) − v′h(îdβ)µ′F1

C2,1 = y(sF1), C2,2 = µ′F1, C2,3 = −yv(sF1) − v′µ′F1

with µ′ = asy + µ and σ = h(îdβ). The challenge ciphertext Ĉ = (C0,C1,1,C1,2,C1,3,C2,1,C2,2,C2,3)
is returned to A .

Guess: A returns its guess β′ of β.

It is clear that Ĉ is a semi-functional encryption of Mβ when ZT = e(P1, P2)abs. And when

ZT
U←Ð GT Ĉ would be a semi-functional encryption of a random message. Hence B simulates Gq,1

or Gfinal according to ZT being real or random respectively. If the algorithm B returns 1 when
β = β′ and 0 otherwise, it can solve the DBDH-3 instance with advantage

AdvDBDH-3
G (B) = ∣Pr[β = β′∣ZT is real] −Pr[β = β′∣ZT is random]∣ = ∣Pr[Xq,1] −Pr[Xfinal]∣.

Lemma 6.2.5. ∣Pr[XM-rand] −Pr[Xfinal]∣ ≤ εA1.

Proof. Let (G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz−ax)F2, Z1) be the instance of

A1 provided to B. Let Z1 = c ⋅ sdzF1. B has to determine whether c = 1 or c
U←Ð Zp. The game is

simulated as follows.

Set-Up: Pick α, v, v′, y1, . . . , yh, u
U←Ð Zp and set the parameters as

P1 = zF1, V2 = vF2, V
′

2 = v′F2, Q1,j = yj(dzF1), U1 = u(dzF1),

aP1 = azP1, aQ1,j = yj(adzF1), aU1 = u(adzF1),

where j = 1, . . . , h and similarly the elements τP1, τQ1,j and τU1. Compute e(P1, P2)α =
e(zF1, zF2)α. B returns PP to A . B knows P2 = zF2 and α but not Q2,j ’s and U2. The
main idea is to mask the components required to create identity-hash in G2 by a scalar multiple of
aF2 so that only semi-functional keys can be created.

Key Extraction Phases 1 and 2: B picks w1,w2, r1, r2, r3, r4, (z1,j , z2,j)hj=1
U←Ð Zp, γ1, γ2

U←Ð Z×p
and π′, (π′j)hj=1, η

′, (η′j)hj=1
U←Ð Zp. It then computes the key for the i-th identity vector idi =

(id1, . . . , id`) as follows.

K1,1 = w1(zF2) + r1V2 − γ1aF2, K1,2 = r1V
′

2 + γ1F2, K1,3 = r1F2

K2,1 = αzF2 +w1h(idi)(dz − ax)F2 + r2V2 − γ1π
′(aF2), K2,2 = r2V

′
2 +w1h(idi)xF2 + γ1π

′F2, K2,3 = r2F2,

J1,1 = w2(zF2) + r3V2 − γ2aF2, J1,2 = r3V
′

2 + γ2F2, J1,3 = r3F2

J2,1 = w2h(idi)(dz − ax)F2 + r4V2 − γ2η
′(aF2), J2,2 = r4V

′
2 +w2h(idi)xF2 + γ2η

′F2, J2,3 = r4F2,

For ` + 1 ≤ j ≤ h,
Dj,1 = w1yj(dz − ax)F2 + z1,jV2 − γ1π

′
j(aF2), Dj,2 = z1,jV

′
2 +w1yj(xF2) + γ1π

′
jF2, Dj,3 = z1,jF2

Ej,1 = w2yj(dz − ax)F2 + z2,jV2 − γ2η
′
j(aF2), Ej,2 = z2,jV

′
2 +w2yj(xF2) + γ2η

′
jF2, Ej,3 = z2,jF2
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setting π = π′ + γ−1
1 w1h(idi)x, πj = π′j + γ−1

1 w1yjx, η = η′ + γ−1
2 w2h(idi)x and ηj = η′j + γ−1

2 w2yjx.
Since all these scalars are additively randomised they remain properly distributed in the adversary’s
view. We show that Dj,1,Dj,2 are well-formed; the rest can be verified in a similar fashion.

Dj,1 = w1yj(dz − ax)F2 + z1,jV2 − γ1π
′
j(aF2)

= w1yjdzF2 −w1yjaxF2 + z1,jV2 − γ1(πj − γ−1
1 w1yjx)(aF2)

= w1yjdzF2 −w1yjaxF2 + z1,jV2 − aγ1πjF2 +w1yjaxF2

= w1yjdzF2 + z1,jV2 − aγ1πjF2

Dj,2 = z1,jV
′

2 +w1yj(xF2) + γ1π
′
jF2

= z1,jV
′

2 +w1yj(xF2) + γ1(πj − γ−1
1 w1yjx)F2

= z1,jV
′

2 +w1yjxF2 + γ1πjF2 −w1yjxF2

= z1,jV
′

2 + γ1πjF2

Challenge: B receives two pairs of messages and identity vectors (M0, îd0) and (M1, îd1) from

A . It chooses β
U←Ð {0,1} and a′, ξ

U←Ð Zp at random and generates a semi-functional challenge
ciphertext as follows.

C0
U←Ð GT

C1,1 = h(îdβ)Z1, C1,2 = a′h(îdβ)Z1 + ξF1, C1,3 = −vh(îdβ)Z1 − v′a′h(îdβ)Z1 − v′ξF1,
C2,1 = szF1, C2,2 = a′szF1, C2,3 = −v(szF1) − v′a′(szF1),

where a′ = a + µ′, µ = µ′sz and ξ = µσ′. The challenge ciphertext Ĉ =
(C0,C1,1,C1,2,C1,3,C2,1,C2,2,C2,3) is returned to A . The computations below illustrate that Ĉ
is a semi-functional encryption with σ = σ′ + cdh(îdβ).

C1,2 = a′h(îdβ)Z1 + ξF1

= (a + µ′)h(îdβ)csdzF1 + µσ′F1

= ah(îdβ)csdzF1 + µ′h(îdβ)csdzF1 + µσ′F1

= asH1(îdβ) + (µ′sz)(cdh(îdβ))F1 + µσ′F1

= asH1(îdβ) + µ(cdh(îdβ))F1 + µσ′F1

= asH1(îdβ) + µσF1

Observe that C1,1 = sH1(îdβ) = (c⋅h(îdβ))(sdzF1). If c = 1, then σ = σ′+dh(îdβ) and Ĉ is encrypted
under îdβ. Otherwise, c is random, causing h(îdβ) and consequently the target identity and σ to
be random quantities.

Guess: A returns its guess β′ of β.

If the algorithm B returns 1 when β = β′ and 0 otherwise, it can solve the A1 instance with
advantage

AdvA1
G (B) = ∣Pr[β = β′∣Z1 is real] −Pr[β = β′∣Z1 is random]∣ = ∣Pr[XM -rand] −Pr[Xfinal]∣.

107



6.3 Extending JR-IBE to CC-HIBE

Schemes JR -AHIBE and JR -HIBE extend the JR-IBE to anonymous and non-anonymous CC-HIBEs
respectively. At a top level, the identity-hashing technique of Boneh-Boyen-Goh [24] (BBG-hash)
is applied on JR-IBE. We work in the setting of asymmetric pairings where ciphertext components
are elements of G1 and key components are elements of G2. BBG-hash of the identity is required
to be computed in both G1 and G2. During encryption, the BBG-hash is required to be computed
in G1 and this requires adding some elements of G1 to the public parameters.

In previous CC-HIBE schemes in the prime-order setting within the dual system framework
[108, 137], anonymity appears as a by-product of the HIBE extension. The basic difficulty in
making it non-anonymous was due to the following dichotomy concerning key delegation. The
BBG-hash for the key is computed in G2. The hash is defined using certain elements of G2. During
key delegation, the hash has to be rerandomised and so the elements should be publicly available.
On the other hand, information about these elements must not be leaked because they form the
source of randomness used to generate the semi-functional components during simulation.

The problem described above does not arise in case of JR-IBE. The feature of JR-IBE that
makes extension to the non-anonymous CC-HIBE JR -HIBE possible is as follows. The master secret
consists of two elements whose linear combination is used to mask the message during encryption.
This is unlike previous (H)IBE schemes where a single element was used for the purpose. The
two elements would be information theoretically hidden from an attacker’s view. So the secret
randomness for the semi-functional ciphertext space is provided by one of the two elements.

Anonymity is achieved by keeping the elements required to compute the BBG-hash in G2 to be
secret and instead provide suitably randomised copies of these elements in the user keys. Problems
then arise while defining semi-functional components and arguing about their well-formedness dur-
ing simulation. Fortunately, it turns out that the problems can be handled by using appropriate
algebraic relations. The technique of keeping certain elements hidden and providing their ran-
domised version in the user keys closely follow the ideas introduced in [36] to obtain anonymity. In
JR -AHIBE the elements that are kept hidden are exactly the ones required to create the BBG-hash
in G2. As a result, an adversary is unable to create an identity hash in G2 and cancel it out with
the BBG-hash of the same identity in G1. This naturally leads to the scheme JR -AHIBE being
anonymous.

We note that a single-level instantiation of JR -HIBE provides a non-anonymous variant of the
JR-IBE with rerandomisable keys.

6.3.1 Jutla-Roy IBE with Ciphertexts in G1

In the IBE scheme of Jutla-Roy [103] (JR-IBE), ciphertext consists of elements in G2 and keys
contain elements from G1. For Type-3 pairings, elements of G1 have a shorter representation
compared to the elements of G2. To reduce the length of the ciphertext, one has to interchange
the roles of the two groups. In contrast, for a signature scheme, it would be advantageous to have
the signature to consist of elements from G1. Since the JR-IBE is obtained from non-interactive
zero knowledge (NIZK) proofs via the idea of signatures, the scheme results in ciphertext elements
being in G2.
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This section describes a “dual” of the Jutla-Roy [103] (JR-IBE-D) where ciphertexts live in G1

and keys in G2. We use a compact notation to denote normal and semi-functional ciphertexts and
keys. The group elements shown in curly brackets { } are the semi-functional components. To get
the scheme itself, these components should be ignored.

Parameters: Choose P1
U←Ð G×

1 , P2
U←Ð G×

2 , ∆1,∆2,∆3,∆4, c, d, u, e
U←Ð Zp, b

U←Ð Z×p , and set

U1 = (−∆1b + d)P1, V1 = (−∆2b + e)P1, W1 = (−∆3b + c)P1, gT = e(P1, P2)−∆4b+u. The parameters
are given by

PP ∶ (P1, bP1, U1, V1,W1, gT )
MSK ∶ (P2, cP2,∆1,∆2,∆3,∆4, d, u, e) 7

Ciphertext: Consists of (C0,C1,C2,C3, tag) where

tag, s
U←Ð Zp, {µ U←Ð Zp}

C0 =m ⋅ (gT )s{e(P1, P2)uµ},
C1 = sP1{+µP1}, C2 = sbP1, C3 = s(U1 + idV1 + tagW1){+µ(d + id ⋅ e + tag ⋅ c)P1}.

Key: Contains five elements (K1, . . . ,K5) defined as follows.

r
U←Ð Zp, {γ, π U←Ð Zp}

K1 = rP2, K2 = rcP2{+γP2}, K3 = (u + r(d + ide))P2{+γπP2},
K4 = −r∆3P2{−γbP2}, K5 = (−∆4 − r(∆1 + id∆2))P2{−γπb P2} .

Note 6.3.1. In JR-IBE [103], b is mentioned to be an element of Zp. This is an oversight and b
should be an element of Z×p as we have mentioned above. This is because if b is zero, then division
by b and consequently the definitions of the semi-functional components will not be meaningful.

The original JR-IBE scheme in [103] was proved to be secure based on the SXDH assumption.
Straightforward modifications of proof in [103] will also show the security of the variant JR-IBE-D
under the same assumption. For the sake of completeness, we state the security theorem JR-IBE-D.

Theorem 6.3.1. If (εDDH1, t1)-DDH1 and (εDDH2, t2)-DDH2 assumptions hold in G1 and G2 re-
spectively, then JR-IBE-D is (ε, t)-ANO-IND-ID-CPA-secure where ε ≤ εDDH1 + q ⋅ εDDH2 + (q/p),
t1 = t+O(ρ) and t2 = t+O(ρ). ρ is the maximum time required for one scalar multiplication in G1

and G2.

A note on notation and proof technique. We have used the JR-IBE [103] as the basic building
block and consequently, our notation and proofs build on that of [103]. This makes it easier for
a reader to see the connections between our work and the IBE construction in [103]. We note,
though, that we have provided all the relevant details and it is possible to directly verify, with
a bit of work, all the claims in this paper without referring to [103]. Frameworks for presenting
dual-system constructions and proofs have been proposed [111, 71]. Neither the JR-IBE nor the
constructions in the present work appear to fall within these frameworks.
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6.4 CC-HIBE Constructions

Both schemes JR -AHIBE and JR -HIBE are based on a Type-3 prime-order pairing with group order
p. Identities are variable length tuples of elements from Z×p with maximum length h.

As is typical with BBG-type extensions the element V1 is replaced with h elements V1,1, . . . , V1,h

– one for each level of an identity. The set U1, (V1,j)j∈[1,h] is used to create the identity hash – for

an identity id = (id1, . . . , id`), the hash is given by U1 +∑`j=1 idjV1,j . Element W1 will be retained
to append the tag-component to the hash. This replaces the hash in JR-IBE-D ciphertext without
affecting the number of elements in the ciphertext. Moreover, since the hash is embedded in a
single ciphertext component, only one tag is required. Note that the keys in JR-IBE-D have two
sub-hashes that when combined during decryption cancels with the hash of the ciphertext.

In JR-IBE-D, each of U1, V1,W1 is split into two components kept as part of the master secret.
The two sets of components determine the sub-hashes required in generating keys. Similarly, for

the HIBE, we need to split V1,j for all j ∈ [1, h] as V1,j = b∆2,j + ej where ∆1,j , ej
U←Ð Zp. So

the sub-hashes are determined by the vectors v1 = (d, e1, . . . , eh) and v2 = (∆1,∆2,1, . . . ,∆2,h).
Rerandomisation of keys during delegation can be done in two possible ways – make the encodings
of vectors v1,v2 along with ∆3, c in G2 public; or provide appropriately randomised copies of these
elements in the key.

The second method retains the anonymity property leading to the scheme JR -AHIBE . This
is because the vectors v1,v2 can be used to test whether a given ciphertext is encrypted to a
particular identity or not. Keeping them secret naturally leads to anonymity. The former method
leads to the scheme JR -HIBE that has shorter keys and faster algorithms compared to JR -AHIBE .
But the efficiency comes at the cost of losing anonymity. Due to space constraints we only describe
JR -AHIBE and discuss its security. A description of JR -HIBE followed by an outline of its security
is provided in Appendices 6.5.1 and 6.5.2.

6.4.1 Scheme JR -AHIBE

The definition of various algorithms of JR -AHIBE = (JR -AHIBE .Setup, JR -AHIBE .Encrypt,
JR -AHIBE .KeyGen, JR -AHIBE .Delegate, JR -AHIBE .Decrypt) is provided below.

JR -AHIBE .Setup(κ): Generate a Type-3 pairing (p,G1,G2,GT , e, F1, F2) based on the security
parameter κ. Compute parameters as follows.

P1
U←Ð G×

1 , P2
U←Ð G×

2

∆1,∆3,∆4, c, d, u, (∆2,j , ej)hj=1
U←Ð Zp, b

U←Ð Z×p ,

U1 = (−∆1b + d)P1, V1,j = (−∆2,jb + ej)P1 for j = 1, . . . , h, W1 = (−∆3b + c)P1,

gT = e(P1, P2)−∆4b+u,

PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, gT )
MSK ∶ (P2, cP2,∆1,∆3,∆4, d, u, (∆2,j , ej)hj=1)

JR -AHIBE .Encrypt(PP,M, id = (id1, . . . , id`)): Pick tag, s
U←Ð Zp and set the ciphertext C =

(C0,C1,C2,C3, tag) where
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C0 =M ⋅ (gT )s, C1 = sP1, C2 = sbP1, C3 = s(U1 +∑`j=1 idjV1,j + tagW1).

JR -AHIBE .KeyGen(MSK, id = (id1, . . . , id`)): Pick r1, r2
U←Ð Zp and compute the secret key SKid =

(S1,S2) for id, with S1 = ((Ki)i∈[1,5], (D1,j ,E1,j)j∈[`+1,h]) and S2 = ((Ji)i∈[1,5], (D2,j ,E2,j)j∈[`+1,h])
where

K1 = r1P2, K2 = r1cP2, K3 = (u + r1(d +∑`j=1 idjej))P2,

K4 = −r1∆3P2, K5 = (−∆4 − r1(∆1 +∑`j=1 idj∆2,j))P2,

D1,j = r1ejP2, E1,j = −r1∆2,jP2 for j = ` + 1, . . . , h,

J1 = r2P2, J2 = r2cP2, J3 = r2 (d +∑`j=1 idjej)P2,

J4 = −r2∆3P2, J5 = −r2(∆1 +∑`j=1 idj∆2,j)P2,

D2,j = r2ejP2, E2,j = −r2∆2,jP2 for j = ` + 1, . . . , h

JR -AHIBE .Delegate(id = (id1, . . . , id`), id`+1): Let id ∶ id`+1 = (id1, . . . , id`+1). SKid∶id`+1
is generated

from SKid as follows.

r̃1, r̃2
U←Ð Z×p ,

K1 ←K1 + r̃1J1, K2 ←K2 + r̃1J2, K3 ← (K3 + id`+1D1,`+1) + r̃1(J3 + id`+1D2,`+1),
K4 ←K4 + r̃1J4, K5 ← (K5 + id`+1E1,`+1) + r̃1(J5 + id`+1E2,`+1),
D1,j ←D1,j + r̃1D2,j , E1,j ← E1,j + r̃1E2,j for j = ` + 2, . . . , h,

J1 ← r̃2J1, J2 ← r̃2J2, J3 ← r̃2(J3 + id`+1D2,`+1),
J4 ← r̃2J4, J5 ← r̃2(J5 + id`+1E2,`+1),
D2,j ← r̃2D2,j , E2,j ← r̃2E2,j for j = ` + 2, . . . , h,

setting r1 ← r1 + r̃1r2 and r2 ← r̃2r2. Note that the new values of r1 and r2 have uniform and

independent distribution over Zp given that r1, r2
U←Ð Zp and r̃1, r̃2

U←Ð Z×p . Hence the distribution
of SKid∶id`+1

is same as that of a freshly generated key for id ∶ id`+1 via the JR -AHIBE .KeyGen
algorithm.

JR -AHIBE .Decrypt(C,SKid): Return M ′ computed as: M ′ = C0 ⋅ e(C3,K1)
e(C1, tagK2 +K3)e(C2, tagK4 +K5)

.

Correctness: For all messages M , for all 1 ≤ ` ≤ h, for all identities id of length `, for all C
and SKid such that C ← JR -AHIBE .Encrypt(M, id), SKid ← JR -AHIBE .KeyGen(MSK, id) and
M ′ = JR -AHIBE .Decrypt(C,SKid), it holds that M ′ = M . The following computation substanti-
ates this claim. Let (C = (C0,C1,C2,C3)) = JR -AHIBE .Encrypt(M, id; s) and (SKid = (S1,S2)) =
JR -AHIBE .KeyGen(MSK, id; r1, r2) with id = (id1, . . . , id`). We show the computation in steps.
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Let h1 = d +∑`j=1 idjej + tag ⋅ c and h2 = ∆1 +∑`j=1 idj∆2,j + tag ⋅∆3.

e(C1, tagK2 +K3) = e(sP1, tag ⋅ r1cP2 + (u + r1(d +∑`j=1 idjej))P2)
= e(sP1, uP2 + r1(d +∑`j=1 idjej + tag ⋅ c)P2)
= e(P1, P2)sue(P1, P2)r1sh1

e(C2, tag ⋅K4 +K5) = e(sbP1,−tag ⋅ r1∆3P2 − (∆4 + r1(∆1 +∑`j=1 idj∆2,j))P2)
= e(sbP1,−∆4P2 − r1(∆1 +∑`j=1 idj∆2,j + tag ⋅∆3)P2)
= e(P1, P2)−sb∆4e(P1, P2)−r1sbh2

e(C3,K1) = e(s(U1 +∑`j=1 idjV1,j + tag ⋅W1), r1P2)
= e((−∆1b + d)P1 +∑`j=1 idj(−∆2,jb + ej)P1 + tag ⋅ (−∆3b + c)P1, P2)r1s

= e(−(∆1 +∑`j=1 idj∆2,j + tag ⋅∆3)bP1, P2)r1se((d +∑`j=1 idjej + tag ⋅ c)P1, P2)r1s

= e(P1, P2)−r1sbh2e(P1, P2)r1sh1

Then, the message M ′ obtained after decryption is given by

M ′ = C0 ⋅ e(C3,K1)
e(C1, tag ⋅K2 +K3)e(C2, tag ⋅K4 +K5)

= M ⋅ gsT ⋅ e(P1, P2)−r1sbh2e(P1, P2)r1sh1

e(P1, P2)sue(P1, P2)r1sh1e(P1, P2)−sb∆4e(P1, P2)−r1sbh2

= M ⋅ e(P1, P2)(−∆4b+u)s

e(P1, P2)s(−∆4b+u)

=M,

as required.

The above holds as well for all SKid derived from secret keys for higher level identities through
the JR -AHIBE .Delegate algorithm. This is because a derived key have the same distribution as a
key generated by a fresh call to the JR -AHIBE .KeyGen algorithm which has been pointed out in
the description of the JR -AHIBE .Delegate algorithm.

From a dual system perspective. One can see in Section 6.5 that the scalar u, along with
scalars d, c, ejj∈[1,h], define the semi-functional ciphertext space for JR -AHIBE . These scalars pro-
vide the secret information for simulating semi-functional components. A crucial requirement for
a dual system proof is that these scalars are statistically hidden from the adversary. Observe that
the element gT in the public parameters, information theoretically hides the element u. Similarly,
elements U1, V1,j ,W1 hide the scalars d, ej , c respectively. Further intuition with respect to the
dual-system proof and a sketch of how the various scalars interact is provided in Section 6.5.

6.5 Security of JR -AHIBE

The scheme JR -AHIBE is proved secure in the sense of ANO-IND-ID-CPA (described in Sec-
tion 2.2.1.3) following the dual system methodology introduced by Waters [158]. We first provide
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algorithms JR -AHIBE .SFEncrypt and JR -AHIBE .SFKeyGen that generate semi-functional cipher-
texts and keys (respectively) required for a dual system proof. In addition, we need an algorithm
PSFKeyGen that generates partial semi-functional keys ([137]). These are required only in the
security proof of JR -AHIBE and not JR -HIBE .

JR -AHIBE .SFEncrypt(MSK,C): Let (C = (C0,C1,C2,C3)) ← JR -AHIBE .Encrypt(m, id =
(id1, . . . , id`)). Pick µ

U←Ð Zp and modify the components of C as follows.

C0 ← C0 ⋅ e(P1, P2)uµ, C1 ← C1 + µP1, C2 ← C2, C3 ← C3 + µ(d +∑`j=1 idjej + tag ⋅ c)P1.

Return the modified ciphertext C = (C0,C1,C2,C3).
JR -AHIBE .SFKeyGen(MSK,SKid): This algorithm takes in a normal secret key SKid = (S1,S2)
for identity id = (id1, . . . , id`) and generates a semi-functional key as follows.

γ1, γ2, π, σ, (πj , σj)hj=1
U←Ð Zp,

K1 ←K1, K2 ←K2 + γ1P2, K3 ←K3 + γ1πP2, K4 ←K4 − (γ1

b
)P2, K5 ←K5 − (γ1π

b
)P2,

D1,j ←D1,j + γ1πjP2, E1,j ← E1,j − (γ1πj

b
)P2 for j = ` + 1, . . . , h,

J1 ← J1, J2 ← J2 + γ2P2, J3 ← J3 + γ2σP2, J4 ← J4 − (γ2

b
)P2, J5 ← J5 − (γ2σ

b
)P2,

D2,j ←D2,j + γ2σjP2, E2,j ← E2,j − (γ2σj

b
)P2 for j = ` + 1, . . . , h,

The resulting key SKid = (S1,S2) is returned.

PSFKeyGen(MSK,SKid): Returns a key SKid for identity id with S1-components having semi-
functional terms (generated according to JR -AHIBE .SFKeyGen algorithm) and S2-components being
normal (as returned by JR -AHIBE .KeyGen algorithm).

The basic ideas underlying the security proof (Section 6.2.4.1) of LW -AHIBE are applicable even
in case of JR -AHIBE . It is straightforward to see that decryption of a semi-functional ciphertext by
a normal key or that of a normal ciphertext with a semi-functional key succeeds. When both cipher-
text and key are semi-functional, decryption results in an extra masking factor of e(P1, P2)γµ(tag+π)
on the message. Decryption is only successful if π = −tag whence the ciphertext and key become
nominally semi-functional.

The following theorem states precisely the security guarantee we obtain for JR -AHIBE .

Theorem 6.5.1. If (εDDH1, t1)-DDH1 and (εDDH2, t2)-DDH2 assumptions hold in G1 and G2 re-
spectively, then JR -AHIBE is (ε, t)-ANO-IND-ID-CPA-secure where ε ≤ εDDH1 + 2q ⋅ εDDH2 + (2q/p),
t1 = t +O(hρ) and t2 = t +O(hρ). ρ is the maximum time required for one scalar multiplication in
G1 and G2.

Proof Sketch. Fix any t-time adversary A . Let Greal denote the HIBE security game ano-ind-cpa
(described in Section 2.2.1.3) and Gfinal be a game where all keys are semi-functional and the
challenge ciphertext is a semi-functional encryption of a random message to a random identity
vector. The probability that A wins in Gfinal is 1/2. To prove the theorem, we need to show
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a bound on Advano-ind-cpa
JR -AHIBE (A ) = ∣Pr[A wins in Greal] − (1/2)∣ which is equivalent to bounding

∣Pr[A wins in Greal] − Pr[A wins in Gfinal]∣. In order to obtain this bound, we first define a
sequence of games starting from Greal and making small changes until we reach Gfinal. Define
Gk,0, 1 ≤ k ≤ q similar to Greal except that challenge ciphertext is semi-functional, first k − 1 keys
are semi-functional and k-th key is partial semi-functional. In Gk,1, 0 ≤ k ≤ q, the challenge ci-
phertext is semi-functional and first k keys are semi-functional. The game sequence is Greal, G0,1,
(Gk,0,Gk,1)qk=1, Gfinal. The advantage of A in winning Greal can now be bounded in terms of its
advantage in distinguishing between successive games. This is done via reductions from the SXDH
problem to the task of distinguishing between successive games. Essentially, there are two kinds
of reductions - first and second. In the first reduction, we show that A ’s ability to distinguish
between Greal and G0,1 can be used to solve a DDH1 instance. The second reduction shows that
an algorithm A that can distinguish between Gk−1,1 and Gk,0 for some k ∈ [1, q], can be used to
construct an algorithm B2 solving DDH2. Similar arguments hold for all values of k and also for
the transition from Gk,0 to Gk,1. The final transition i.e, Gq,1 to Gfinal is done just by changing the
way information provided to A is generated so that the distribution of A ’s view in the two games
are statistically indistinguishable except with probability 2q/p.. We now provide an outline of each
stage in the proof.

First Reduction: Suppose that B1 is a DDH1-solver. B1 simulates the game using a DDH1
instance (G, P1, bP1, sbP1, P2, (s + µ)P1). The element b of the instance corresponds to the
scalar b of the scheme. B1 sets up the system normally since it has all information required to
do so. The master secret is also known since none of its components depend on b. Furthermore,
it cannot create semi-functional keys as no encoding of b in G2 is provided. All the key extract
queries are answered normally. B1 sets the randomiser for the challenge ciphertext Ĉ to be s
(from the instance). Ĉ will be normal or semi-functional depending on whether the instance

is real i.e., µ = 0, or random (µ
U←Ð Zp).

Second Reduction: The DDH2-solver B2 obtains an instance (G, P1, P2, rP2, cP2, (rc + γ)P2).
Here c corresponds to the scalar c inMSK. Elements d, (ej)j∈[1,h] are set to random degree-
1 polynomials in c. Scalar b is chosen randomly from Z×p . Let y = (d, e1, . . . , eh). The public
parameters are created differently since y is not known. Only its encoding in G2 i.e, yP2 is
known. Specifically U1, V1,j ,W1 are chosen at random from G1. Depending on these and y,
the corresponding ∆’s are implicitly set. Encodings of ∆’s can be computed only in G2. This
enables normal key generation as well as semi-functional key generation. In its response to
the k-th key extract query, B2 maps r from the instance to the randomiser r1 in the key.
Accordingly it generates the key choosing r2 at random. If γ = 0, the key will be normal.
Otherwise the key is partial semi-functional and γ corresponds to the randomiser γ1 in the
semi-functional part. Moreover, a linear polynomial f(idk) in idk-components is embedded
in the semi-functional scalar π. This polynomial is determined by the co-efficients of c in y.
The coefficients of c in ej also determine πj respectively. For the challenge ciphertext, B2 has
to create semi-functional components which depend on y. But y depends on c and encoding
of c in G1 is not known. The only way out is to set tag = −f(îdβ) so that terms depending on
c vanish. A consequence is that B2 can only generate nominally semi-functional ciphertext
for idk. We then argue that the simulation is perfect.

Final Transition: It is required to show that Gq,1 and Gfinal are statistically indistinguishable
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from the attacker’s point of view except for probability at most 2q/p. The generation of public
parameters and keys provided to A are changed ensuring that their form is equivalent to that
in Gq,1 and they are independent of the scalars u, d, (ej)j∈[1,h]. Consequently the challenge
ciphertext is the only place where these scalars come into play, especially in those components
that consist of the identity-hash and the message. Basically, the message and the id-hash are
masked by random quantities so that Gfinal is simulated.

Proof. Proof of Theorem 6.5.1

Consider a sequence of games Greal, G0,1, (Gk,0,Gk,1)qk=1, Gfinal between an adversary A and a
challenger with the games defined as follows.

• Greal: the actual HIBE security game ano-ind-cpa (described in Section 2.2.1.3).

• Gk,0, 1 ≤ k ≤ q: challenge ciphertext is semi-functional; first k−1 keys are semi-functional and
k-th key is partial semi-functional.

• Gk,1, 0 ≤ k ≤ q: challenge ciphertext is semi-functional; first k keys are semi-functional.

• Gfinal: challenge ciphertext is a semi-functional encryption of a random message under a
random identity vector; all keys are semi-functional.

Let X◻ denote the event that A wins in G◻. Clearly, the bit β is statistically hidden from the
attacker in Gfinal, which means that Pr[Xfinal] = 1/2.

In Lemmas 6.5.1, 6.5.2, 6.5.3 and 6.5.4, we show that

• ∣Pr[Xreal] −Pr[X0,1]∣ ≤ εDDH1,

• ∣Pr[Xk−1,1] −Pr[Xk,0]∣ ≤ εDDH2,

• ∣Pr[Xk,0] −Pr[Xk,1]∣ ≤ εDDH2,

• ∣Pr[Xq,1] −Pr[Xfinal]∣ ≤ 2q/p.

The advantage of A in breaking the security of JR -AHIBE is thus given by

Advano-ind-cpa
JR -AHIBE (A ) = ∣Pr[Xreal] −

1

2
∣

= ∣Pr[Xreal] −Pr[Xfinal]∣

≤ ∣Pr[Xreal] −Pr[X0,1]∣ +
q

∑
k=1

(∣Pr[Xk−1,1] −Pr[Xk,0]∣ + ∣Pr[Xk,0] −Pr[Xk,1]∣)

+ ∣Pr[Xq,1] −Pr[Xfinal]∣

≤ εDDH1 + 2qεDDH2 +
2q

p
.
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In the sequel, B1 (resp. B2) is a DDH1-solver (resp. DDH2-solver). We argue that B1, using
the adversary’s ability to distinguish between Greal and G0,1, can solve DDH1. Similarly, A ’s power
to distinguish between Gk−1,1 and Gk,0 (or Gk,0 and Gk,1) for k ∈ [1, q], can be leveraged to build a
DDH2-solver B2.

Lemma 6.5.1. ∣Pr[Xreal] −Pr[X0,1]∣ ≤ εDDH1.

Proof. Let (G, P1, bP1, sbP1, P2, (s+µ)P1) be the instance of DDH1 that B1 has to solve i.e., decide

whether µ = 0 or µ
U←Ð Zp. The phases of the game are simulated by B1 as described below.

Setup: Choose c, d, u,∆1,∆3,∆4, (ej ,∆2,j)hj=1
U←Ð Zp and set parameters as:

U1 = −∆1(bP1) + dP1, V1,j = −∆2,j(bP1) + ejP1 for j = 1, . . . , h, W1 = −∆3(bP1) + cP1,

gT = e(bP1, P2)−∆4e(P1, P2)u
PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, gT )

All the secret scalars present in the MSK are known. B1 can thus create normal keys. However,
B1’s lack of knowledge of the scalar b or its encoding in G2 does not allow it to create semi-functional
keys.

Key Generation Phases 1 & 2: B1 answers all of A ’s queries with normal keys generated by
the JR -AHIBE .KeyGen algorithm.

Challenge: A sends two message-identity pairs (m0, îd0), (m1, îd1). B1 chooses β
U←Ð {0,1},

encrypts Mβ under îdβ and sends the resulting ciphertext Ĉ = (Ĉ0, Ĉ1, Ĉ2, Ĉ3, t̂ag) to A . Let
îdβ = (îd1, . . . , îd̂̀). Ĉ is computed as:

t̂ag
U←Ð Zp,

Ĉ0 =Mβ ⋅ e(sbP1, P2)−∆4e((s + µ)P1, P2)u =Mβ ⋅ gsTe(P1, P2)uµ,

Ĉ1 = (s + µ)P1 = sP1 + µP1,

Ĉ2 = sbP1,

Ĉ3 = (−∆1 −∑
̂̀
j=1 ∆2,j îdj − t̂ag ⋅∆3)(sbP1) + (d +∑̂̀

j=1 ej îdj + t̂ag ⋅ c)(s + µ)P1

= (−∆1b + d +∑
̂̀
j=1 îdj(−∆2,jb + ej) + t̂ag(−∆3b + c))(sP1) + (d +∑̂̀

j=1 ej îdj + t̂ag ⋅ c)(µP1)
= s(U1 +∑

̂̀
j=1 îdjV1,j + t̂agW1) + µ(d +∑

̂̀
j=1 ej îdj + t̂ag ⋅ c)P1.

Observe that Ĉ is normal if µ = 0 and semi-functional when µ
U←Ð Zp.

Guess: A outputs its guess β′ and halts.

B returns 1 if A ’s guess is correct i.e., β = β′; otherwise B1 returns 0. The advantage of B1 in
solving the DDH1 instance is given by

AdvDDH1
G (B1) = ∣Pr[B1 returns 1∣µ = 0] −Pr[B1 returns 1∣µ U←Ð Zp]∣

= ∣Pr[β = β′∣µ = 0] −Pr[β = β′∣µ U←Ð Zp]∣
= ∣Pr[Xreal] −Pr[X0,1]∣.

Since AdvDDH1
G (B1) ≤ εDDH1, we have ∣Pr[Xreal] −Pr[X0,1]∣ ≤ εDDH1.

Lemma 6.5.2. ∣Pr[Xk−1,1] −Pr[Xk,0]∣ ≤ εDDH2.

116



Proof. B2 is given an instance (G, P1, P2, rP2, cP2, (rc+γ)P2) of DDH2 and asked to decide whether

γ = 0 or γ
U←Ð Zp. It simulates the game as described below.

Setup: Pick scalars u,∆′
1,∆

′
3,∆

′
4, d1, d2, (ej,1, ej,2,∆′

2,j)hj=1
U←Ð Zp and b

U←Ð Z×p and (implicitly)
set

d = d1 + cd2, ∆1 =
∆′

1 + d
b

, ∆3 =
∆′

3 + c
b

, ∆4 =
∆′

4 + u
b

,

ej = ej,1 + cej,2, ∆2,j =
∆′

2,j + ej
b

for j = 1, . . . , h.

Parameters are generated as follows.

U1 = −∆′
1P1, V1,j = −∆′

2,jP1 for j = 1, . . . , h, W1 = −∆′
3P1,

gT = e(P1, P2)−∆′
4

PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, gT )
The elements ∆1,∆2,j ,∆3, d, ej that are part of the MSK are not available to B2. Even without
these, B2 can generate keys as explained in the simulation of the key generation phases.

Key Generation Phases 1 & 2: A queries on identities id1, id2, . . . , idq. B responds to the
i-th query (i ∈ [1, q]) considering three cases.

Case 1: i > k
B2 returns a normal key, SKidi = (S1,S2) with S1 = ((Ki)i∈[1,5], (D1,j ,E1,j)j∈[`+1,h]) and
S2 = ((Ji)i∈[1,5], (D2,j ,E2,j)j∈[`+1,h]). The master secret is not completely available to B2

and hence the JR -AHIBE .KeyGen needs a modification. The S1-components are computed as
shown below.

r1, r2
U←Ð Zp,

K1 = r1P2, K2 = r1(cP2),

K3 =
⎛
⎝
u + r1

⎛
⎝
d1 +

`

∑
j=1

idjej,1
⎞
⎠
⎞
⎠
P2 + r1

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
(cP2) =

⎛
⎝
u + r1

⎛
⎝
d +

`

∑
j=1

idjej
⎞
⎠
⎞
⎠
P2,

K4 = −b−1r1(∆′
3P2 + cP2) = −r1 (

∆′
3 + c
b

)P2 = −r1∆3P2,

K5 = −b−1 ⎛
⎝

∆′
4 + u + r1

⎛
⎝

∆′
1 + d1 +

`

∑
j=1

idj(∆′
2,j + ej,1)

⎞
⎠
⎞
⎠
P2 − b−1r1

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
(cP2)

= b−1 ⎛
⎝
−∆′

4 − u − r1
⎛
⎝

∆′
1 + d +

`

∑
j=1

idj(∆′
2,j + ej)

⎞
⎠
⎞
⎠
P2

=
⎛
⎝
−∆′

4 + u
b

− r1
⎛
⎝

∆′
1 + d
b

+
`

∑
j=1

idj (
∆′

2,j + ej
b

)
⎞
⎠
⎞
⎠
P2

=
⎛
⎝
−∆4 − r1

⎛
⎝

∆1 +
`

∑
j=1

idj∆2,j
⎞
⎠
⎞
⎠
P2,
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for j = ` + 1, . . . , h,
D1,j = r1(ej,1P2 + ej,2(cP2)) = r1ejP2,

E1,j = −r1b
−1(∆′

2,j + ej,1)P2 − r1b
−1ej,2(cP2) = −r1 (

∆′
2,j + ej
b

)P2 = −r1∆2,jP2.

S2-components are generated in a similar fashion using a randomiser r2
U←Ð Zp and leaving

out the scalars u and ∆′
4. Details are omitted.

Case 2: i < k
In this case, B2 first creates a normal key SKidi and runs JR -AHIBE .SFKeyGen on SKidi .
This is possible because the only scalar used in JR -AHIBE .SFKeyGen is b which is known to
B2.

Case 3: i = k
Let SKidk = (S1,S2) be the key that B2 generates for idk. Elements of S2 are created
normally (as indicated in Case 1). In the S1-portion of SKidk , B2 embeds the DDH2
instance (consisting of P2, cP2, rP2, (rc + γ)P2) by generating the components as:

K1 = rP2, K2 = (rc + γ)P2,

K3 = uP2 +
⎛
⎝
d1 +

`

∑
j=1

idjej,1
⎞
⎠
(rP2) +

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
(rc + γ)P2

= uP2 + r
⎛
⎝
d1 +

`

∑
j=1

idjej,1 + c
⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
⎞
⎠
P2 + γ

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2

=
⎛
⎝
u + r

⎛
⎝
d +

`

∑
j=1

idjej
⎞
⎠
⎞
⎠
P2 + γ

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2,

K4 = −b−1(∆′
3rP2 + (rc + γ)P2) = −r (

∆′
3 + c
b

)P2 − (γ
b
)P2 = −r∆3P2 − (γ

b
)P2,

K5 = −b−1 ⎛
⎝

∆′
1 + d1 +

`

∑
j=1

idj(∆′
2,j + ej,1)

⎞
⎠
(rP2) − b−1 ⎛

⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
(rc + γ)P2

= −b−1r
⎛
⎝

∆′
1 + d +

`

∑
j=1

idj(∆′
2,j + ej)

⎞
⎠
P2 − b−1γ

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2

= −r
⎛
⎝

∆′
1 + d
b

+
`

∑
j=1

idj (
∆′

2,j + ej
b

)
⎞
⎠
P2 − (γ

b
)
⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2

= −r
⎛
⎝

∆1 +
`

∑
j=1

idj∆2,j
⎞
⎠
P2 − (γ

b
)
⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2,

for j = ` + 1, . . . , h,
D1,j = ej,1(rP2) + ej,2(rc + γ)P2 = rejP2 + γej,2P2,

E1,j = −b−1(∆′
2,j + ej,1)rP2 − b−1ej,2(rc + γ)P2
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= −r (
∆′

2,j + ej
b

)P2 − (γej,2
b

)P2

= −r∆2,jP2 − (γej,2
b

)P2.

When γ = 0, SKidk is normal with r1 = r; otherwise, it is partial semi-functional with

r1 = r, γ1 = γ,

π = d2 +∑`j=1 idjej,2 and

πj = ej,2 for j = ` + 1, . . . , h

set implicitly.

Challenge: B2 obtains two message-identity pairs (m0, îd0), (m1, îd1) from A . It then picks

β
U←Ð {0,1}, s, µ

U←Ð Zp and generates a semi-functional encryption of Mβ under îdβ = (îd1, . . . , îd̂̀)
given by Ĉ = (Ĉ0, Ĉ1, Ĉ2, Ĉ3, t̂ag) where

t̂ag = −d2 −
̂̀
∑
j=1

îdjej,2,

Ĉ0 =Mβ ⋅ gsT ⋅ e(P1, P2)uµ,

Ĉ1 = sP1 + µP1,

Ĉ2 = sbP1,

Ĉ3 = s (U1 +∑
̂̀
j=1 îdjV1,j + t̂agW1) + µ (d1 +∑

̂̀
j=1 îdjej,1)P1

= s (U1 +∑
̂̀
j=1 îdjV1,j + t̂agW1)

+µ ((d1 + cd2) +∑
̂̀
j=1 îdj(ej,1 + cej,2) + t̂ag ⋅ c)P1 − µ (d2c +∑

̂̀
j=1 îdjej,2c)P1 − t̂ag ⋅ cµP1

= s (U1 +∑
̂̀
j=1 îdjV1,j + t̂agW1)

+µ (d +∑̂̀
j=1 îdjej + t̂ag ⋅ c)P1 + cµ (−d2 −∑

̂̀
j=1 îdjej,2 − t̂ag)P1

= s (U1 +∑
̂̀
j=1 îdjV1,j + t̂agW1) + µ (d +∑̂̀

j=1 îdjej + t̂ag ⋅ c)P1.

The last step follows due to the fact that t̂ag = −d2 −∑
̂̀
j=1 îdjej,2. Note that Ĉ is properly formed.

Also, this is the only way B2 can generate a semi-functional ciphertext since no encoding of c is
available in the group G1. An implication is that B2 can only create a nominally semi-functional
ciphertext for idk since the relation tag = −π will hold, thus providing no information to B2 about
the semi-functionality of SKidk .

Guess: A returns its guess β′ of β.

B2 outputs 1 if A wins and 0 otherwise. Also, B2 simulates Gk−1,1 if γ = 0 and Gk,0 if γ
U←Ð Zp.

Therefore, the advantage of B2 in solving the DDH2 instance is given by

AdvDDH2
G (B2) = ∣Pr[B2 returns 1∣γ = 0] −Pr[B2 returns 1∣γ U←Ð Zp]∣

= ∣Pr[β = β′∣µ = 0] −Pr[β = β′∣µ U←Ð Zp]∣
= ∣Pr[Xk−1,1] −Pr[Xk,0]∣.

It now follows that ∣Pr[Xk−1,1] − Pr[Xk,0]∣ ≤ εDDH2 from the fact that AdvDDH2
G (B) ≤ εDDH2 for all

t-time adversaries B. What remains is to show that all the information provided to the adversary
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have the correct distribution. The scalars b, u,∆′
1,∆

′
3,∆

′
4, d1, d2, (ej,1, ej,2,∆′

2,j)hj=1 chosen by B2

and r, c, γ from the instance are uniformly and independently distributed. As a consequence the
following quantities have the correct distribution.

• r1, γ1 for the k-th key

• ∆4,∆3

• d, (ej)hj=1 and hence ∆1, (∆2,j)hj=1

The same scalars also determine π, (πj)hj=`+1 for k-th identity and t̂ag for challenge ciphertext
which are required to be uniform and independent quantities. We now argue that this is indeed
the case. Let idk = (id1, . . . , idh) and îdβ = (îd1, . . . , îdh) where, for convenience we assume that
id`+1 = ⋯ = idh = îd̂̀+1 = ⋯îdh = 0. The quantities π, (πj)hj=2, t̂ag are given by the following equation.

⎛
⎜⎜⎜⎜⎜⎜
⎝

π
π2

⋮
πh
t̂ag

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 id1 id2 id3 id4 ⋯ idh
0 0 1 0 0 ⋯ 0
0 0 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 ⋯ 1

−1 −îd1 −îd2 −îd3 −îd4 ⋯ −îdh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d2

e1,2

e2,2

⋮
eh−1,2

eh,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.2)

Observe that

• the first and last rows in the above matrix are linearly independent since identity components
are in Z×p and idk ≠ îdβ. All other rows are linearly independent of these two rows. Further,

since `, ̂̀>= 1, we have id1 ≠ 0 and îd1 ≠ 0. Hence the matrix has rank h + 1.

• d2, e1,2, . . . , eh,2 are information theoretically hidden from A and also chosen from uniform
and independent distributions over Zp.

Conditioned on these observations, we conclude that π, (πj)hj=2, t̂ag are uniformly and independently
distributed in A ’s view.

Lemma 6.5.3. ∣Pr[Xk,0] −Pr[Xk,1]∣ ≤ εDDH2.

The proof is similar to that of Lemma 6.5.2. The difference is that B2 creates a partial semi-
functional key for idk, the k-the identity queried by A , and then embeds the DDH2 instance in
S2-portion of the key. B2 advantage in solving DDH2 will now depend on whether the A can
determine whether SKidk is partial or fully semi-functional.

Lemma 6.5.4. ∣Pr[Xq,1] −Pr[Xfinal]∣ ≤ (2q/p).

Proof. In Gq,1, all the keys returned to A are semi-functional and so is the challenge ciphertext.
To argue that Pr[Xq,1] = Pr[Xfinal]∣, we modify the JR -AHIBE .Setup and JR -AHIBE .SFKeyGen
algorithms so that the modification results in Gfinal and the distribution of information provided
to the adversary before and after the modification are statistically indistinguishable except with
probability 2q/p.
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JR -AHIBE .Setup: Pick scalars ∆′
1,∆

′
3,∆

′
4, u, c, d, (ej ,∆′

2,j)hj=1
U←Ð Zp and b

U←Ð Z×p and compute
parameters as:

U1 = −∆′
1P1, V1,j = −∆′

2,jP1 for j = 1, . . . , h, W1 = −∆′
3P1,

gT = e(P1, P2)−∆′
4

PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, gT )
setting

∆1 =
∆′

1 + d
b

, ∆3 =
∆′

3 + c
b

, ∆4 =
∆′

4 + u
b

,

∆2,j =
∆′

2,j + ej
b

for j = 1, . . . , h.

JR -AHIBE .SFKeyGen: Choose r1, r2, π
′, σ′, (π′j , σ′j)hj=`+1

U←Ð Zp, γ1, γ2
U←Ð Zp and compute the

individual components as follows.

K1 = r1P2, K2 = r1cP2 + γ1P2, J1 = r2P2, J2 = r2(cP2) + γ2P2,

K3 = π′P2, J3 = σ′P2,

K4 = −r1 (
∆′

3 + c
b

)P2 − (γ1

b
)P2, J4 = −r2 (

∆′
3 + c
b

)P2 − (γ2

b
)P2,

K5 = −
1

b

⎛
⎝
π′ +∆′

4 + r1
⎛
⎝

∆′
1 +

`

∑
j=1

idj∆
′
2,j

⎞
⎠
⎞
⎠
P2, J5 = −

1

b

⎛
⎝
σ′ + r2

⎛
⎝

∆′
1 +

`

∑
j=1

idj∆2,j
⎞
⎠
⎞
⎠
P2,

for j = ` + 1, . . . , h,

D1,j = π′jP2, D2,j = σ′jP2,

E1,j = −(
r1∆′

2,j + π′j
b

)P2, E2,j = −(
r2∆′

2,j + σ′j
b

)P2.

The setting of K3 = π′P2 fixes the product γ1π that appears in its semi-functional form i.e.,
(u + r1 (d +∑`j=1 idjej) + γ1π)P2. The other component where π′ is used is K5 that also fixes γ1π
in its semi-functional term. It is necessary to ensure that these two are equal. We show below that
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K5 is indeed well-formed in this sense.

K5 = −
1

b

⎛
⎝
π′ +∆′

4 + r1
⎛
⎝

∆′
1 +

`

∑
j=1

idj∆
′
2,j

⎞
⎠
⎞
⎠
P2

= −1

b

⎛
⎝
u + r1

⎛
⎝
d +

`

∑
j=1

idjej
⎞
⎠
+ γ1π +∆′

4 + r1
⎛
⎝

∆′
1 +

`

∑
j=1

idj∆
′
2,j

⎞
⎠
⎞
⎠
P2

= −1

b

⎛
⎝
(∆′

4 + u) + r1
⎛
⎝
(∆′

1 + d) +
`

∑
j=1

idj(∆′
2,j + ej)

⎞
⎠
⎞
⎠
P2 + γ1πP2

= −
⎛
⎝

∆′
4 + u
b

+ r1
⎛
⎝

∆′
1 + d
b

+
`

∑
j=1

idj (
∆′

2,j + ej
b

)
⎞
⎠
⎞
⎠
P2 + γ1πP2

= −
⎛
⎝

∆4 + r1
⎛
⎝

∆1 +
`

∑
j=1

idj∆2,j
⎞
⎠
⎞
⎠
P2 + γ1πP2,

Similarly, setting D1,j = π′jP2 fixes γ1πj since D1,j has the form r1ej +γ1πj . E1,j is computed using
π′j and we justify below that is is properly formed.

E1,j = −(
r1∆′

2,j + π′j
b

)P2

= −(
r1∆′

2,j + r1ej + γ1πj

b
)P2

= −r1 (
∆′

2,j + ej
b

)P2 −
γ1πj

b
P2

= −r1∆2,jP2 −
γ1πj

b
P2

The scalars π′, (π′j)hj=1 define the products γ1π, (γ1πj)hj=1 respectively. Since γ1 is chosen uniformly

from Zp, π, (πj)hj=1 are uniformly and independently distributed in Zp except when γ1 = 0. Similarly,

it is possible to show that J5, (E2,j)hj=`+1 are well-formed and σ, (σj)hj=1 have the proper distribution

given that γ2 ≠ 0. Furthermore, all elements of the key are generated independent of u, d, (ej)hj=1

that determines the independence of the ciphertext from the key. Let us now take a look at the
challenge ciphertext:

Ĉ0 =Mβ ⋅ gsT ⋅ e(P1, P2)uµ,

Ĉ1 = sP1 + µP1,

Ĉ2 = sbP1,

Ĉ3 = −s (∆′
1 +∑

̂̀
j=1 îdj∆

′
2,j + t̂ag∆′

3)P1 + µ (d +∑̂̀
j=1 îdjej + t̂ag ⋅ c)P1,

where t̂ag, µ, s
U←Ð Zp. Recall that u, d, (ej)hj=1 are chosen independently and uniformly at random

from Zp. Consequently, components Ĉ0 and Ĉ1 are randomly distributed in GT and G1 respectively.
Also these two components are independent of all other information (including keys and public
parameters) provided to A . Therefore the bit β is information theoretically hidden from the
adversary implying that the resulting game (obtained by modifying JR -AHIBE .SFKeyGen) is Gfinal.
The distribution of public parameters remains the unchanged. Let Fi denote the event that γ1 = 0
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or γ2 = 0 for an extract query on idi (for i ∈ [1, q]). Clearly Pr[Fi] ≤ 2/p. The keys have the correct
distribution unless the event F = ∪qi=1Fi occurs. Thus we have ∣Pr[Xq,1] − Pr[Xfinal]∣ ≤ Pr[F] ≤
∑qi=1 Pr[Fi] = 2q/p.

6.5.1 Scheme JR -HIBE

This section presents the second (non-anonymous) HIBE construction. As discussed in Sec-
tion 6.4, two sub-hashes in the key are combined to form the identity-hash required for cancel-
lation with the ciphertext. The sub-hashes are determined by the vectors v1 = (d, e1, . . . , eh) and
v2 = (∆1,∆2,1, . . . ,∆2,h). In order to realise anonymity, these vectors are kept as part of the master
secret in JR -AHIBE . Additional elements had to be provided in the key to enable rerandomisation
during delegation. It turns out that we can obtain a non-anonymous scheme by making these
vectors public. The availability of these vectors facilitates rerandomisation and hence the keys
no longer need extra components for this purpose. As a result, keys are shorter and algorithms
KeyGen, Delegate are more efficient in comparison to JR -AHIBE .

The method followed here in obtaining a non-anonymous HIBE did not work out for previously
known anonymous HIBE schemes [107] and LW -AHIBE . This is due to the following reasons. The
element GT would be of the form e(P1, P2)α where α is part of the master secret. P1 and P2 would
be required for encryption and delegation respectively as a result of which both P1 and P2 would be
present in PP. However, this leaks α information theoretically thus revealing the message too! The
splitting of α here in terms of ∆4 and u precisely overcomes this problem. These scalars further
provide the randomness required to generate semi-functional components.

Regarding the dual system proof, we mentioned in Section 6.4 that some elements in the master
secret provide the randomness required to generate semi-functional components during simula-
tion. In JR -HIBE , the scalars d, c, (ej)j∈[1,h] are revealed information theoretically in the public
parameters. Although d, c, ej being hidden provides more randomness, they are not essential to
generating the required amount of randomness in the proof. The scalar u, hidden by GT in the
public parameters, is sufficient.

We now provide a definition of JR -HIBE = (JR -HIBE .Setup, JR -HIBE .Encrypt, JR -HIBE .KeyGen,
JR -HIBE .Delegate, JR -HIBE .Decrypt) where the algorithms are as follows.

JR -HIBE .Setup(κ): Generate a Type-3 pairing (p,G1,G2,GT , e, F1, F2) based on the security pa-
rameter κ. Compute parameters as follows.

P1
U←Ð G×

1 , P2
U←Ð G×

2

∆1,∆3,∆4, c, d, u, (∆2,j , ej)hj=1
U←Ð Zp, b

U←Ð Z×p ,

U1 = (−∆1b + d)P1, V1,j = (−∆2,jb + ej)P1 for j = 1, . . . , h, W1 = (−∆3b + c)P1,

gT = e(P1, P2)−∆4b+u,

PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, P2,∆1P2,∆3P2, dP2, cP2, (∆2,jP2, ejP2)hj=1, gT )
MSK ∶ (∆4, u)

JR -HIBE .Encrypt(PP,M, id = (id1, . . . , id`)): Pick tag, s
U←Ð Zp and set the ciphertext C =

(C0,C1,C2,C3, tag) where
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C0 =M ⋅ (gT )s, C1 = sP1, C2 = sbP1, C3 = s(U1 +∑`j=1 idjV1,j + tagW1).

JR -HIBE .KeyGen(MSK, id = (id1, . . . , id`)): Pick r
U←Ð Zp and compute the secret key SKid =

((Ki)i∈[1,5], (Dj ,Ej)j∈[`+1,h]) for id where,

K1 = rP2, K2 = rcP2, K3 = (u + r(d +∑`j=1 idjej))P2,

K4 = −r∆3P2, K5 = (−∆4 − r(∆1 +∑`j=1 idj∆2,j))P2,

Dj = rejP2, Ej = −r∆2,jP2 for j = ` + 1, . . . , h.

JR -HIBE .Delegate(id = (id1, . . . , id`), id`+1): Let id ∶ id`+1 = (id1, . . . , id`+1). SKid∶id`+1
is generated

from SKid as follows.

r̃
U←Ð Z×p ,

K1 ←K1 + r̃P2, K2 ←K2 + r̃cP2, K3 ← (K3 + id`+1D`+1) + r̃(d +∑`+1
j=1 idjej)P2,

K4 ←K4 − r̃∆3P2, K5 ← (K5 + id`+1E`+1) − r̃(∆1 +∑`+1
j=1 idj∆2,j)P2,

Dj ←Dj + r̃ejP2, Ej ← Ej − r̃∆2,jP2 for j = ` + 2, . . . , h,

setting r ← r + r̃. Note that the distribution of SKid∶id`+1
is same as that of a freshly generated key

for id ∶ id`+1 via the KeyGen algorithm.

JR -HIBE .Decrypt(C,SKid): Return M ′ computed as:

M ′ = C0 ⋅ e(C3,K1)
e(C1, tagK2 +K3)e(C2, tagK4 +K5)

.

Note 6.5.1. The encryption and decryption algorithms of JR -AHIBE and JR -HIBE are identical and
hence the correctness of decryption for JR -HIBE follows from that of JR -AHIBE .

Note 6.5.2. The KeyGen and Delegate algorithms for JR -HIBE are identical to the portion of the
corresponding algorithms for JR -AHIBE which modify the S1-components of the key. The S2

components of the key in JR -AHIBE are not required in JR -HIBE .

Discussion. Setting h = 1 in JR -HIBE yields a non-anonymous variant of JR-IBE-D. The result-
ing IBE has efficiency comparable to JR-IBE-D but has seven extra elements from G2 in public
parameters. It is interesting to note that JR -HIBE is the only known HIBE within the dual system
framework which has rerandomisable keys. The same holds for the corresponding IBE as well.

6.5.2 Security of JR -HIBE - An Overview

The security of JR -HIBE is very similar to that of JR -AHIBE . We only highlight the main differences
and omit the details of the proof.

The definition of semi-functional ciphertexts remains the same. The semi-functional components
in keys are defined as for S1 in JR -AHIBE . Keys in JR -HIBE do not contain the second set of
components S2. Hence, the notion of partial semi-functionality is not required.

The game sequence is Greal, G0, (Gk)qk=1, Gfinal, where Greal is the actual HIBE CPA-security
game ind-cpa (defined in Section 2.2.1.3).In G0, challenge ciphertext is semi-functional and all keys
are normal. Gk, 0 ≤ k ≤ q is similar to G0 except that the first k keys are semi-functional and the rest
are normal. In Gfinal, challenge ciphertext is a semi-functional encryption of a random message and
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all keys are semi-functional. The theorem below summarises the exact security guarantee obtained
for JR -HIBE .

Theorem 6.5.2. If (εDDH1, t1)-DDH1 and (εDDH2, t2)-DDH2 assumptions hold in G1 and G2 re-
spectively, then JR -HIBE is (ε, t)-IND-ID-CPA-secure where ε ≤ εDDH1+q ⋅εDDH2+(q/p), t1 = t+O(hρ)
and t2 = t +O(hρ). ρ is the maximum time required for one scalar multiplication in G1 and G2.

Since the structure of the ciphertext in JR -HIBE and JR -AHIBE are identical, so is the first
reduction (based on DDH1). The second reduction is also similar; it is only needed to show that
the elements in G2 that are made public can indeed be generated. The third reduction has one
difference. We no longer need to argue about the independence of all information provided to
the attacker with respect to the elements d, (ej)j∈[1,h]. In JR -AHIBE , this was required to show
anonymity i.e, the hash of the identity is masked by a random quantity. We only need to show
that the message to be masked by a random quantity in the last game and this is done by arguing
that the adversary’s view (excluding the challenge ciphertext) is independent of the scalar u.

6.6 Anonymity and Constant-Size Ciphertexts

As mentioned in the beginning of this chapter, many HIBE schemes (such as [86]) have the prefix
decryption property. That is, an entity with identity id′ and a corresponding secret key SKid′ can
decrypt any ciphertext corresponding to id where id′ is a prefix of id. As an example, consider
the Gentry-Silverberg HIBE [86] (GS-HIBE) based on a symmetric pairing e ∶ G ×G → GT . The
ciphertext for an identity id = (id1, . . . , id`) consists of points rP0, rP2, . . . , rP` from G and the
n-bit string M ⊕H2(e(P1,Q0)r) where H1 ∶ {0,1}∗ → G, H2 ∶ GT → {0,1}n are cryptographic hash
functions, Pi = H1(id1, . . . , idi) for i ∈ [1, `], elements P0,Q0 come from PP and M is the message.
Note that when we remove the points rP`′+1, . . . , rP` (`′ < `), the remaining components form a
valid ciphertext for the identity id′ = (id1, . . . , id`′) and hence can be decrypted using a secret key
for id′. The prefix decryption property holds in this case.

In the non-anonymous setting, id is known. Hence, decryption can be done via a secret key
for id that is derived from SKid′ by a sequence of calls to the Delegate algorithm. In case of
anonymous HIBE, id is not known and as a result, delegation is not possible. If the ciphertext
contains separate components corresponding to each level of id, prefix decryption would still hold.
As shown above (for the case of GS-HIBE), one can truncate the ciphertext retaining only the
components corresponding to id′ and then perform decryption using SKid′ . The anonymous HIBE
of Okamoto-Takashima[122] also has this property. But in case of an anonymous HIBE where the
ciphertext size is constant, as in JR -AHIBE , it is not possible to decrypt the ciphertext with SKid′ .
The reason is that is no way to remove (or truncate) the randomised components corresponding
id ∖ id′ from the ciphertext (here, id ∖ id′ denotes the suffix of id′ in id i.e., id`′ , . . . , id`). More
precisely, given the hash s(U1+∑`j=1 idjV1,j + tagW1) for id it is impossible to extract a hash for id′

since we have no knowledge of sV1,j ’s. This limitation is not particular to our work and neither is
something that arises due to the techniques that we use. It is an inherent limitation and is present
in all previously known HIBE constructions which simultaneously achieve constant-size ciphertexts
and anonymity.

On the contrary, as pointed out earlier, the absence of prefix decryption property is acceptable
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and possibly useful in certain applications. For related discussions on this issue, the reader is
referred to [86] and [58].

6.7 Detailed Comparison to Existing HIBE Schemes.

Table 6.1 provides a comparison of JR -HIBE with all previously proposed non-anonymous CC-HIBE
schemes. In terms of security, JR -HIBE is comparable to [122] and [54]. The security of the construc-
tion in [114] is based on sub-group decision assumptions that cannot be considered to be standard
assumptions. JR -HIBE achieves the best efficiency compared to all other schemes. Table 6.2 com-
pares LW -AHIBE and JR -AHIBE with all previously proposed anonymous HIBE schemes. In terms
of security and efficiency, there is no construction that is comparable to JR -AHIBE .

We fix some notation required to compare different parameters of HIBE constructions. h:
maximum depth of the HIBE; `: length of the identity tuple; q: number of key extraction queries.
In [49], N is the number of bits in an identity and k represents number of blocks of N/k bits. #pp,
#msk, #cpr and #key denote number of group elements in the public parameters, master secret,
ciphertext and key respectively. Enc, Dec, KGen and Deleg indicate the efficiency of encryption,
decryption, key generation and delegation algorithms. For Type-3 pairing based schemes, PP and
ciphertexts consist elements of G1; MSK and keys consist elements of G2. #pp = (a, b) means
that there are a elements from G1, G2 and b elements of GT . #cpr = (a, b) denotes a elements
from G1 and b elements from Zp where p = ∣G1∣. We do not consider the GT element that masks
the message in our comparison as it is present in all constructions. Enc = (a, b) implies that a
scalar multiplications are required in G1 and b exponentiations in GT ; ‘Dec’ is measured in terms
of number of pairings; ‘KGen’ is determined by number of scalar multiplications in G2; ‘Deleg’,
by number of scalar multiplications in G2. ‘Assump’ denotes the set of underlying complexity
assumptions; Deg is a shorthand for security degradation. ‘Prefix Dec’ indicates whether or not
the HIBE supports prefix decryption. ‘Const #cpr’ denotes constant number of elements in the
ciphertext (or constant-size ciphertext).

Scheme [24] [49] [50] [114] [122] [54] JR -HIBE
Pairing Type-1 Type-1 Type-1 Composite Type-1 Type-3 Type-3

Security selective-id adaptive-id selective+-id adaptive-id adaptive-id adaptive-id adaptive-id

Assump.
Decisional
h-wBDHI

h-wDBDHI* h-wDBDHI*
Subgroup
Decision

DLin d-Lin SXDH

Deg. 1 O((kq2N/k)h) 1 O(q) O(q) O(q) O(q)
#pp (h + 4,0) (h + 3 + hk,0) (2h + 3,1) (h + 3,1) (32h2 + 16h + 25,1) (2d(d + 1)(h + 2), d) (3h + 9,1)
#msk 1 1 1 1 5 d + 1 2

#cpr (2,0) (2,0) (3,0) (2,0) (13,0) (2(d+1),0) (3,1)

#key h − ` + 2 (k + 1)(h − `) + 2 2(h − ` + 1) h − ` + 2 8h + 5 (d + 1)(h − ` + 2) 2(h − `) + 5

Enc (` + 2,1) (2,1) (` + 2,1) (` + 2,1) 32h + 23 (d(d + 1)(` + 2), d) (` + 4,1)
Dec 2 2 2 2 13 2(d + 1) 3

KGen h + 2 2(h − ` + 1) 2h − ` + 2 2h − ` + 4 16h(h + `) + 10 d(d + 1)(h + 2) 2h + 7

Deleg. ` + 2 2(h − `) 2h − ` + 1 2h − ` + 6 16h(h + ` + 1) + 10 d(d + 1)(h + 2) + d + 1 2h + 9

Table 6.1: Comparison of non-anonymous CC-HIBE schemes based on pairings without random
oracles.
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Efficiency comparison of JR -HIBE with [114]. In absolute terms, the number of group el-
ements required for composite-order based schemes is less than that required in the new HIBE
schemes. However, only counting group elements is not a proper comparison. One has to consider
the actual size for representing a single group element at a desired security level.

For concreteness, let us consider a security level of 128 bits. For Type-3 pairings, using Table-2
of [43], elements of G1 and G2 can be represented using 257 and 513 bits respectively. In contrast,
the order of G1 = G2 for composite-order pairings is a product of at least three primes. The basic
security requirement is that this group order should be hard to factor. To attain 128-bit security
level, the length of the bit representation of the group order should be about 3000 bits (or more).
So, for schemes based on composite-order groups, the length of representations of elements of G1

(and G2) will be about 3000 bits. This is about 12 times (resp. 6 times) more than the length
of bit representation of elements of G1 (resp. G2) using Type-3 pairings. The wide difference in
the length of representations of group elements more than adequately compensates for the absolute
number of group elements in composite-order HIBE schemes being lesser than that in the newly
proposed HIBE scheme.

For example, ciphertexts in JR -AHIBE (or JR -HIBE) consist of 3 elements of G1 which is about
770 bits whereas ciphertexts in the HIBE of [114] will be about 9000 bits (3 elements each having
length about 3000 bits). Similar considerations apply to public parameters (PP), master secret
key (MSK) and decryption keys. The larger length of the parameters also lead to a significant
slow down in the basic operations of scalar multiplication and pairing computation leading to much
slower algorithms for encryption, decryption, key generation and key delegation.

Comparing JR -HIBE with [122] and [54]. The schemes in [122, 54] both achieve similar
security guarantees as JR -HIBE . The construction of [122] the number of elements in the ciphertext
and the number of pairings required for decryption is 13 as opposed to just 3 in JR -HIBE . The
scheme in [54] achieves similar parameters when d = 1 (d-Lin is XDH when d = 1) but is still less
efficient compared to JR -HIBE in terms of ciphertext size and decryption time. Ciphertext in [54]
will consist of 4 G1-elements whereas JR -HIBE contains 3 G1-elements along with an element of
Zp. If an element of G1 is represented using two elements of Zp, then JR -HIBE ciphertexts consist
of 7 Zp elements as opposed to 8 in [54]. Certainly, JR -HIBE has shorter ciphertexts.

From Table 6.1 and the previous discussion, the only non-anonymous HIBE scheme which is
comparable in efficiency and security to JR -HIBE is the Chen-Wee scheme described in [54] for d = 1
whence d-Lin becomes DDH. JR -HIBE has shorter ciphertexts and faster encryption and decryption
algorithms, while the Chen-Wee scheme has shorter decryption keys and faster key generation and
delegation algorithms. For an encryption scheme, encryption and decryption will be used more
often than key generation and delegation, so, the advantage of JR -HIBE over the Chen-Wee scheme
outweighs the disadvantages. When d > 1, the Chen-Wee scheme is based on progressively weaker
assumptions than the SXDH assumption and the resulting schemes also become progressively more
inefficient.

LW -AHIBE in comparison with previous HIBE schemes. Observe that LW -AHIBE was
the one among the first two CC-HIBE schemes based on prime order pairings achieving adaptive
security from static assumptions. The only comparable scheme is that of De Caro et al. [63] which
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Scheme [36] [144] [63] [129] [108],LW -AHIBE [124] JR -AHIBE
Pairing Type-3 Composite Composite Type-1 Type-3 Type-1 Type-3

Security selective-id selective-id adaptive-id selective-id adaptive-id adaptive-id adaptive-id

Assump. DLin,DBDH
`-wBDH*,
`-cDH

Subgroup
Decision

h-BDHE
Aug. h-DLin

LW1,LW2,DBDH
[108]:3-DH,XDH

[137]:A1
DLin SXDH

Deg. O(1) O(1) O(q) O(1) O(q) O(hq) O(q)
Prefix Dec. No No No No No Yes No

Const #cpr No Yes Yes Yes Yes No Yes

#pp (2(h2 + 3h + 2),1) (h + 6,1) (h + 4,1) (h + 6,1) (3h + 6,1) (4(9h + 4),1) (h + 4,1)
#msk h2 + 5h + 7 h + 4 2 4 h + 6 18h + 10 2h + 6

#cpr (2h + 5,0) (3,0) (2,0) (4,0) (6,0) (9` + 5,0) (3,1)

#key (h + 3)(3h − ` + 5) 3(h − ` + 3) 2(h − ` + 2) 3(h − ` + 4) 6(h − ` + 2) (4h − 2` + 1)(9` + 5) + 36(h − `) 4(h − `) + 10

Enc (2(` + 3)(h + 2) + 1,1) (` + 6,1) (` + 4,1) (` + 5,1) (3(` + 2),1) 27` + 15 (` + 4,1)
Dec 2h + 3 4 2 4 6 9` + 5 3

KGen
h3 + h2(5 − `)+
h(7 − 3`) − 2` + 2

3h − 2` + 2 4(h + 2 − 3`)(h + 2(h − ` + 8)) 6h − 5` + 12 (2h + 3)(27` + 10) 2(2h − 2` + 5)

Deleg. 5(h + 2)(h + 3) + 1 6(h − `) + 214(h − `) + 11 (4(h − `) + 25) 2(h − ` + 3) (9` + 5)(6h` + 14h − 2`2 − 8` + 5) 4(h − ` + 5)

Table 6.2: Comparison of anonymous HIBE schemes based on pairings without random oracles.

is based on composite order pairings. The comments regarding the efficiency benefits of using prime
order groups over composite order groups mentioned above also apply here. An independent work
by Park and Lee [129] also proposed a HIBE construction identical to LW -AHIBE . In contrast to
our proof, they prove security based on SXDH and asymmetric 3-party Diffie-Hellman assumptions
in addition to LW1, LW2 and DBDH.

JR -AHIBE and other anonymous HIBE schemes. It is clear from Table 6.2 that all anony-
mous HIBE schemes possess either constant-size ciphertexts or the prefix decryption property and
not both. The Boyen-Waters HIBE [36] has none of the two properties. The Okamoto-Takashima
scheme [124] supports prefix decryption and at the same time achieves anonymity but at the cost of
non-constant size of the ciphertext (the size is linear in the depth of the identity). In addition, ci-
phertexts in their scheme reveal the length of the recipient identity unlike the Boyen-Waters HIBE.
JR -AHIBE , on the other hand, is anonymous and has short ciphertexts but lacks prefix decryption.
All other efficiency parameters are better in case of JR -AHIBE .

We conclude that among anonymous HIBE schemes, JR -AHIBE is the most efficient scheme
with all the standard provable properties. We emphasise that the efficiency and provable secu-
rity properties achieved for JR -AHIBE have not been simultaneously achieved earlier, either for
composite-order pairings, or, for prime-order pairings. For use in practice, one may choose the
Okamoto-Takashima scheme or JR -AHIBE according to whether the application requires prefix
decryption or not.

Subsequent work by Blazy et al. A recent work [21] presents HIBE schemes (both with and
without anonymity) generically constructed via a transformation from message authentication codes
(MAC). Security is based on the d-Lin assumptions. Consider the case d = 1. For the schemes with
public parameters comparable to our schemes ciphertexts are larger than that of JR -AHIBE and
JR -HIBE . They also present a non-anonymous scheme with a tighter reduction and ciphertexts
shorter than JR -HIBE-ciphertexts. But the public parameters are O(hn) where n denotes the
length (in bits) of each identity.
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Chapter 7

Identity-Based Broadcast Encryption

In this chapter, we present the first efficient IBBE constructions that achieve security against
adaptive-identity attacks under standard hardness assumptions. All previously known schemes
either achieved security against selective-identity attacks, or used non-standard assumptions, or
could be obtained by specialising inner product encryption making them quite inefficient. Further,
our constructions are based on Type-3 pairings, whereas previous works on IBBE used Type-1
pairings.

Our Contributions. A simple way to encrypt a single message to a set of identities is to use an
IBE scheme to encrypt it separately to each of the identities. Such a strategy, however, does not
allow any savings in the header size. An IBE encryption results in a ciphertext which consists of
several elements of G1. To obtain a non-trivial IBBE scheme, it is of interest to try and share some
of the group elements in the ciphertext across all the encryptions. This will lead to a reduction in
the size of the ciphertext over the trivial scheme of separate encryption to each identity.

Currently, the most efficient IBE scheme that is known is due to Jutla and Roy [103]. Actually a
simple variant of their original proposal, described as JR-IBE-D in Chapter 6, is the IBE of choice.
In this work, we investigate the possibility of converting this IBE scheme into an IBBE scheme.
The intuitive idea is to share the randomiser across all the identities. Doing this directly, however,
does not admit a security proof. To get around the problem, we need to put a bound on the size
of the set of identities to which a single message can be simultaneously encrypted and then let
the size of the public parameters be determined by this bound. The group elements in the public
parameters allow the computation of polynomial hash of each of the identities. These hashes vary
with the identities whereas the group elements which do not depend on the identity remain the
same for all the identities. It is due to this feature that we are able to get a substantial practical
reduction in the size of the ciphertext. The resulting scheme, denoted IBBE1, can be proved to
be secure against adaptive-identity attacks using the dual system proof technique introduced by
Waters [158]. The underlying hardness assumptions consist of the standard DDH assumptions in
the groups G1 and G2 (DDH1 and DDH2 respectively).

A ciphertext in IBBE1 contains ` Zp-elements (called tags) where ` is the number of identities
to which encryption is to be done. Our second scheme, IBBE2, is a modification of IBBE1 which
provides a method whereby the number of tags in the ciphertext goes down and hence results in
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shorter ciphertexts. The security of this scheme can be reduced from the security of IBBE1 using a
hybrid argument. We describe a method whereby the tags can be generated using a hash function
resulting in an even further reduction in the size of the ciphertext. The reduction is more significant
in the case of IBBE1 than in the case of IBBE2. The trade-off for doing this is that the hash function
needs to be modelled as a random oracle for the security proof. User storage in both IBBE1 and
IBBE2 consists of a constant number of group elements of G2.

Naor, Naor and Lotspiech [117] had provided a combinatorial framework called the complete
subtree (CS) scheme for symmetric key BE. Dodis and Fazio [69] had shown how to combine an
IBE scheme with the CS scheme to obtain a PKBE scheme. (Refer to Chapter 4 for a detailed
discussion). We build on this framework and show that combining an IBBE scheme with the CS
scheme leads to a PKBE scheme with even better parameters. Concretely, we discuss the issue of
combining the CS scheme with IBBE1.

Note: IBBE can be viewed as a special case of inner product encryption [112, 122, 125]. Most
adaptively secure inner product encryption schemes are constructed using dual pairing vector spaces
and hence lead to very inefficient schemes. This is because ciphertexts and keys usually contain
vectors of dimension at least 4 (over G1 or G2) resulting in too much ciphertext overhead in the
broadcast setting. It is due to this reason, we do not discuss IBBE schemes that can be obtained
by specialising inner product encryption.

7.1 IBBE – A First Construction

All our constructions are described in the KEM-DEM framework (refer to Definition 2.1.5 for a
definition of IBBE-KEM). For the sake of simplicity, we use the term IBBE in place of IBBE-KEM.
We start by providing a brief overview of our first IBBE construction – IBBE1. The starting point
is JR-IBE-D (described in Section 6.3.1 of Chapter 6) that achieves adaptive-identity security from
the DDH assumptions in G1 and G2. Let N1,N2,NT and Np denote the sizes of representation
of elements in G1,G2,GT and Zp respectively. A ciphertext in JR-IBE-D consists of the three
elements C1,C2 and C3 from G1; the element C0 from GT ; and the element tag from Zp. The size
of one ciphertext is NT + 3N1 +Np.

Now consider the setting of identity-based broadcast encryption. Suppose that S =
{id1, . . . , id`} ⊆ I is a set of identities corresponding to the intended recipients of a message. A
natural way to extend the IBE scheme to the broadcast setting is as follows. The user keys will be
the usual IBE decryption keys and the public parameters will also remain the same. Components
C1,C2 would still remain the same since they are independent of the identity. The mask (gT )s used
to encrypt the message in C0 will now play the role of the session key i.e., K = (gT )s. Introduce
separate identity-hashes for each identity but randomised with the same scalar. In particular, C3

is replaced by C3,i = s(U1 + idiV1 + tagiW1), i ∈ [1, `].
We would like to emphasise that having separate hashes for each identity requires the use

of separate tags for the different hashes. Otherwise, one can get hold of sV1 by just taking the
difference between C3,i and C3,j for some i ≠ j. With sV1, an attacker can construct a header for
S′ = S∪{id} for any id of its choice. This header when decapsulated using a secret key for id, results
in the same session key that the header for S encapsulates. So, not having separate tags makes the
scheme insecure.
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For the scheme with separate tags as described above, the header size will be (2 + `)N1 + `Np.
This is better than performing separate IBE encryptions for each identity resulting in header size
of `(NT + 3N1 +Np). However, the scheme as described does not seem to admit a security proof.
Defining C3,i as above leads to problems during simulation within the dual system framework. To
see why the above method fails, we take a look at the dual system proof of JR-IBE-D.

The structure of dual-system proof: An important step in a dual system proof is to show that
a normal key is computationally indistinguishable from a semi-functional key. When the attacker
requests a key for an identity id, a DDH2 instance is embedded in the key SKid in such a way that
the power of the attacker in determining whether SKid is normal or semi-functional can be used to
solve the particular instance. At the same time the simulator needs to create a valid semi-functional
ciphertext for the challenge identity îd. One must also ensure any semi-functional ciphertext that
the simulator creates for id cannot provide any extra advantage in solving the problem instance. All
this is achieved (in JR-IBE-D) by embedding a degree-one polynomial f(x) = Ax +B in both the
t̂ag in the ciphertext for îd and the scalar π in the semi-functional components of SKid. Moreover,
A and B are programmed into the public parameters in such a way that they are information
theoretically hidden from an attacker’s viewpoint. Specifically, they are embedded in parameters
V1 and U1 in the PP.

First of all, a degree one polynomial in random variables A,B provides pairwise independence
when evaluated at two different points (A,B are uniformly and independently distributed). This
ensures correct distribution of π = f(id) and tag = f(îd). Secondly, the only way of creating a semi-
functional ciphertext for an identity id′ is by setting tag′ = f(id′) implying that any attempt by the
simulator to create a semi-functional ciphertext for id will set tag = π. As a result, decryption is
successful and the simulator gains no information about the semi-functionality of SKid.

Independence issue for IBBE scheme: In the extension to the broadcast setting discussed
above, we need to argue about the independence of ̂̀tags tag1, . . . , taĝ̀ in the challenge header for

Ŝ = {îd1, . . . , îd̂̀}, plus the scalar π in the secret key for some id ∉ Ŝ. Also we need to argue about
the joint distribution of all the tags in a single step since they all share the same randomiser. A
degree one polynomial does not provide sufficient amount of randomness to do so. This is exactly
where the dual system argument fails.

To overcome this problem, we introduce the restriction that the maximum size of a privileged
users’ set should be at most m. Then we replace the JR-IBE-D identity hash by a degree-m
polynomial hash in the identity. Such a polynomial provides (m+ 1)-wise independence. Since one
needs to argue about the independence of at most m tags and one π, this hash will suffice for a
dual system proof.

The coefficients of the polynomial are determined by the public parameters. So instead of
U1, V1, PP will now contain elements U1,j for j = 0, . . . ,m. Define component C3,i as C3,i =
s(∑mj=0(idi)jU1,j + tagiW1) for idi ∈ S. Also, as in JR-IBE-D, U1,j ’s and W1 are created using
linear combinations of certain scalars in the master secret i.e., U1,j = (ej + b∆j)P1 for j = 0, . . . ,m
and W1 = (c + b∆)P1. So the secret key for an identity id will now consist of the two sub-hashes

∑mj=0(id)jej and ∑mj=0(id)j∆j . These sub-hashes are combined using b in C2 during decryption to
cancel out the hash in C3,i if id = idi.
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The technique of using polynomials to hash identities has been used earlier by Chatterjee and
Sarkar in [46] in the context of IBBE. However, they only obtain weaker security against selective-
identity attacks.

7.1.1 Construction of IBBE1

We define our first IBBE construction

IBBE1 = (IBBE1.Setup, IBBE1.Encap, IBBE1.KeyGen, IBBE1.Decap)

as follows.

IBBE1.Setup(κ,m): Generate a Type-3 pairing (p,G1,G2,GT , e, F1, F2) based on the security pa-
rameter κ. Here, I = Zp and K = GT . In practice, a hash function can be used to map GT to the
actual key space of the symmetric encryption scheme. Compute parameters as follows.

P1
U←Ð G×

1 , P2
U←Ð G×

2

α1, α2, c,∆, (ej ,∆j)mj=0
U←Ð Zp, b

U←Ð Z×p ,

U1,j = (∆jb + ej)P1 for j = 0, . . . ,m, W1 = (∆b + c)P1,

gT = e(P1, P2)α1b+α2 ,

PP ∶ (P1, bP1, (U1,j)mj=0,W1, gT )
MSK ∶ (P2, cP2, α1, α2,∆, (ej ,∆j)mj=0)

IBBE1.KeyGen(MSK, id): Choose r
U←Ð Zp and compute the secret key SKid = (D1,D2,D3,D4,D5)

as follows.

D1 = rP2, D2 = rcP2, D3 = (α1 + r(∑mj=0(id)jej))P2,

D4 = r∆P2, D5 = (α2 + r(∑mj=0(id)j∆j))P2,

IBBE1.Encap(PP, S = {id1, . . . , id`}): If ` ≤m, pick s, (tagi)`i=1
U←Ð Zp. Compute the session key as

K = gsT . The header is given by Hdr = (C1,C2, (C3,i, tagi)`i=1) where

C1 = sP1, C2 = sbP1,
C3,i = s(∑mj=0(idi)jU1,j + tagiW1) for i = 1, . . . , `.

IBBE1.Decap(PP, S, id,SKid,Hdr): Suppose that S = {id1, . . . , id`}. If id ∈ S, there is some index
i ∈ [1, `] such that id = idi. The session key is derived as follows.

K = e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)
e(C3,i,D1)

.
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Correctness: Let S = {id1, . . . , id`} ⊆ I with ` ≤ m. Let (Hdr,K) ←Ð IBBE1.Encap(PP, S; s)
where Hdr = (C1,C2, (C3,i, tagi)`i=1) and let SKidi

R←Ð IBBE1.KeyGen(MSK, idi; r) for some idi ∈ S.

e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)
e(C3,i,D1)

=
e(sP1, tagi ⋅ rcP2 + (α1 + r(∑mj=0(idi)jej))P2) ⋅ e(sbP1, tagir∆P2 + (α2 + r(∑mj=0(idi)j∆j))P2)

e(s(∑mj=0(idi)jU1,j + tagiW1), rP2)

= e(sP1, α1P2) ⋅ e(sP1, P2)tagirc+r(∑
m
j=0(idi)jej) ⋅ e(sP1, bα2P2)e(sP1, P2)tagi⋅r∆b+r(∑

m
j=0(idi)j∆jb)

e((∑mj=0(idi)j∆jb + tagi∆b +∑mj=0(idi)jej + tagic)P1, P2)rs

=
e(P1, (α1 + bα2)P2)s ⋅ e((∑mj=0(idi)j∆jb + tagi∆b +∑mj=0(idi)jej + tagic)P1, P2)rs

e((∑mj=0(idi)j∆jb + tagi∆b +∑mj=0(idi)jej + tagic)P1, P2)rs

= gsT .

Header size and user storage: The header consists of (2+ `) elements of G1, ` elements of Zp
and one element of GT . Using the previous notation, the size of the header is (2+ `)N1 + `Np +NT .
The number of keys to be stored by each user consists of 5 elements of G2.

Use of random oracles. Let H ∶ {0,1}κ×[1,m]→ Zp be a hash function that takes a seed (say z)
of length κ, an index i ∈ [1,m] as input and produces a value in Zp as output. If H is modeled as a
random oracle, then for distinct inputs, the outputs will be independent and uniformly distributed
in Zp. Such an H can be used to reduce the header size in the following manner. In the IBBE1

header, the tags are replaced by a uniform random κ-bit quantity z. The actual tags are generated
by evaluating H on inputs (z, i) for each i ∈ [1, `] where ∣S∣ = `. The size of the resulting header will
be NT + (2 + `)N1 + κ. In practical terms, the efficiency gain over IBBE1 is quite significant. The
modified scheme, which we call IBBERO

1 (RO denotes random oracle), can be shown to be secure
via a reduction from an adversary breaking its security to an adversary against scheme IBBE1.
Essentially, the tags that the adversary against IBBE1 obtains as part of the challenge header are
returned as answers to the random oracle queries that the adversary against IBBERO

1 makes. Note
that the use of random oracles is “minimal”. It may be possible to use ROs more effectively to
further reduce the header size.

Getting rid of tags? It would be nice to be able to completely get rid of the tags. These tags
play a crucial role in the dual system proof. Lewko and Waters [114] proposed a different type of
dual system encryption where the role of the tags is shifted to some scalars in the semi-functional
components (similar to the scalar π in an IBBE1 secret key). However, one must also ensure that
a semi-functional component can be decrypted by a normal key which in turn requires that these
scalars in the semi-functional components cancel out during decryption. This can be done with
multiple copies of the identity hash (as in [114]) in the ciphertext. In the context of broadcast
encryption, having multiple copies of the identity hash in the ciphertext increases the header size.
So, it does not seem likely that the technique of [114] will help reduce the header size any further.
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Restriction on the size of the identity set: In the encapsulation algorithm we have assumed
that the number of identities ` to which the message is to be encrypted is at most m, the parameter
of the IBBE scheme. If it turns out that ` >m, then the set of identities will be divided into ⌈`/m⌉
groups and the encapsulation algorithm will be applied separately to each group. The resulting
header size will be ⌈`/m⌉((m+2)N1+mNp+NT ). Since this is quite routine, we will simply analyse
the scheme under the assumption that ` ≤m.

7.1.2 Security of IBBE1

The scheme IBBE1 is proved secure in the sense of IND-BID-CPA (Section 2.2.3). via the dual
system technique. The following theorem formally states the security guarantee we prove for the
scheme IBBE1.

Theorem 7.1.1. If (εDDH1, t1)-DDH1 and (εDDH2, t2)-DDH2 assumptions hold in G1 and G2 respec-
tively, then IBBE1 is (ε, t, q)-IND-BID-CPA-secure where ε ≤ εDDH1+2q ⋅εDDH2+(q/p), t1 = t+O(m2ρ)
and t2 = t +O(m2ρ). ρ is the maximum time required for one scalar multiplication in G1 or G2.

Proof. We start by appropriately defining semi-functional headers and user keys for IBBE1. Let
IBBE1.SFEncap and IBBE1.SFKeyGen be algorithms that generate semi-functional headers and user
keys (respectively) described as follows.

IBBE1.SFEncap(PP,MSK, S, (Hdr,K)): Takes as input a header-key pair created by IBBE1.Encap
algorithm on a set S and modifies it to obtain semi-functional header and session key. Let S =
{id1, . . . , id`} and Hdr = (C1,C2, (C3,i, tagi)`i=1). Pick µ

U←Ð Zp and modify K and the components
of Hdr as follows.

K ←K ⋅ e(P1, P2)α1µ, C1 ← C1 + µP1, C2 ← C2,

C3,i ← C3,i + µ(
m

∑
j=0

(idi)jej + tagi ⋅ c)P1 for i = 1, . . . , `.

Return the modified session key K along with the header Hdr = (C1,C2, (C3,i, tagi)`i=1).
IBBE1.SFKeyGen(MSK,SKid): This algorithm takes in a normal secret key SKid = (D1, . . . ,D5)
for identity id and generates a semi-functional key as follows.

γ, π
U←Ð Zp,

D1 ←D1, D2 ←D2 + γP2, D3 ←D3 + γπP2,

D4 ←D4 − (γ
b
)P2, D5 ←D5 − (γπ

b
)P2.

The resulting key SKid = (D1, . . . ,D5) is returned.

We need to show that all the semi-functionality properties are satisfied. Let (Hdr =
(C1,C2, (C3,i, tagi)`i=1),K) be a header-key pair for the set S = {id1, . . . , id`} and let SKidi be a
user key for an identity idi ∈ S. Consider the following cases.

SKidi is semi-functional and (Hdr,K) is normal: Let SKidi ←Ð
IBBE1.SFKeyGen(MSK,SK′idi ;γ, π) where SK′idi is a normally generated key for idi.
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The requirement is that when Hdr is decapsulated with SKid, the result is K. The following
calculation shows that this requirement is satisfied.

e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)
e(C3,i,D1)

=K ⋅ e(sP1, tagiγP2 + γπP2)e(sbP1,−tagi(γ/b)P2 − (γπ/b)P2)
=K ⋅ e(sP1, tagiγP2 + γπP2)e(sP1,−tagiγP2 − γπP2)
=K.

The second step follows from the correctness condition i.e., a normal header when decapsu-
lated with a normal user key gives the corresponding normal session key.

SKidi is normal and (Hdr,K) is semi-functional: Let (Hdr′,K ′) be a normally generated
header-key pair and let (Hdr,K)←Ð IBBE1.SFEncap(PP,MSK, S, (Hdr′,K ′);µ). We have

e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)
e(C3,i,D1)

=K ⋅ e(µP1, tagiD2 +D3)
e(µ(∑mj=0(idi)jej + tagi ⋅ c)P1,D1)

=K ⋅
e(µP1, r(∑mj=0(idi)jej + tagi ⋅ c)P2)
e(µ(∑mj=0(idi)jej + tagi ⋅ c)P1, rP2)

=K,

as required.

Both SKidi and (Hdr,K) are semi-functional: Let (Hdr′,K ′) be a normally
generated header-key pair and SK′idi a normal key for idi. Also let
(Hdr,K) ←Ð IBBE1.SFEncap(PP,MSK, S, (Hdr′,K ′);µ) and SKidi ←Ð
IBBE1.SFKeyGen(MSK,SK′idi ;γ, π). In this case, the key obtained by running the

IBBE1.Decap algorithm is masked by a factor of e(P1, P2)µγ(tagi+π) as shown below.

e(C1, tagiD2 +D3)e(C2, tagiD4 +D5)
e(C3,i,D1)

=K ⋅ e(µP1, tagiγP2 + γπP2)
=K ⋅ e(P1, P2)µγ(tagi+π).

In the second step we retain only pairings between semi-functional components since all other
pairings involving semi-functional components get cancelled.

Note that the masking factor vanishes when tagi = −π. Then SKidi and Hdr are called
nominally semi-functional for idi.

Now, given that semi-functional algorithms are defined, consider a sequence of games Greal, G0,
(Gk)qk=1, Gfinal between an adversary A and a challenger with the games defined as follows.

• Greal: the actual IBBE security game ind-ibbe-cpa (described in Section 2.2.3).
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• Gk, 0 ≤ k ≤ q: challenge header is semi-functional; K0 is semi-functional; first k user keys are
semi-functional.

• Gfinal: challenge header is semi-functional; K0 is random.

Let X◻ denote the event that A wins in G◻. In Lemmas 7.1.1, 7.1.2 and 7.1.3, we show that

• ∣Pr[Xreal] −Pr[X0]∣ ≤ εDDH1,

• ∣Pr[Xk−1] −Pr[Xk]∣ ≤ εDDH2 for k = 1, . . . , q,

• ∣Pr[Xq] −Pr[Xfinal]∣ ≤ q/p.

Clearly, the bit β is statistically hidden from the attacker in Gfinal, which means that Pr[Xfinal] =
1/2. Hence, the advantage of A in breaking the security of IBBE1 is given by

Advind-ibbe-cpa
IBBE1

(A ) = ∣Pr[Xreal] −
1

2
∣

= ∣Pr[Xreal] −Pr[Xfinal]∣

≤ ∣Pr[Xreal] −Pr[X0]∣ +
q

∑
k=1

(∣Pr[Xk−1] −Pr[Xk]∣)

+ ∣Pr[Xq] −Pr[Xfinal]∣

≤ εDDH1 + 2qεDDH2 +
q

p
.

In the sequel, B1 (resp. B2) is a DDH1-solver (resp. DDH2-solver). We argue that B1, using
the adversary’s ability to distinguish between Greal and G0, can solve DDH1. Similarly, A ’s power
to distinguish between Gk−1 and Gk for k ∈ [1, q], can be leveraged to build a DDH2-solver B2.

Lemma 7.1.1. ∣Pr[Xreal] −Pr[X0]∣ ≤ εDDH1.

Proof. Let (G, P1, bP1, sbP1, P2, (s+µ)P1) be the instance of DDH1 that B1 has to solve i.e., decide

whether µ = 0 or µ
U←Ð Zp. The phases of the game are simulated by B1 as described below.

Setup: Choose α1, α2, c,∆, (ej ,∆j)mj=0
U←Ð Zp and set parameters as:

U1,j = ∆j(bP1) + ejP1 for j = 0, . . . ,m, W1 = ∆(bP1) + cP1,
gT = e(P1, P2)α1e(bP1, P2)α2

PP ∶ (P1, bP1, (U1,j)mj=0,W1, gT )
All the secret scalars present in the MSK are known. B1 can thus create normal keys. However,
B1’s lack of knowledge of the scalar b or its encoding in G2 prevents it from creating semi-functional
keys.

Key Extraction Phases 1 & 2: B1 answers all of A ’s queries with normal keys generated by
the IBBE1.KeyGen algorithm.

Challenge: A sends a challenge set Ŝ = {îd1, . . . , îd̂̀}. B sets (Ĥdr,K0) as follows.
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For i = 1, . . . , ̂̀, choose t̂agi
U←Ð Zp,

K0 = e(sbP1, P2)α2e((s + µ)P1, P2)α1 = gsTe(P1, P2)α1µ,

Ĉ1 = (s + µ)P1 = sP1 + µP1,

Ĉ2 = sbP1,

For i = 1, . . . , ̂̀,
Ĉ3,i = (∑mj=0 ∆j(îdi)j + t̂agi ⋅∆)(sbP1) + (∑mj=0 ej(îdi)j + t̂agi ⋅ c)(s + µ)P1

= (∑mj=0(îdi)j(∆jb + ej) + t̂agi(∆b + c))(sP1) + (∑mj=0 ej(îdi)j + t̂agi ⋅ c)(µP1)
= s(∑mj=0(îdi)jU1,j + t̂agiW1) + µ(∑mj=0 ej(îdi)j + t̂agi ⋅ c)P1.

B1 sets Ĥdr = (Ĉ1, Ĉ2, (Ĉ3,i, t̂agi)
̂̀
i=1). It then samples K1

U←Ð GT , β
U←Ð {0,1} and returns the pair

(Ĥdr,Kβ) to A . Observe that (Ĥdr,K0) is normal if µ = 0 and semi-functional when µ
U←Ð Zp.

Guess: A outputs its guess β′ and halts.

B returns 1 if A ’s guess is correct i.e., β = β′; otherwise B1 returns 0. The advantage of B1 in
solving the DDH1 instance is given by

AdvDDH1
G (B1) = ∣Pr[B1 returns 1∣µ = 0] −Pr[B1 returns 1∣µ U←Ð Zp]∣

= ∣Pr[β = β′∣µ = 0] −Pr[β = β′∣µ U←Ð Zp]∣
= ∣Pr[A wins in Greal] −Pr[A wins in G0]∣
= ∣Pr[Xreal] −Pr[X0]∣.

Since AdvDDH1
G (B1) ≤ εDDH1, we have ∣Pr[Xreal] −Pr[X0]∣ ≤ εDDH1.

Lemma 7.1.2. ∣Pr[Xk−1] −Pr[Xk]∣ ≤ εDDH2 for k ∈ [1, q].

Proof. B2 is given an instance (G, P1, P2, rP2, cP2, (rc+ γ)P2) of DDH2 and has to decide whether

γ = 0 or γ
U←Ð Zp. It simulates the game as described below.

Setup: Pick scalars α1, α
′
2, c,∆

′, (ej,1, ej,2,∆′
j)mj=0

U←Ð Zp and b
U←Ð Z×p and (implicitly) set

α2 =
α′2 − α1

b
, ∆ = ∆′ − c

b
,

ej = ej,1 + cej,2, ∆j =
∆′
j − ej
b

for j = 0, . . . ,m.

Parameters are generated as follows.

U1,j = ∆′
jP1 for j = 0, . . . ,m, W1 = −∆′P1,

gT = e(P1, P2)α
′
2

PP ∶ (P1, bP1, (U1,j)mj=0,W1, gT )
The elements ∆,∆j , ej that are part of theMSK are not available to B2. Even without these, B2

can generate keys as explained in the simulation of the key generation phases.

Key Extraction Phases: A queries on identities id1, id2, . . . , idq. B responds to the ν-th query
(ν ∈ [1, q]) considering three cases.
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Case 1: ν > k
B2 returns a normal key, SKidν = (D1, . . . ,D5). The master secret is not completely available
to B2 and hence the IBBE1.KeyGen needs a modification. The components of the key are
computed as shown below.

rν
U←Ð Zp,

D1 = rνP2, D2 = rν(cP2),

D3 =
⎛
⎝
α1 + rν

⎛
⎝
m

∑
j=0

(idν)jej,1
⎞
⎠
⎞
⎠
P2 + rν

⎛
⎝
m

∑
j=0

(idν)jej,2
⎞
⎠
(cP2) =

⎛
⎝
α1 + rν

⎛
⎝
m

∑
j=0

(idν)jej
⎞
⎠
⎞
⎠
P2,

D4 = b−1rν(∆′P2 − cP2) = rν (
∆′ − c
b

)P2 = rν∆P2,

D5 = b−1 ⎛
⎝
α′2 − α1 + rν

⎛
⎝
m

∑
j=0

(idν)j(∆′
j − ej,1)

⎞
⎠
⎞
⎠
P2 − b−1rν

⎛
⎝
m

∑
j=0

(idν)jej,2
⎞
⎠
(cP2)

= b−1 ⎛
⎝
α′2 − α1 + rν

⎛
⎝
m

∑
j=0

(idν)j(∆′
j − ej,1 − cej,2)

⎞
⎠
⎞
⎠
P2

=
⎛
⎝
α′2 − α1

b
+ rν

⎛
⎝
m

∑
j=0

(idν)j (
∆′
j − ej
b

)
⎞
⎠
⎞
⎠
P2

=
⎛
⎝
α2 + rν

⎛
⎝
m

∑
j=0

(idν)j∆j
⎞
⎠
⎞
⎠
P2.

Case 2: ν < k
In this case, B2 first creates a normal key SKidν and runs IBBE1.SFKeyGen on SKidν . This
is possible because the only scalar used in IBBE1.SFKeyGen is b which is known to B2.

Case 3: ν = k
B2 embeds the DDH2 instance (consisting of P2, cP2, rP2, (rc + γ)P2) in the key SKidk =
(D1, . . . ,D5) for idk by generating the components as shown below.

D1 = rP2, D2 = (rc + γ)P2,

D3 = α1P2 +
⎛
⎝
m

∑
j=0

(idk)jej,1
⎞
⎠
(rP2) +

⎛
⎝
m

∑
j=0

(idk)jej,2
⎞
⎠
(rc + γ)P2

= α1P2 + r
⎛
⎝
m

∑
j=0

(idk)j(ej,1 + cej,2)
⎞
⎠
P2 + γ

⎛
⎝
m

∑
j=0

(idk)jej,2
⎞
⎠
P2

=
⎛
⎝
α1 + r

⎛
⎝
m

∑
j=0

(idk)jej
⎞
⎠
⎞
⎠
P2 + γ

⎛
⎝
m

∑
j=0

(idk)jej,2
⎞
⎠
P2,

D4 = b−1(∆′rP2 − (rc + γ)P2) = r (
∆′ − c
b

)P2 − (γ
b
)P2 = r∆P2 − (γ

b
)P2,
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D5 = b−1 ⎛
⎝
m

∑
j=0

(idk)j(∆′
j − ej,1)

⎞
⎠
(rP2) − b−1 ⎛

⎝
m

∑
j=0

(idk)jej,2
⎞
⎠
(rc + γ)P2

= b−1r
⎛
⎝
m

∑
j=0

(idk)j(∆′
j − ej)

⎞
⎠
P2 − b−1γ

⎛
⎝
m

∑
j=0

(idk)jej,2
⎞
⎠
P2

= r
⎛
⎝
m

∑
j=0

(idk)j (
∆′
j − ej
b

)
⎞
⎠
P2 − (γ

b
)
⎛
⎝
m

∑
j=0

(idk)jej,2
⎞
⎠
P2

= r
⎛
⎝
m

∑
j=0

(idk)j∆j
⎞
⎠
P2 − (γ

b
)
⎛
⎝
m

∑
j=0

(idk)jej,2
⎞
⎠
P2,

implicitly setting rk = r and γk = γ. When γ = 0, SKidk is normal; otherwise, it is semi-
functional with πk = ∑mj=0(idk)jej,2 set implicitly.

Challenge: B2 obtains the challenge set Ŝ = {îd1, . . . , îd̂̀} from A . It then picks s, µ
U←Ð Zp and

generates semi-functional key K0 and header Ĥdr = (Ĉ1, Ĉ2, (Ĉ3,i, t̂agi)
̂̀
i=1) as follows.

t̂agi = −
m

∑
j=0

(îdi)jej,2,

K0 = gsT ⋅ e(P1, P2)α1µ,

Ĉ1 = sP1 + µP1,

Ĉ2 = sbP1,

For i = 1, . . . , ̂̀,
Ĉ3,i = s (∑mj=0(îdi)jU1,j + t̂agiW1) + µ (∑mj=0(îdi)jej,1)P1

= s (∑mj=0(îdi)jU1,j + t̂agiW1)
+µ (∑mj=0(îdi)j(ej,1 + cej,2) + t̂agi ⋅ c)P1 − µ (∑mj=0(îdi)jcej,2)P1 − t̂agi ⋅ cµP1

= s (∑mj=0(îdi)jU1,j + t̂agiW1)
+µ (∑mj=0(îdi)jej + t̂agi ⋅ c)P1 − cµ (∑mj=0(îdi)jej,2 + t̂agi)P1

= s (∑mj=0(îdi)jU1,j + t̂agiW1) + µ (∑mj=0(îdi)jej + t̂agi ⋅ c)P1.

The last step follows due to the fact that t̂ag = −∑mj=0(îdi)jej,2. B2 chooses K1
U←Ð GT ,

β
U←Ð {0,1} and returns (Ĥdr,Kβ) to A . Note that Ĥdr and K0 are properly formed. Also,

this is the only way B2 can generate a semi-functional header-key pair since no encoding of c is
available in the group G1. An implication is that B2 can only create a nominally semi-functional
header component with index i for a set of intended recipients containing idk as the i-th identity.
This is because the relation tagi = −πk will hold. This provides no information to B2 about the
semi-functionality of SKidk .

Guess: A returns its guess β′ of β.

B2 outputs 1 if A wins and 0 otherwise. Also, B2 simulates Gk−1 if γ = 0 and Gk if γ
U←Ð Zp.
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Therefore, the advantage of B2 in solving the DDH2 instance is given by

AdvDDH2
G (B2) = ∣Pr[B2 returns 1∣γ = 0] −Pr[B2 returns 1∣γ U←Ð Zp]∣

= ∣Pr[β = β′∣µ = 0] −Pr[β = β′∣µ U←Ð Zp]∣
= ∣Pr[A wins in Gk−1] −Pr[A wins in Gk]∣
= ∣Pr[Xk−1] −Pr[Xk]∣.

It now follows that ∣Pr[Xk−1] − Pr[Xk]∣ ≤ εDDH2 from the fact that AdvDDH2
G (B) ≤ εDDH2 for all

t-time adversaries B. What remains is to show that all the information provided to the adversary
have the correct distribution. The scalars b,α1, α

′
2,∆

′, (ej,1, ej,2,∆′
j)mj=0 chosen by B2 and r, c, γ

from the instance are uniformly and independently distributed in their respective domains. These
scalars determine the distribution of the following quantities.

• α2,∆

• (ej)mj=0 and hence (∆j)mj=0

• rk, γk

• πk

• t̂ag1, . . . , t̂aĝ̀

(α2,∆) are uniquely determined by (α′2,∆′). Scalars rk, γk have the correct distribution since they
are set to r, γ respectively. Also, all other information is independent of r, γ. We will now argue
that πk and t̂ag1, . . . , t̂aĝ̀ are properly distributed. They are given by the following equation.

⎛
⎜⎜⎜⎜⎜⎜
⎝

πk
t̂ag1

t̂ag2

⋮
t̂aĝ̀

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 idk (idk)2 ⋯ (idk)m
1 îd1 (îd1)2 ⋯ (îd1)m
1 îd2 (îd2)2 ⋯ (îd2)m
⋮ ⋮ ⋮ ⋱ ⋮
1 îd̂̀ (îd̂̀)2 ⋯ (îd̂̀)m

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

e0,2

e1,2

⋮
em,2

⎞
⎟⎟⎟
⎠

(7.1)

One can make the following observations.

• idk, îd1, . . . , îd̂̀ are all distinct since idk ∉ Ŝ. Also ̂̀≤ m. Hence the above matrix of order

(̂̀+ 1) × (m + 1) over Zp is a Vandermonde matrix and has rank ̂̀+ 1.

• e0,2, e1,2, . . . , em,2 are information theoretically hidden from A and also chosen uniformly and
independently over Zp.

From these observations, it follows that πk, t̂ag1, . . . , t̂aĝ̀ are uniformly and independently dis-
tributed in A ’s view.

The scalars (∆j)mj=0 are uniquely determined by (∆′
j)mj=0 and (ej)mj=0. So all that we need to

show is that the quantities ej = ej,1 + cej,2 for j ∈ [0,m] have the right distribution conditioned on
πk and tags being determined by (ej,2)mj=0. This follows from the fact that ej,1’s are uniformly and
independently distributed in Zp thus making the ej ’s uniform random quantities in Zp.
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Lemma 7.1.3. ∣Pr[Xq] −Pr[Xfinal]∣ ≤ q/p.

Proof. In Gq, all the user keys returned to A are semi-functional and so is the challenge header
and key. We now modify the setup and key extraction phases so that the modification results in
Gfinal and then argue that the resulting game is indistinguishable from Gq except for probability
q/p.

Setup: Pick scalars α1, α
′
2,∆

′, c, (∆′
j , ej)mj=0

U←Ð Zp and b
U←Ð Z×p and compute parameters as:

U1,j = ∆′
jP1 for j = 0, . . . ,m, W1 = ∆′P1,

gT = e(P1, P2)α
′
2

PP ∶ (P1, bP1, (U1,j)mj=0,W1, gT )
setting

α2 =
α′2 − α1

b
, ∆ = ∆′ − c

b
,

∆j =
∆′
j − ej
b

for j = 0, . . . ,m.

Although α1 is sampled during setup, it has no effect on the distribution gT and hence that of PP.
This is because gT is created using α′2 which is chosen independent of α1.

Key Extraction: On a key extract query for id, choose r, π′, γ
U←Ð Zp, and compute the individual

components as follows.

D1 = rP2, D2 = rcP2 + γP2, D3 = π′P2 + r
⎛
⎝
m

∑
j=0

(id)jej
⎞
⎠
P2,

D4 = r (
∆′ − c
b

)P2 − (γ
b
)P2,

D5 = (α
′
2 − π′
b

) + r
⎛
⎝
m

∑
j=0

(id)j∆j
⎞
⎠
P2.

Computing D3 as D3 = π′P2 + r (∑mj=0(id)jej)P2 sets π′ = α1 + γπ, where γπ defines the semi-
functional component. The other component where π′ is used is D5 that also fixes γπ in its
semi-functional term. It is necessary to ensure that these two are equal. We show below that D5

is indeed well-formed in this sense.

D5 = (α
′
2 − π′
b

)P2 + r
⎛
⎝
m

∑
j=0

(id)j∆j
⎞
⎠
P2

= (α
′
2 − α1 − γπ

b
)P2 + r

⎛
⎝
m

∑
j=0

(id)j∆j
⎞
⎠
P2

= (α
′
2 − α1

b
)P2 + r

⎛
⎝
m

∑
j=0

(id)j∆j
⎞
⎠
P2 − (γπ

b
)P2

=
⎛
⎝
α2 + r

⎛
⎝
m

∑
j=0

(id)j∆j
⎞
⎠
⎞
⎠
P2 − (γπ

b
)P2.
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The scalar π is determined by α1, π′ and γ. It will be uniformly distributed in Zp unless γ = 0.
Furthermore, D3 and D5 are generated using π′ which is chosen independent of α1, thus making
the key independent of α1.

Challenge: The header and K0 for the challenge set of privileged users Ŝ = {id1, . . . , id̂̀} are
computed as:

s, µ
U←Ð Zp, (tagi)

̂̀
i=1

U←Ð Zp,
K0 = gsT ⋅ e(P1, P2)α1µ,

Ĉ1 = sP1 + µP1,

Ĉ2 = sbP1,

For i = 1, . . . , ̂̀,
Ĉ3,i = s (∑mj=0(îdi)j∆′

j + t̂agi∆
′)P1 + µ (d +∑mj=0(îdi)jej + t̂agi ⋅ c)P1.

The computation above shows that the challenge header consisting of Ĉ1, Ĉ2, (Ĉ3,i, t̂agi)
̂̀
i=1 is

generated independent of α1. Recall that α1 is chosen independently and uniformly at random from
Zp. Also, public parameters and all the keys are generated independent of α1. Hence the conditional
distribution of α1 given the public parameters, keys and the challenge header is the same as its
unconditional distribution. As a result, K0 would be uniformly distributed in GT and independent
of all other information provided to A . Therefore the bit β is information theoretically hidden
from the adversary implying that the resulting game (obtained by modifying IBBE1.SFKeyGen) is
Gfinal.

Suppose the adversary makes queries on id1, . . . , idq. Let γi denote the scalar used in generating
the semi-functional components in SKidi and let Fi (i ∈ [1, q]) denote the event that γi = 0. Clearly,
Pr[Fi] = 1/p for a fixed i. Observe that Gq and Gfinal proceed identically unless the failure event
F = ∪qi=1Fi occurs. By the difference lemma (Shoup [149]), we have ∣Pr[Gq] −Pr[Gfinal]∣ ≤ Pr[F ] ≤
∑qi=1 Pr[Fi] = q/p.

7.2 Towards Shorter Headers Without Random Oracles

The header size in IBBE1 is (`+ 2)N1 + `Np for a recipient set of size ` (≤m). As discussed earlier,
we cannot do much with the identity hashes and neither can the tags be completely eliminated.
One way of tackling the tags is to use a random oracle as has also been mentioned earlier. The
question that we address here is whether the issue of increase in the ciphertext size due to the use
of tags can be alleviated without resorting to random oracles.

In this section, we provide an answer to this question which results in a trade-off between the
number of tags and the number of session key encapsulations. The resulting scheme, which we
call IBBE2, operates as follows. Partition the privileged users’ set and encapsulate the session key
separately to each subset in the partition by applying the encapsulation algorithm of IBBE1. These
separate encapsulations are not completely independent. The tags are reused across encapsulations.
Below, we provide an overview of the scheme followed by the formal details.

Let the maximum size of the privileged users’ set be m = m1m2. Initialise an IBBE1 system
with m2 as the input to the Setup algorithm. Suppose we want to encrypt to a set S of size ` ≤m.

1. Express ` as ` = (`1 − 1)m2 + `2 where 1 ≤ `1 ≤m1 and 1 ≤ `2 ≤m2.
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2. Partition S into `1 disjoint subsets S1, . . . , S`1 so that ∣Sj ∣ =m2 for j = 1, . . . `1−1 and ∣S`1 ∣ = `2.

3. Choose random tags tag1, . . . , tagm2
from Zp. (We need m2 tags since each subset Sj is of

size at most m2.)

4. Run IBBE1.Encap on each Sj (for j ∈ [1, `1]) separately with the tags set to tag1, . . . , tagm2
.

This results in `1 IBBE1 headers (referred to as sub-headers) with each sub-header consisting of at
most m2 elements of G1. The IBBE2 header consists of these sub-headers and the m2 tags used to
construct all the `1 sub-headers in addition to `1 elements of GT each masking the session key.

The above idea is made concrete below as the scheme

IBBE2 = (IBBE2.Setup, IBBE2.Encap, IBBE2.KeyGen, IBBE2.Decap)

whose individual algorithms are as follows.

IBBE2.Setup(κ,m =m1m2−1): Let (PP ′,MSK′) R←Ð IBBE1.Setup(κ,m2). Define PP = (PP ′,m2)
and MSK =MSK′.
IBBE2.KeyGen(MSK, id): Return (SKid = (D1,D2,D3,D4,D5))

R←Ð IBBE1.KeyGen(MSK, id).
IBBE2.Encap(PP, S = {id1, . . . , id`}): Suppose ` = (`1 − 1)m2 + `2 with 1 ≤ `1 ≤m1 and 1 ≤ `2 ≤m2.
Partition the set S into `1 disjoint subsets S1, S2, . . . , S`1 where ∣Sj ∣ = m2 for all j ∈ [1, `1 − 1] and

∣S`1 ∣ = `2. Choose (sj)`1j=1, (tagi)
m2
i=1

U←Ð Zp and set

(Hdrj ,Kj)←Ð IBBE1.Encap(PP ′, Sj ; sj , tag1, . . . , tagm2
) for j = 1, . . . , `1.

Recall that the notation A(⋅;R) denotes running the probabilistic algorithm A(⋅) with its random
bits set to R.

Choose a session key K ′ U←Ð GT and mask it separately using K1, . . . ,K`1 as follows.

C0,j =K ′ ⋅Kj for j ∈ [1, `1]. (7.2)

The header is

H⃗dr = (Hdr1, . . . ,Hdr`1 ,C0,1, . . . ,C0,`1 , tag1, . . . , tagm2
). (7.3)

The actual message is encrypted using the session key K ′.

IBBE2.Decap(PP, S, id,SKid, H⃗dr): Parse S as (S1, . . . , S`1) and suppose that id ∈ Sj for
some j ∈ [1, `1]. The session key K is derived as: K ′ = C0,t ⋅ K−1

j where Kj =
IBBE1.Decap(PP ′, Sj , id,SKid,Hdrj , (tagi)m2

i=1).
Correctness. It is straightforward to verify that the correctness of decapsulation follows from
that of IBBE1.

Masked copies of the session key: The message is encrypted using the session key K ′ and
C0,j , 1 ≤ j ≤ `1, are the masked copies of K ′. In the above description, K ′ is from GT since this
is convenient for the security analysis. In practice, however, K ′ will be the key for a symmetric
encryption scheme and hence will be a κ-bit string, where κ is the security parameter. In this case,
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the quantities C0,j will be generated as KDF(Kj) ⊕K ′, where KDF is a key derivation function
which maps an element of GT to a κ-bit string. As a result, C0,1, . . . ,C0,`1 consists of `1 κ-bit
strings. While considering the efficiency of IBBE2, we will consider the C0,j ’s to be κ-bit strings.
For the security analysis, on the other hand, we will proceed with considering the C0,j ’s to be
elements of GT . Modifying this security analysis to consider C0,j ’s to be κ-bit strings will require
considering the security of KDF. This is quite routine and hence we skip it.

Header size for IBBE2: The total size of the IBBE2 header is (`+2`1)N1+m2Np+`1κ (assuming
C0,j ’s to be κ-bit strings). In comparison, the header size for IBBE1 is (`+2)N1+`Np. A reasonable
estimate of the group sizes is N1 = 2Np and Np = 2κ. Also, assume that m1 and m2 are around√
m. For small `, the header sizes of the two IBBE schemes are comparable. For ` around m, the

header size of IBBE2 is smaller for m ≥ 25.

Generating tags using a random oracle. As in the case of IBBE1, it is possible to construct a
variant IBBERO

2 of IBBE2 that is adaptively secure with random oracles. The tags used in encryption
are generated using a random oracle as in IBBERO

1 . The construction IBBERO
2 can be obtained by

just replacing IBBE1 by IBBERO
1 in the description of IBBE2 above. Moreover, IBBERO

2 can be shown
to be secure based on the assumption that IBBERO

1 is secure. The header for IBBERO
2 consists of

(`+ 2`1) elements of G1 and `1 κ-bit masked versions of the session key and a single κ-bit quantity
from which the m2 tags are generated using the random oracle. In contrast, the header for IBBERO

1

consists of (`+2) elements of G1 and a single κ-bit quantity from which the m2 tags are generated.
As a result, the header size for IBBERO

2 is greater than the header size for IBBERO
1 . So, if the tags

are to be generated using a hash function, which is modelled as a random oracle, then it is more
advantageous to use IBBERO

1 than IBBERO
2 . We note that the PP size of IBBERO

2 is lower than that
of IBBERO

1 , but, this is of lesser significance.

Restriction on the size of the identity set: As in the case of IBBE1, in the encapsulation
algorithm we have assumed that the number of identities ` to which the message is to be encrypted
is at most m. In case ` > m, then the comment made in the context of IBBE1 also applies for
IBBE2.

7.2.1 Security of IBBE2

We show that IBBE2 is secure if IBBE1 is secure. More precisely, we prove the following.

Theorem 7.2.1. If IBBE1 is (ε, t, q)-IND-BID-CPA-secure then IBBE2 is (ε′, t′, q)-IND-BID-CPA-
secure where ε′ ≤ 2m1ε and t′ = O(m1t).

Proof. The proof is via a simple hybrid argument over the session key encryptions. Let A be a
t-time IND-BID-CPA adversary against IBBE2. We show how to build IND-BID-CPA adversaries
B1, . . . ,B ̂̀

1
(where ̂̀

1 ≤ m1 is the size of the partition of the challenge set) all running in time t

against IBBE1 such that Advind-ibbe-cpa
IBBE2

(A ) ≤ ∑ ̂̀
1
ν=1 Adv

ind-ibbe-cpa
IBBE1

(Bt). Since ̂̀
1 ≤m1, the statement

of the theorem follows.
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Define the following game sequence: G0,G1, . . . ,G ̂̀
1

where G0 is the real ind-ibbe-cpa game; in

Gν (ν ∈ [1, ̂̀1]), the first ν encryptions of the session key are random and the rest are normally
formed. Let Y◻ denote the probability that A wins in G◻.

Transition from Gν−1 to Gν for ν ∈ [1, ̂̀1]: Bν receives the public parameters PP ′ of IBBE1

from its challenger and returns PP = (PP,m2) to A . A key extraction query on an identity id
that A makes is answered with the secret key that Bν receives from its challenger on the same
identity. In the challenge phase, Bν receives a set Ŝ from A and partitions it as (Ŝ1, . . . , Ŝ ̂̀

1
) with

each ∣Ŝj ∣ = m2 for j ∈ [1, ̂̀1 − 1] and ∣Ŝ̀
1
∣ = ̂̀

2. Bν provides Ŝν to its challenger and obtains a pair

(Ĥdr,Kβ). It then extracts the tags in Ĥdr, denoted (t̂agi)m̂2
i=1, picks a random bit δ

U←Ð {0,1} and
sets

(Hdrj ,Kj)
R←Ð IBBE1.Encap(PP ′, Sj ; (tagi)m̂2

i=1), for j ∈ [1, ̂̀1] ∖ {ν},

K ′
0,K

′
1

U←Ð GT ,

C0,j
U←Ð GT for j ∈ [1, ν − 1], C0,j ←K ′

δ ⋅Kj for j = [ν + 1, ̂̀1],

Hdrν = Ĥdr, C0,ν ←K ′
δ ⋅Kβ,

̂⃗
Hdr = ((Hdrj ,C0,j)

̂̀
1
j=1, (tagi)

m̂2
i=1) .

Bν returns
̂⃗
Hdr,K ′

δ to A . The adversary A returns its guess δ′ of δ. Bν sets β′ = 1 if δ = δ′; else
it sets β′ = 0 and returns β′ to its challenger.

We have

Advind-ibbe-cpa
IBBE1

(Bν) = ∣Pr[β = β′] − 1

2
∣

= ∣Pr[β′ = 1∣β = 1]Pr[β = 1] +Pr[β′ = 0∣β = 0]Pr[β = 0] − 1

2
∣

= 1

2
∣Pr[β′ = 1∣β = 1] −Pr[β′ = 1∣β = 0]∣

= 1

2
∣Pr[δ = δ′∣β = 1] −Pr[δ = δ′∣β = 0]∣

= 1

2
∣Pr[δ = δ′ in Gν] −Pr[δ = δ′ in Gν−1]∣

= 1

2
∣Pr[Yν] −Pr[Yν−1]∣ .

Since Pr[Ŷ̀
1
] = 1/2, we have Advind-ibbe-cpa

IBBE2
(A ) = ∣Pr[Y0] −Pr[Ŷ̀

1
]∣ ≤ ∑̂̀

1
ν=1 ∣Pr[Yν−1] −Pr[Yν]∣ =

2∑̂̀
1
ν=1 Adv

ind-ibbe-cpa
IBBE1

(Bν), as required.

7.3 Comparison to Existing Schemes

Tables 7.1 and 7.2 provide comparison of IBBE1, IBBE2, IBBERO
1 and IBBERO

2 with previously known
IBBE systems secure with and without random oracles respectively. The ones derived as special
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cases of inner-product encryption have been omitted due to reasons explained earlier. Apart from
these, we have tried to include all previously known IBBE schemes appearing in the literature.

We consider the following schemes for comparison: the early selectively secure construc-
tions [10, 11] based on random oracles (ROs); constructions in [46, 48] with selective security and
without ROs; constant-size ciphertext IBBE schemes selectively secure (with and without ROs)
proposed by Delerablee [64]; generic constructions of IBBE schemes from “wicked” IBE schemes by
Abdalla-Kiltz-Neven [2] instantiated with BBG-HIBE (without ROs) and GS-HIBE (with ROs);
two adaptively secure IBBE constructions proposed by Gentry and Waters [87] – one with linear size
(in number of privileged users) ciphertexts and the other with sub-linear size ciphertexts referred
to as (a) and (b) respectively and a variant of scheme (a) based on ROs.

The basis for comparison are the following parameters – type of pairing, number of group
elements in PP (denoted #pp) from G1 and GT , number elements in Hdr (#hdr) from G1 and
{0,1}n (in case a KDF is used), number of elements in a user key (#ukey) from G2 and Zp, number
of pairings required for decryption, security model and computational assumptions. m denotes the
maximum size of the privileged users’ set. ` (≤ m) is the size of the intended recipient set chosen
during encryption. In construction [87]-(b) as well as scheme IBBE2, the maximum number of
privileged users is given by m = m1m2. The size of the set of users chosen during encryption is
given by ` = `1`2 where `1 ≤ m1 and `2 ≤ m2. In the comparison, we ignore descriptions of hash
functions, pseudorandom functions (PRFs) and other parameters that do not have any significant
effect on the space-efficiency.

In the paper by Gentry and Waters [87], construction (b) consists of `1 separate symmetric
encryptions of the message under the `1 keys generated by calls to the encapsulation algorithm of
construction (a). In practice, the `1 keys would be used to mask a single session key via a KDF and
there would be single encryption of the message under the session key. We take this into account
in the comparison tables.

The short-hand ‘sID’ is used to indicate selective identity security and ‘aID’ is used to indicate
security against adaptive-identity attacks. ‘CCA’ stands for chosen ciphertext attack whereas ‘CPA’
stands for chosen plaintext attacks. Apart from [11] all other schemes, including ours, have been
proved secure against CPA. While CCA-security is the final desired goal, the first challenge in the
design of IBBE schemes is to be able to handle adaptive-identity attacks. Most of the research on
this topic have focused on this goal. Given that our constructions provide satisfactory solutions to
the first problem, adapting known techniques to efficiently achieve CCA-security should form the
focus of future work.

The assumptions mentioned in the tables are as follows: decisional bilinear Diffie-Hellman
(DBDH), Gap bilinear DH (Gap-BDH), decisional bilinear DH exponent (DBDHE), generalised
decisional DH exponent (GDDHE), DBDHE sum (DBDHES), security of a pseudorandom function
(PRF) and external DH (XDH). The XDH assumption is a single name for the two decisional Diffie-
Hellman (DDH) assumptions in the groups G1 and G2.

Based on Tables 7.1 and 7.2, we have the following observations.

1. Apart from IBBE1, IBBERO
1 , IBBE2, IBBERO

2 and the constructions of Gentry and Waters [87]
(denoted (a), (b), (a)-ROM), all other schemes listed in the tables are secure only in the
weaker selective identity model.
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Scheme Pairing #pp #hdr #ukey #dec Security Assumptions
G1 GT G1 {0,1}κ G2 Zp

[10] Type-1 3 – ` + 1 – 1 – 2 sID-CPA DBDH

[11] Type-1 3 – 3` – 1 – 2 sID-CCA Gap-BDH

[2] (from GS-HIBE) Type-1 m + 2 1 ` + 1 – O(m) – ` + 1 sID-CPA DBDH

[64]-ROM Type-1 m + 2 1 2 – 1 1 2 sID-CPA GDDHE

[87]-(a)-ROM Type-1 4m + 2 – 4 – 1 1 2 aID-CPA m-DBDHES

IBBERO
1 Type-3 m + 4 1 ` + 2 1 5 – 3 aID-CPA XDH

IBBERO
2 Type-3 m2 + 4 1 ` + 2`1 `1 + 1 5 – 3 aID-CPA XDH

Table 7.1: Comparison of IBBERO
1 and IBBERO

2 with previously known IBBE systems in the random
oracle model. In the case of Type-1 pairings, G2 is the same as G1.

Scheme Pairing #pp #hdr #ukey #dec Security Assumptions
G1 GT G1 {0,1}κ Zp G2 Zp

[46] Type-1 m + 4 – ` + 1 – – 2 – 2 sID-CPA DBDH

[48] Type-1 m + 4 – 2` – – m + 2 – 2 sID-CPA (m + 1)-DBDHE

[2] (from BBG-HIBE) Type-1 m + 4 – 2 – – ` + 1 – 2 sID-CPA (` − 1)-DBDHE

[64] Type-1 m + 2 1 2 – – 1 – 2 sID-CPA GDDHE

[87]-(a) Type-1 4m + 2 – 4 – ` 1 1 2 aID-CPA m-DBDHES, PRF

[87]-(b) Type-1 4m2 + 2 – 4`1 `1 `2 1 1 2 aID-CPA m-DBDHES, PRF

IBBE1 Type-3 m + 4 1 ` + 2 – ` 5 – 3 aID-CPA XDH

IBBE2 Type-3 m2 + 4 1 ` + 2`1 `1 m2 5 – 3 aID-CPA XDH

Table 7.2: Comparison of IBBE1 and IBBE2 with existing IBBE systems without random oracles.
In the case of Type-1 pairings, G2 is the same as G1.

2. IBBE1, IBBE2 are the only known constructions to achieve adaptive security from the standard
and static DDH assumptions. The GW constructions are based on non-standard assumptions.

3. The GW constructions have better ciphertext sizes whereas our constructions have better
public parameter sizes. The trade-off is the use of a non-static assumption, i.e., the hardness
assumption is parameterised by m.

4. Even though the new constructions achieve stronger security from the standard XDH assump-
tion, this is not done at a loss in efficiency. The ciphertext size, user storage and also the
encryption and decryption times are comparable to previous constructions. Apart from the
comparison of the number of group elements, it is also to be noted that the new constructions
use Type-3 pairings whereas the previous constructions used Type-1 pairings. This leads to
significantly smaller sizes for G1 which leads to smaller ciphertexts and faster encryption and
decryption algorithms.

7.4 From IB(B)E to PKBE: Dodis-Fazio Revisited

Dodis and Fazio [68] described a method to build a public-key broadcast encryption scheme from
an identity-based encryption scheme. The core idea behind this conversion is a combinatorial
structure called complete subtree (CS) symmetric key revocation scheme introduced by Naor, Naor
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and Lotspeich [117].

In the CS scheme, the number of users n is assumed to be a power of 2 and the users are
organized as the leaves of a complete binary tree T of height logn. If v is a node of T , define Sv to
be the set of all leaf nodes in the subtree rooted at v. Further, let C be the collection of Sv for all v
in T . A centre assigns keys to subsets in C . During a pre-distribution phase, a user corresponding
to a leaf node u receives keys for all subsets in C which contains u. During an actual broadcast, the
centre identifies a set of r revoked users. A partition of the other n−r users is created using subsets
from C . Suppose the partition consists of h subsets S1, . . . ,Sh. The actual message is encrypted
using a session key and the session key is then encrypted using the keys corresponding to the h
subsets S1, . . . ,Sh. The encryptions of the session key constitute the header. It has been shown
in [117] that each user has to store logn keys and the size of the header is at most r log(n/r).

Dodis and Fazio [68] presented a method to combine the CS scheme with an IBE scheme to
obtain a PKBE scheme. The idea is as follows. The role of the centre in the CS scheme is played
by the PKG of the IBE scheme. Set-up of the PKBE scheme consists of the following steps:

● the PKG runs the Setup algorithm of an IBE scheme;
● assigns an identity idS to each subset S in the collection C ;
● generates corresponding keys SKidS using the KeyGen algorithm of the IBE scheme;
● provides each user u with SKidS for each S to which it belongs;
● publishes PP and the structure T as the public key of the PKBE scheme.

Here PP consists of the public parameters of the IBE scheme.

For an actual broadcast, an entity forms a partition of the set of privileged users as in the
CS scheme. As before, suppose that the partition consists of h sets S1, . . . ,Sh from C . Let the
corresponding identities be idS1 , . . . , idSh . As in the CS scheme, the actual message is encrypted
using a session key. Using PP, the session key is encrypted h times to the identities idS1 , . . . , idSh .
These encryptions of the session key form the header. A user in any of the S’s has a secret key
SKidS corresponding to idi. This allows the user to decrypt the corresponding encryption of the
session key. The security of the scheme follows from the security of the IBE scheme. A user needs
to store logn IBE keys and a header consists of at most r log(n/r) IBE encryptions of the session
key.

Developing upon the Dodis-Fazio agenda described above, we suggest that the CS scheme be
combined with an identity-based broadcast encryption scheme to obtain a PKBE scheme. Most of
the details will remain unchanged. The only difference will be in the encryption. Suppose as above
that S1, . . . ,Sh is the partition of the set of all privileged users and let {idS1 , . . . , idSh} be the set
of identities corresponding these sets. The Dodis-Fazio transformation mentions that encryptions
are to be made individually to these identities. Using an IBBE scheme, on the other hand, one
can make a single encryption to the set of identities {idS1 , . . . , idSh}. Decryption will be as before.
The advantage is that the header size will go down. It is routine to argue that the security of the
scheme will follow from the security of the IBBE scheme.

To illustrate the trade-offs, suppose that the Dodis-Fazio transformation is instanti-
ated with the JR-IBE-D. The resulting PKBE will have headers consisting of at most
3r log(n/r), r log(n/r), r log(n/r) elements from G1,GT ,Zp respectively. If on the other hand, we
use IBBE1 as the IBBE scheme to obtain a PKBE scheme from the CS scheme, the maximum
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header size will be 2 + r log(n/r),1, r log(n/r) elements from G1,GT ,Zp respectively. The trade-off
is that the size of the public parameters will go up. Since public parameters is a static quantity
and needs to be downloaded once, the savings in the size of the ciphertext will far outweigh the
increase in the size of the public parameters. In arriving at the figures 2 + r log(n/r),1, r log(n/r),
we have assumed that the number of elements h in the header is at most m, the parameter in the
IBBE1 scheme. If, on the other hand, h is more than m, then this would lead to a header consisting
of encryptions to ⌈h/m⌉ sets of identities as mentioned earlier.

Naor, Naor and Lotspeich [117] described another symmetric key BE scheme called the subset
difference (SD) scheme. Dodis and Fazio [68] showed how to use a HIBE to convert the SD scheme
to a PKBE scheme. This is not relevant in the current context and hence, we do not discuss this
any further.

149



150



Chapter 8

Bounded DFA-Based ABE with
Adaptive Security

We construct DFA-based key-policy ABE schemes with bounded functionality in the public index
model that achieve adaptive security without random oracles. The schemes are built upon com-
posite order pairings that have natural structure (orthogonality and parameter hiding) suitable for
dual system proofs. Using the dual system technique, the constructions are proved secure under
static subgroup decision assumptions over composite-order pairings.

Waters’ ABE construction. DFA-based ABE was formalised by Waters in [160]. In this sys-
tem, a secret key is associated with a deterministic finite automaton (DFA) M and the ciphertext
is defined for a message m and an index is a string w over the input alphabet of the DFA (Σ). De-
cryption succeeds if M accepts w. As a result, the system supports the class of regular languages.
Waters also described a construction (denoted W -ABE in this work) based on symmetric prime-
order bilinear groups in the public index model. This construction was shown to be selectively
secure without random oracles based on the eXpanded Decisional Bilinear Diffie-Hellman Expo-
nent (XDBDHE) assumption parametrised by ŵ, the length of the challenge string ŵ. The proof
uses a partitioning strategy in which the challenge string ŵ is embedded in the public parameters
in such a way that in the security reduction, the simulator can create secret keys for any DFA M
that does not accept ŵ. Also, the secret key for M is created based on the computation of M on
input ŵ. The complex assumption is required to account for multiple occurrences of symbols from
Σ in ŵ (which is of arbitrary length) while the public parameters are fixed based only on ∣Σ∣.

Our Contribution. The main goal of this work is to build an adaptive secure DFA-based ABE
system. One could simply lift the scheme W -ABE to the composite order setting and try using
the dual system technique to prove security. Let us see why such a direct adaptation of dual
system method fails. Consider a system with Σ as the alphabet and a composite order pairing
G = (p1, p2, p3,G,GT , e,G) with Gpub = (N,G,GT , e,G) as its public description. Since most DFAs

used in practice have small alphabets, we can pick a group element Hσ
U←Ð Gp1 corresponding

to each symbol σ ∈ Σ and include these elements in the public parameters. Let w = w1⋯w` be
a string over Σ to which a ciphertext C is encrypted and SKM, a secret key for an automaton
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M = (Q,Σ, q0, qf , δ). String w is encoded in C in such a way that the order of symbols is also
maintained (as in [160]). Suppose that we attempt defining semi-functional components in the
usual way. In the dual system method, semi-functional components for ciphertexts and keys usually
mimic the structure of the normal ciphertexts and keys respectively. In the composite order setting,
they are defined by adding components from group Gp2 . Distribution of the additional components
is required to be statistically hidden from the adversary’s point of view for an effective security
reduction. Since there is a single group element (Hσ) for each symbol σ, the entropy it provides
is sufficient only for simulating one semi-functional component. If more than one components in
the ciphertext or key correspond to the same symbol σ then their corresponding semi-functional
components are simulated using the randomness provided by Hσ and hence revealed information
theoretically. As a result, the dual system proof is affected.

The solution to this problem is to restrict the number of occurrences of symbols in transitions
and strings during system setup. We adapt a technique previously used by Lewko et al. [112] in
the context of attribute-based encryption over monotone access structures. A string w can contain
at most one occurrence of each σ ∈ Σ. Similarly, at most one transition can contain a symbol σ.
We call the resulting construction the basic construction, denoted B-ABE . This scheme supports
only an extremely small class of languages. For instance, consider the alphabet {0,1}. With the
single-use restriction, then the scheme works for only 4 strings - 0,1,01,10! Nevertheless, this
restriction can be relaxed and we show this via our next (full) construction, F -ABE . This scheme
is obtained by putting a bound on the number of occurrences of each symbol in strings as well as
transitions at setup. Suppose a symbol can appear at most smax times in a string and at most tmax

times in the set of transitions. Then our public parameters will contain smax × tmax group elements
corresponding to each symbol. Essentially Hσ is replaced by a matrix Hσ of order smax × tmax.
Ciphertext and key are defined for w andM (respectively) in such a way that only one acceptance
path and hence decryption sequence exists if M accepts w. Also, if M rejects w, then there is no
way to decrypt. Since each entry in Hσ is distinct, simulating semi-functional components will no
longer be a problem. If we assume smax and tmax to be linear in κ, the security parameter, then
this scheme supports a significantly large class of functionalities. Although the selectively secure
scheme of [160] supports unbounded functionality, security is only limited to bounded functionality
for otherwise the `-XDBDHE assumption becomes meaningless1. On the other hand, our system
is limited to bounded functionality in the construction itself and in addition is adaptively secure.

Pair Encoding and Predicate Encryption. In a recent work, Attrapadung [8] proposed the
notion of pair encoding schemes and uses it to generically construct predicate encryption (PE)
schemes. This work provides new insights into the dual system methodology and how to employ
these in proving adaptive security of the generic PE constructions. As a result, PE for a large class of
predicates are shown to have full security. This includes the DFA-based predicate i.e., the predicate
encompassing the class of all regular languages. The constructions are based on composite-order
pairings and have been translated to the prime-order setting in a follow-up work [9]. While adaptive
security is obtained without imposing any restrictions as in our constructions, the proofs (in both
settings) rely on parametrised assumptions such as the one used in [160]. Our proof, on the
other hand, is based on static assumptions. Also, the constructions in [8, 9] are based on large

1As ` increases the assumption becomes stronger. In addition, the number of powers of a group element given out
in the problem instance also increases. It has been reported in [57] that such instances are prone to attacks.

152



universe alphabets i.e., the alphabet size for the DFAs are of size super-polynomial or exponential
in the security parameter. Some languages may have more efficient DFAs over small alphabets in
comparison to large alphabets. Therefore, it is important to obtain adaptive security for regular
languages over small alphabets.

Independent Work by Pandit and Barua [127]. Pandit and Barua [127] have independently
obtained constructions of adaptively secure DFA-based ABE over finite regular languages achieving
similar functionality as ours. While our constructions are based on composite-order bilinear pair-
ings, they take the path of dual pairing vector spaces [119, 120] and obtain security from decisional
linear (DLin) assumption.

8.1 Waters’ DFA-Based ABE

We first review Waters’ DFA-based ABE [160] based on symmetric pairings (following the Def-
inition 2.1.7) in order to explain the intuition underlying our constructions. Let W -ABE =
(W -ABE .Setup,W -ABE .KeyGen,W -ABE .Encrypt,W -ABE .Decrypt) denote the ABE construction of
Waters [160] with the algorithms defined as follows.

W -ABE .Setup(Σ, κ): Generate a symmetric pairing G = (p,G,GT , e, F ) according to the security

parameter κ. Choose a generator P
U←Ð G×, elements Hstart,Hend, (Hσ)σ∈Σ, U

U←Ð G and α
U←Ð Zp.

The public parameters and master secret are given by

PP : (G,Σ, P,Hstart,Hend, (Hσ)σ∈Σ, U, e(P,P )α),
MSK: (−αP ).

W -ABE .Encrypt(PP,w = w1⋯w`,m): Choose randomisers s0, s1, . . . , s`
U←Ð Zp. Compute the ci-

phertext elements as follows.

Cm =m ⋅ e(P,P )αs` ,

C0,1 = Cstart,1 = s0P, Cstart,2 = s0Hstart,

For i = 1, . . . , `,
Ci,1 = siP, Ci,2 = siHwi + si−1U,

Cend,1 = C`,1 = s`P, Cend,2 = s`Hend.

The ciphertext is given by C = (Cm,Cstart,1,Cstart,2, (Ci,1,Ci,2)i∈[1,`],Cend,1,Cend,2,w).

W -ABE .KeyGen(MSK,M = (Q,Σ, q0, qf , δ)): For each x ∈ Z∣Q∣, pick Dx
U←Ð G. Choose elements

rstart, for all t ∈ T , rt and for all qx ∈ Q, rendx uniformly and independently at random from Zp.
Compute the elements of the key as follows.

Kstart,1 =D0 + rstartHstart, Kstart,2 = rstartP,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = −Dx + rtU, Kt,2 = rtP, Kt,3 =Dy + rtHσ,
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For all qx ∈ Q,
Kendx,1 = −αP +Df + rendxHend, Kendx,2 = rendxP.

The secret key for automaton M is given by SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T , (Kendx,1,Kendx,2)qx∈Q).
W -ABE .Decrypt(C,SKM): Suppose that Accept(M,w) = 1 and w = w1⋯w`. Then there exists a
sequence of transitions t1, t2, . . . , t` with ti = (qxi−1 , qxi ,wi) where x0 = 0 and qx` ∈ F . Decryption
consists of several stages of computation. First compute

A0 = e(Cstart,1,Kstart,1)e(Cstart,2,Kstart,2)−1

= e(P,D0)s0

Then compute intermediate values Ai (for i = 1, . . . , `) as follows.

Ai = Ai−1 ⋅ e(Ci−1,1,Kti,1)e(Ci,2,Kti,2)−1e(Ci,1,Kti,3)
= e(P,Dxi)si

The last intermediate A`+1 is computed as

A`+1 = e(Cend,1,Kendx` ,1
) ⋅ e(Cend,2,Kendx` ,2

)−1 = e(P,P )−αs`e(Dx` , P )s` .

Using A` and A`+1 the message is unmasked as shown below.

m = Cm ⋅A`+1 ⋅A−1
` .

8.2 Basic Construction

Described here is our first construction of DFA-based attribute-based encryption scheme B-ABE =
(B-ABE .Setup,B-ABE .KeyGen,B-ABE .Encrypt,B-ABE .Decrypt) in the composite order pairing set-
ting. We impose the following restrictions on automata and strings over which the scheme is built.

Restriction 1: Keys are created only for automata with a unique final state and a single transition
corresponding to each symbol

Restriction 2: Input string (part of the ciphertext) can contain only a single occurrence of each
symbol

These restrictions are required for the proof to go through. In Section 8.4, we describe how to
extend the basic scheme B-ABE to a full scheme F -ABE with relaxed restrictions and similar
security guarantee.

The construction is similar to W -ABE . Encryption is done in the group Gp1 but the structure
is slightly different from that W -ABE . Components of the key are elements of Gp1p3 and have the
same structure as the W -ABE keys except that they are additionally randomised by elements of
Gp3 . The group Gp2 forms the semi-functional space.

B-ABE .Setup(Σ, κ): Generate a composite order pairing G = (p1, p2, p3,G,GT , e,G) according to

the security parameter κ. Choose elements P,Hstart,Hend, (Hσ, Uσ)σ∈Σ
U←Ð Gp1 , P3

U←Ð Gp3 and

α
U←Ð ZN . The public parameters and master secret are given by
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PP : (Gpub,Σ, P,Hstart,Hend,Hλ, (Hσ, Uσ)σ∈Σ, e(P,P )α),
MSK: (−αP,P3).

In W -ABE , only a single element U was uses to maintain the link between consecutive symbols but
here we require a separate group element Uσ corresponding to each symbol σ. This is helpful in
the dual system proof.

B-ABE .KeyGen(MSK,M = (Q,Σ, q0, qf , δ)): For each x ∈ Z∣Q∣, pick Dx
U←Ð Gp1 . Choose elements

rstart, for all t ∈ T , rt and rend uniformly and independently at random from ZN . Let Rstart,1,Rstart,2,
(Rt,1,Rt,2,Rt,3)t∈T and Rend,1,Rend,2 be randomly chosen elements of Gp3 . Compute the elements
of the key as follows.

Kstart,1 =D0 + rstartHstart +Rstart,1, Kstart,2 = rstartP +Rstart,2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = −Dx + rtUσ +Rt,1, Kt,2 = rtP +Rt,2, Kt,3 =Dy + rtHσ +Rt,3,

Kend,1 = −αP +Df + rendHend +Rend,1, Kend,2 = rendP +Rend,2.

Here Df corresponds to the final state qf . The secret key for automaton M is given by SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2).

B-ABE .Encrypt(PP,w = w1⋯w`,m): Choose randomisers s0, s1, . . . , s`
U←Ð ZN . Compute the ci-

phertext elements as follows.

Cm =m ⋅ e(P,P )αs` ,

C0,1 = Cstart,1 = s0P, Cstart,2 = s0Hstart,

For i = 1, . . . , `,
Ci,1 = siP, Ci,2 = siHwi + si−1Uwi ,

Cend,1 = C`,1 = s`P, Cend,2 = s`Hend.

The ciphertext is given by C = (Cm,Cstart,1,Cstart,2, (Ci,1,Ci,2)i∈[1,`],Cend,1,Cend,2,w).
B-ABE .Decrypt(C,SKM): Suppose that Accept(M,w) = 1 and w = w1⋯w`. Then there exists a
sequence of transitions t1, t2, . . . , t` with ti = (qxi−1 , qxi ,wi) where x0 = 0 and x` = f . Decryption
consists of several stages of computation. First compute

A0 = e(Cstart,1,Kstart,1)e(Cstart,2,Kstart,2)−1

= e(P,D0)s0

Then compute intermediate values Ai (for i = 1, . . . , `) as follows.

Ai = Ai−1 ⋅ e(Ci−1,1,Kti,1)e(Ci,2,Kti,2)−1e(Ci,1,Kti,3)
= e(P,Dxi)si

The last intermediate A`+1 is computed as

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)−1 = e(P,P )−αs`e(Df , P )s` .
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Using A` and A`+1 the message is unmasked as shown below.

m = Cm ⋅A`+1 ⋅A−1
` .

Correctness. To show that decryption is correct, we need to show that the intermediate values
A0,A`+1 and Ai for i ∈ [1, `] have the claimed structure. It is enough to show that if Ai−1 has the
right structure, then so does Ai. By induction on i, it follows that A` = e(P,Dx`)s` for i ∈ [1, `].
A0 = e(Cstart,1,Kstart,1)e(Cstart,2,Kstart,2)−1

= e(s0P,D0 + rstartHstart +Rstart,1)e(soHstart, rstartP +Rstart,2)−1

= e(P,D0)s0e(P,Hstart)s0rstarte(Hstart, P )−s0rstart

= e(P,D0)s0

Ai = Ai−1 ⋅ e(Ci−1,1,Kti,1)e(Ci,2,Kti,2)−1e(Ci,1,Kti,3)
= e(P,Dxi−1)si−1e(si−1P,−Dxi−1 + rtiUwi +Rti,1)e(siHwi + si−1Uwi , rtiP +Rti,2)−1

e(siP,Dxi + rtiHwi +Rti,3)
= e(P,Dxi−1)si−1e(P,Dxi−1)−si−1e(P,Uwi)si−1rti e(Hwi , P )−sirti e(Uwi , P )−si−1rti e(P,Dxi)sie(P,Hwi)sirti
= e(P,Dxi)si

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)−1

= e(s`P,−αP +Df + rendHend +Rend,1)e(s`Hend, rendP +Rend,2)−1

= e(P,P )−αs`e(P,Df)s`e(P,Hend)s`rende(Hend, P )−s`rend

= e(P,P )−αs`e(Df , P )s`

Note that Gp3 components get cancelled due to the orthogonality property of composite order
groups.

Ciphertext-Policy FE. It is possible to obtain a ciphertext-policy FE scheme by constructing
a dual of the above scheme. The structure of the ciphertext and key get interchanged. A key will
encode a string w and a ciphertext will encode an automaton M. Also, randomisation in Gp3 is
done only for the key (i.e., components corresponding to the input string w). The same assumptions
can also be used for the proof of security.

8.3 Security Proof for B-ABE

We require algorithms ReRandCT and ReRandK for randomising ciphertexts and keys respectively
in the proof to ensure correct distribution of components. Essentially, these algorithms additively
rerandomise ciphertexts and keys.

8.3.1 Algorithms for Rerandomisation

We describe the rerandomisation algorithms here. Except for the Gp3 components of the keys the
algorithms are identical to those in [160].

ReRandCT(C): This algorithm picks s′0, s
′
1, . . . , s

′
`

U←Ð ZN and modifies the ciphertext elements as
shown below.
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Cm ← Cm ⋅ e(P,P )αs′` ,

Cstart,1 ← Cstart,1 + s′0P, Cstart,2 ← Cstart,2 + s′0Hstart,

For i = 1, . . . , `,
Ci,1 ← Ci,2 + s′iP, Ci,2 ← Ci,2 + s′iHwi + s′i−1P1,

Cend,1 ← Cend,1 + s′`P, Cend,2 ← Cend,2 + s′`Hend.

The new randomisers for the ciphertext will be si+s′i (i = 0, . . . , `). The string w remains the same.

ReRandK(SKM): Choose uniform and independent random scalars r′start, for all t ∈
T , r′t and r′end from ZN . Also choose D′

x
U←Ð Gp1 for every qx ∈ Q and

R′
start,1,R

′
start,2,{R′

t,1,R
′
t,2,R

′
t,3}t∈T ,R′

end,1,R
′
end,2

U←Ð Gp3 . Reconstruct components of the key as
follows.

Kstart,1 ←Kstart,1 +D′
0 + r′startHstart +R′

start,1, Kstart,2 ←Kstart,2 + r′startP +R′
start,2

For t ∈ T with t = (qx, qy, σ) and σ ∈ Σ ,
Kt,1 ←Kt,1 −D′

x + r′tP1 +R′
t,1, Kt,2 ←Kt,2 + r′tP +R′

t,2, Kt,3 ←Kt,3 +D′
y + r′tHσ +R′

t,3,

Kend,1 ←Kend,1 +D′
f + r′endHend +R′

end,1 ,

Kend,2 ←Kend,2 + r′endP +R′
end,2.

8.3.2 Defining Semi-Functionality

As usual, a dual system proof requires defining semi-functional ciphertexts and keys. Two types of
semi-functional keys need to be defined for our proof of security – Type-1 and Type-2. Let P2 be
a random generator of the group Gp2 and

πstart, (πh,σ, πu,σ)σ∈Σ
U←Ð ZN .

These scalars are common to both semi-functional keys and ciphertexts.

Semi-functional Ciphertext

Pick γ0, . . . , γ`, πend
U←Ð ZN . Semi-functional ciphertext is obtained by modifying normally gener-

ated ciphertext C = (Cm,Cstart,1,Cstart,2, (Ci,1,Ci,2)i∈[1,`],Cend,1,Cend,2,w) as:

Cstart,1 ← Cstart,1 + γ0P2, Cstart,2 ← Cstart,2 + γ0πstartP2,

For i = 1, . . . , `,
Ci,1 ← Ci,1 + γiP2, Ci,2 ← Ci,2 + (γiπh,wi + γi−1πu,wi)P2,

Cend,1 ← Cend,1 + γ`P2, Cend,2 ← Cend,1 + πendP2.

Cm remains unchanged. Restriction 2 mentioned in Section 8.2 is required here to ensure that only
one value of πh,σ or πu,σ is revealed for any σ ∈ Σ in the challenge ciphertext. Keeping value of π⋅,σ
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statistically hidden is very essential for the security argument. On the other hand, providing too
many copies of π⋅,σ would information theoretically reveal its value to the adversary.

Type-1 Semi-functional Key

Let µstart, µend, (µt)t∈T , τend
U←Ð ZN , (zx)qx∈Q

U←Ð ZN and SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2) be a normal key generated by the
B-ABE .KeyGen algorithm. Its components are modified as:

Kstart,1 ←Kstart,1 + (z0 + µstartπstart)P2, Kstart,2 ←Kstart,2 + µstartP2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 ←Kt,1 + (zx + µtπu,σ)P2, Kt,2 ←Kt,2 + µtP2, Kt,3 ←Kt,3 + (zy + µtπh,σ)P2 ,

Kend,1 ←Kend,1 + (zf + τend)P2, Kend,2 ←Kend,2 + µendP2.

The first restriction plays a crucial role here. It ensures that the π-values are statistically hidden
from the adversary.

Type-2 Semi-functional Key
Type 2 semi-functional keys are similar to Type-1 except that the components
Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T will no longer have any semi-functional terms. Also,
Kend,1 does not contain the scalar zf .

In the proof, it is ensured that at most one key can be Type-1 semi-functional at any point
in the hybrid sequence of games. The rest of the semi-functional keys are Type-2. Otherwise,
multiple copies of the π-values would have to be provided to the adversary and the whole purpose
of imposing the two restrictions would be defeated.

Consider decryption of a ciphertext C for message m and string w = w1⋯w` by a key SKM where
Accept(M,w) = 1. Decryption succeeds unless both C and SKM semi-functional. This is because
Gp2 (semi-functional) components get cancelled when paired with elements of Gp1 (by orthogonal
property of composite order pairing groups). When both C and SKM are semi-functional, the
message is masked by an extra factor - e(P2, P2)(µendπend−γ`τend). To see this, note that all other
semi-functional components get cancelled since they only mimic the structure of the ciphertext and
key, in addition to having π-values common. Decryption will succeed only if µendπend = γ`τend. We
will call such a pair of ciphertext and key as nominally semi-functional.

8.3.3 Reductions

We prove IND-STR-CPA-security of B-ABE under the three assumptions DSG1, DSG2 and SGDH.

Theorem 8.3.1. If the (ε1, t
′)-DSG1, (ε2, t

′)-DSG2, (ε3, t
′)-SGDH assumptions hold, then B-ABE

is (ε, t, ν)-IND-STR-CPA secure where

ε ≤ ε1 + 2νε2 + ε3

and t = t′ −O(ν∣Σ∣ρ), where ρ is an upper bound on the time required for one scalar multiplication
in G.
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Proof. The proof is organised as a hybrid argument over a sequence of 2ν + 3 games –
Greal,G0,1, (Gk,0,Gk,1)νk=1,Gfinal. Greal denotes the actual CPA-security game for DFA-based ABE
ind-abe-cpa (defined in Section 2.2.4). G0,1 is just like Greal except that the challenge ciphertext
is semi-functional. In Gk,0 (for 1 ≤ k ≤ ν), challenge ciphertext is semi-functional, the first k − 1
keys returned to the adversary are Type-2 semi-functional, k-th key Type-1 semi-functional and
the rest are normal. Gk,1 (1 ≤ k ≤ ν) is such that first k keys are Type-2 semi-functional and rest
are normal. Gfinal is similar to Gν,1 except that now the challenge ciphertext is a semi-functional
encryption of a random message. Let E◻ denote the events that the adversary wins in G◻. Note
that, in Gfinal, the challenge ciphertext is an encryption of a random message and hence bit β is
statistically hidden from the adversary’s view implying that Pr[Efinal] = 1/2.

The advantage of an t-time adversary A in winning the ind-abe-cpa against the ABE scheme
in the ind-abe-cpa, is given by

Advind-abe-cpa
ABE (A ) = ∣Pr[Eactual] −

1

2
∣ .

We have

Advind-abe-cpa
B-ABE (A ) = ∣Pr[Eactual] −Pr[Efinal]∣

≤ ∣Pr[Eactual] −Pr[E0,1]∣ +
ν

∑
k=1

(∣Pr[Ek−1,1] −Pr[Ek,0]∣ + ∣Pr[Ek,0] −Pr[Ek,1]∣)

+ ∣Pr[Eν] −Pr[Efinal]∣
≤ εDSG1 + 2νεDSG2 + εSGDH

The last inequality follows from the lemmas 8.3.1, 8.3.2, 8.3.3 and 8.3.4.

In all the lemmas, A is a t-time adversary against the ABE scheme and B is an algorithm
running in time t′ that interacts with A and solves one of the three problems DSG1, DSG2 or
SGDH.

Lemma 8.3.1. ∣Pr[Eactual] −Pr[E0,1]∣ ≤ ε1.

Proof. B receives an instance of problem DSG1, (Gpub, P,P3, T ), where T = θP + θ2P2 and its

task is to decide whether θ2 = 0 or θ2
U←Ð Zp2 . The different phases of the game are simulated as

described below.

Setup: B picks α, vstart, vend,{vh,σ, vu,σ}σ∈Σ
U←Ð ZN , setsHstart = vstartP , Hend = vendP , Hσ = vh,σP

and Uσ = vu,σP . It provides PP to A and computes MSK.

Key extraction queries: For a query on automaton M, B runs the B-ABE .KeyGen algorithm
with input M and returns the output to A . No generator of Gp2 is provided to B and hence
semi-functional keys cannot be generated.

Challenge: A provides two messages m0,m1, challenge string ŵ = ŵ1⋯ŵ̂̀. B chooses β
U←Ð {0,1},

s′0, . . . , s
′
̂̀

U←Ð ZN and encrypts mβ to ŵ as follows.

Cm =mβ ⋅ e(P,T )αs
′
̂̀,
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C0,1 = s′0T, Cstart,2 = s′0vstartT,

For i = 1, . . . , ̂̀,
Ci,1 = s′iT, Ci,2 = (s′ivh,wi + s′i−1vu,wi)T,

Cend,1 = C`,1, Cend,2 = s′`vendT.

Randomiser si is inherently set to s′iθ for i = 0, . . . , ̂̀. Let Ĉ =
(Cm,Cstart,1,Cstart,2,{Ci,1,Ci,2}i∈[1,̂̀],Cend,1,Cend,2,w). B returns ReRandCT(Ĉ) to A .

Guess: A returns its guess β′.

If θ2 = 0, then Ĉ is a normal encryption of mβ. Otherwise θ2
U←Ð Zp2 making Ĉ a semi-functional

ciphertext for mβ with γi = s′iθ2 for i = 1, . . . , ̂̀, πstart = vstart, πend = s`′vend, πu,σ = vu,σ and
πh,σ = vh,σ for all σ ∈ Σ. The ciphertext is well-formed. For instance,

Ci,2 = (s′ivh,wi + s′i−1vu,wi)T
= s′ivh,wiθP + s′i−1vu,wiθP + s′ivh,wiθ2P2 + s′i−1vu,wiθ2P2

= siHwi + si−1Uwi + (γiπh,wi + γi−1πu,wi)P2

The rest of the components can be shown to be well-formed in a similar way. The v’s are embedded
in the public parameters and hence their values modulo p1 are revealed to the adversary in an
information theoretic sense. However their values modulo p2 remain hidden (by Chinese remainder
theorem) thus resulting in the proper distribution of the π’s. The si’s are merely scaled by θ2 to
obtain γi’s and hence the γi’s are uniformly and independently distributed. The randomisers for
the ciphertext’s normal components are also properly distributed since it is rerandomised.

If the adversary wins the game then B returns 1; otherwise it returns 0. Therefore, we have

ε1 ≥ AdvDSG1
G (B) = ∣Pr[B returns 1 ∣ T U←Ð Gp1] −Pr[B returns 1 ∣ T U←Ð Gp1p2]∣

= ∣Pr[A wins ∣ T U←Ð Gp1] −Pr[A wins ∣ T U←Ð Gp1p2]∣
= ∣Pr[A wins in Gactual] −Pr[A wins in G0,1]∣
= ∣Pr[Eactual] −Pr[E0,1]∣

as required.

Lemma 8.3.2. ∣Pr[Ek−1,1] −Pr[Ek,0]∣ ≤ ε2 for 1 ≤ k ≤ ν.

Proof. An (Gpub, P,P3,X +P2,X2+X3, T ) of DSG2 is given to B and the goal is to decide whether

T
U←Ð Gp1p3 or T

U←Ð G. In other words, if T = θP + θ2P2 + θ3P3 then B has to determine whether

θ2 = 0 or θ2
U←Ð Zp2 .

Setup: Scalars α, vstart, vend,{vu,σ, vh,σ}σ∈Σ are chosen from ZN independently according to the
uniform distribution. Parameters are set as follows: Hstart = vstartP , Hend = vendP , Hσ = vh,σP and
Uσ = vu,σP . PP is given to A and B keeps MSK.

Key extraction queries: Suppose A makes key extraction queries onM1, . . . ,Mν . B generates
key for Mi depending on i as follows.
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Case i > k : B runs the B-ABE .KeyGen algorithm and returns the resulting (normal) key to A .

Case i < k : B first obtains SKMi ←Ð B-ABE .KeyGen(MSK,Mi) and then modifies its compo-
nents to obtain a Type-2 semi-functional key for Mi as follows. Since a generator of Gp2 is
not available, B uses element X2 +X3 to construct the semi-functional components.

µ′end, τ
′
end

U←Ð ZN ,
Kend,1 ←Kend,1 + τ ′end(X2 +X3), Kend,2 ←Kend,2 + µ′end(X2 +X3).

The term µendP2 is set to µ′endX2. Similarly, τendP2 = τ ′endX2. The components Kend,1,Kend,2

already have uniform random elements of Gp3 embedded in them. Hence adding multiples of
X3 will not change the distribution of the Gp3 components.

Case i = k : B computes SKMk
embedding the challenge T from the instance.

For each x ∈ Z∣Q∣, dx
U←Ð ZN

r′start, r
′
end,{r′t}t∈T

U←Ð ZN

Kstart,1 = (d0 + r′startvstart)T, Kstart,2 = r′startT,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = (−dx + r′tvu,σ)T, Kt,2 = r′tT, Kt,3 = (dy + r′tvh,σ)T ,

Kend,1 = −αP + (df + r′endvend)T, Kend,2 = r′endT.

Let SKM = (Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T ,Kend,1,Kend,2). B returns
ReRandK(SKMk

) to A . We have T = θP + θ2P2 + θ3P3 where θ2 could be zero. Hence
every component is made up of elements of Gp1 , Gp3 and possibly elements of Gp2 . The
Gp1 and Gp3 elements are properly distributed due to the invocation of ReRandK algorithm.

If θ2 = 0, SKMk
is normal. Otherwise, θ2

U←Ð Gp2 making SKMk
Type-1 semi-functional.

The randomisers for the semi-functional components are set as: zx = dxθ2 for all qx ∈ Q,
µstart = r′startθ2, µend = r′endθ2, µt = r′tθ2 for all t ∈ T ; πstart = vstart, πu,σ = vu,σ, πh,σ = vh,σ for
each σ ∈ Σ and τend = r′endvendθ2. Although v’s are provided to the adversary via the public
parameters, their values modulo p2 remain hidden from the adversary (by Chinese remainder
theorem). The µ’s are uniformly distributed by the choice of r′’s. Hence the π’s and τend are
uniformly distributed in A ’s view.

Challenge: B receives messages m0,m1 and challenge string ŵ = ŵ1⋯ŵ̂̀ from A . It chooses

β
U←Ð {0,1} and constructs ciphertext Ĉ as follows.

γ0, . . . , γ̂̀
U←Ð ZN

Cm =mβ ⋅ e(P,X + P2)αγ̂̀,

C0,1 = γ0(X + P2), Cstart,2 = γ0vstart(X + P2),
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For i = 1, . . . , ̂̀,
Ci,1 = γi(X + P2), Ci,2 = (γivh,wi + γi−1vu,wi)(X + P2),

Cend,1 = C`,1, Cend,2 = γ̂̀vend(X + P2),
setting si = θγi for i ∈ [0, ̂̀]. The output of ReRandCT(Ĉ) is returned to A . The π values (except
πend) are set to the corresponding v’s modulo p2. These are equal to the π-values of the k-th key
thus satisfying the requirements for Type-1 semi-functionality. Note that after calling ReRandCT
the randomisers for the Gp1 components will have the proper distribution.

Guess: A sends B its guess β′.

We now show that the challenge ciphertext and k-th key are properly distributed in A ’s view
with all but negligible probability. The following holds for the k-th key and the challenge ciphertext.

µendπend − τendγ̂̀= (r′endθ2)(γ̂̀vend) − (r′endvendθ2)γ̂̀= 0 (mod p2).

The ciphertext-key pair will turn out to be nominally semi-functional. This is to ensure that
B itself cannot create a semi-functional ciphertext for a string w′ accepted by Mk that assists
in determining whether SKMk

is semi-functional or not. Decryption succeeds and provides no
information to B about the distribution of SKMk

and hence T . On the other hand, it is required
to prove that this relation between the k-key and Ĉ is hidden from the adversary. The argument
follows from three facts:

1. A cannot request keys for any automaton M that accepts ŵ

2. the final state of any automaton M on which a query is made is not reachable on input ŵ
(any automaton that is queried has a unique final state and hence a special symbol $ based
on which a transition to the final state is made only in case of acceptance)

3. each symbol appears at most once in strings or descriptions of automata

Consider a transition t = (qx, qy, σ) in M and suppose the i-th set of components in Ĉ are for the
symbol σ (i.e., ŵi = σ). Then Ci,⋅ and Kt,⋅ components will share the same π-values. Assume
that the µt and γi, γi−1 values are statistically revealed to the adversary. It essentially gets hold
of 3 equations (corresponding to semi-functional components of Kt,1,Kt,3,Cw,2) in 4 unknowns
(πh,σ, πu,σ, zx, zy). Using these the adversary cannot gain any information about these quantities.
Thus they appear uniformly distributed in A ’s view. What remains is to show that the relation
between πend and τend remains information-theoretically hidden from the adversary. Observe that
πend is set to γ̂̀vend and τend to r′endvendθ2. The scalar γ̂̀ has the right distribution due to its choice
and so is µend except when θ2 = 0 (mod p2) which occurs with negligible probability. Given that
τend and πend share the value of vend modulo p2, their value must be shown to be hidden from A .
SinceMk does not accept ŵ, the (unique) final state is never reached (see fact 2 above). As a result
the adversary cannot get hold of any equation that involves τend and any of the π-values. This
especially holds for πend. Furthermore, the single-occurrence restriction on each symbol implies that
there is at most one equation involving πend. Hence the k-th key and Ĉ remain properly distributed
in A ’s view except with negligible probability.
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If the adversary wins the game then B returns 1; otherwise it returns 0. Therefore, we have

ε2 ≥ AdvDSG2
G (B) = ∣Pr[B returns 1 ∣ T U←Ð Gp1p3] −Pr[B returns 1 ∣ T U←Ð G]∣

= ∣Pr[A wins ∣ T U←Ð Gp1P3] −Pr[A wins ∣ T U←Ð G]∣
= ∣Pr[A wins in Gk−1,1] −Pr[A wins in Gk,0]∣
= ∣Pr[Ek−1,1] −Pr[Ek,0]∣

as required.

Lemma 8.3.3. ∣Pr[Ek,0] −Pr[Ek,1]∣ ≤ ε2 for 1 ≤ k ≤ ν.

The proof is similar to that of Lemma 8.3.2 except for the simulation of the k-key. The end com-
ponents of this key are additionally rerandomised in Gp2 to ensure that it remains semi-functional
with its type depending on whether the instance is real or random.

Proof. Let (Gpub, P,P3,X +P2,X2+X3, T ) be the instance of DSG2 that B has to solve i.e., decide

whether θ2 = 0 or θ2
U←Ð Zp3 where T = θP + θ2P2 + θ3P3.

Setup: Scalars α, vstart, vend,{vu,σ, vh,σ}σ∈Σ are chosen from ZN independently according to the
uniform distribution. Parameters are set as follows: Hstart = vstartP , Hend = vendP , Hσ = vh,σP and
Uσ = vu,σP . PP is given to A and B keeps MSK.

Key extraction queries: For key extraction queries on Mi for i ≠ k, B answers the query as in
proof of Lemma 8.3.2. The secret key for Mk is generated as follows.

For each x ∈ Z∣Q∣, dx
U←Ð ZN

r′start, r
′
end,{r′t}t∈T , µ1, µ2

U←Ð ZN

Kstart,1 = (d0 + r′startvstart)T, Kstart,2 = r′startT,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,1 = (−dx + r′tvu,σ)T, Kt,2 = r′tT, Kt,3 = (dy + r′tvσ)T ,

Kend,1 = −αP + (df + r′endvend)T + µ1(X2 +X3), Kend,2 = r′endT + µ2(X2 +X3).
Let SKM = (Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T ,Kend,1,Kend,2). B returns ReRandK(SKMk

) to

A . If θ2
U←Ð Gp2 , then SKMk

is Type-1 semi-functional; otherwise it is a Type-2 semi-functional
key. Both τend and µend are set to random quantities in either cases to prevent B from generating
a nominally semi-functional ciphertext to test SKMk

’s type of semi-functionality. The randomisers
for the Type-1 semi-functional components are set as: µstart = r′startθ2, µt = r′tθ2 for all t ∈ T ;
πstart = vstart, πu,σ = vu,σ and πh,σ = vσ for each σ ∈ Σ. Furthermore, since the key is rerandomised,
its Gp1 and Gp3 components are properly distributed.

The Challenge and Guess phases are identical to Lemma 8.3.2. If the adversary wins (β ≠ β′),
then B returns 1; otherwise it returns 0. Therefore, we have ε2 ≥ ∣Pr[Ek,0] −Pr[Ek,1]∣.

Lemma 8.3.4. ∣Pr[Eν,1] −Pr[Efinal]∣ ≤ ε3.
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The idea of the proof is as follows. Let (Gpub, P,P2, P3, αP +X2, sP + Y2, T ) be the instance of
SGDH using which the game needs to be simulated. α from the instance is the α of the system
master secret. The scalar s from the instance will be mapped to the randomiser that is used
to mask the message i.e., ŝ̀, where ̂̀ is the length of the challenge string. Since generators of
subgroups corresponding to all three primes are known, (semi-functional) keys and ciphertexts can
be generated. The main trick lies in generating the Kend,1 components of the keys since they have
α embedded in them and also in computing the ciphertext terms corresponding to the randomiser
ŝ̀.

Proof. Given an instance (Gpub, P,P2, P3, αP +X2, sP + Y2, T ) of SGDH, B has to decide whether

T = e(P,P )αs or T
U←Ð GT . The game is simulated as follows.

Setup: Randomisers vstart, vend,{vu,σ, vh,σ}σ∈Σ are sampled uniformly and independently from ZN .
Then set Hstart = vstartP , Hend = vendP , for all σ ∈ Σ, Hσ = vh,σP , Uσ = vu,σP and e(P,P )α =
e(αP +X2, P ). The public parameters PP are provided to A . Note that the simulator does not
know the master secret key.

Key extraction queries: Since αP is masked with an element of Gp2 , B can generate
only Type-2 semi-functional keys. For a query on an automaton M = (Q,Σ, q0, qf , δ), a key

is constructed as follows. Sample Dx
U←Ð Gp1 for all qx ∈ Q. Construct the components

Kstart,1,Kstart,2,{Kt,1,Kt,2,Kt,3}t∈T just as in the B-ABE .KeyGen algorithm. The master secret
α is embedded only the term Kend,1 and the main trick lies in generating this component. The
encoding of α in Gp1 is masked by Gp2-component and hence B cannot prevent Kend,1 from having

semi-functional components. B chooses µend, rend
U←Ð ZN , Rend,1,Rend,2

U←Ð Gp3 , Z2
U←Ð Gp2 and

computes

Kend,1 = −(αP +X2) +Df + rendHend +Rend,1 +Z2, Kend,2 = rendP +Rend,2 + µendP2

implicitly setting τendP2 =X2 +Z2. Scalars µend and Z2 are freshly chosen for each key. Therefore,
the values of τend for the keys remain properly distributed.

Challenge: B receives two messages m0,m1 along with a string ŵ = ŵ1⋯ŵ̂̀ from A ; chooses

β
U←Ð {0,1} and constructs a ciphertext for mβ and ŵ as described below.

s0, . . . , ŝ̀−1, γ0, . . . , γ̂̀−1

U←Ð ZN ;

πstart
U←Ð ZN , πu,σ

U←Ð ZN for all σ ∈ Σ;

for all σ ∈ Σ ∖ {ŵ̂̀}, πh,σ
U←Ð ZN , set πh,ŵ̂̀ = vh,ŵ̂̀,

Cm =mβ ⋅ T,
C0,1 = s0P + γ0P2, Cstart,2 = s0Hstart + γ0πstartP2,

For i = 1, . . . , ̂̀− 1,
Ci,1 = siP + γiP2, Ci,2 = siHwi + si−1Uσ + (γiπwi + γi−1πu,wi)P2,

Ĉ̀,1 = sP + Y2, Ĉ̀,2 = vŵ̂̀(sP + Y2) + si−1Uσ + γi−1πu,wiP2,

Cend,1 = Ĉ̀,1, Cend,2 = vend(sP + Y2).
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implicitly setting ŝ̀= s, γ̂̀P2 = Y2 and πendP2 = vendY2. The values of vh,ŵ̂̀ and vend modulo p2 are
hidden from the adversary and hence πh,ŵ̀ŵ̂̀, πend are uniformly and independently distributed in

A ’s view. B returns Ĉ consisting of the above components to A .

Guess: A makes its guess β′ of β.

If T = e(P,P )αs then we have Cm = mβ ⋅ T = mβ ⋅ e(P,P )αŝ̀ making Ĉ a semi-functional

encryption of mβ and thus playing Gν,1. Otherwise T
U←Ð GT and (Cm = mβ ⋅ T ) U←Ð GT . In this

case, Ĉ will be a semi-functional encryption of a random message and B simulates Gfinal. If the
adversary wins the game then B returns 1; otherwise it returns 0. We therefore have,

ε3 ≥ AdvSGDH
G (B) = ∣Pr[B returns 1 ∣ T = e(P,P )αs] −Pr[B returns 1 ∣ T U←Ð GT ]∣

= ∣Pr[A wins ∣ T = e(P,P )αs] −Pr[A wins ∣ T U←Ð GT ]∣
= ∣Pr[A wins in Gν,1] −Pr[A wins in Gfinal]∣
= ∣Pr[Eν,1] −Pr[Efinal]∣

as required.

8.4 Full Construction

The restrictions on B-ABE scheme confines the functionality support to a small subclass of regular
languages. It is possible to expand the supported class of languages via an extension of B-ABE . The
extension provides the ability to deal with multiple occurrences of symbols both in the input string
and transitions of the automata. The number of occurrences is however bounded at setup time.
As a result, the sizes of public parameters, keys and ciphertexts increase by a factor proportional
to these bounds.

We shall first define some notation. For a matrix A ∈ ZNm×n, A[i, j] denotes the entry in i-th
row and j-column of A. Let w = w1 . . .w` be a string over the alphabet Σ and T be the (ordered)
set of transitions of an automaton M.

• smax: bound on the number of occurrences of each symbol in a string

• tmax: the maximum number of transitions on any particular symbol

• nc[w, i]: contains k if position i is the k-occurrence of the symbol wi in w

• nk[σ, t]: contains k if t is the k-transition on σ

The extended construction F -ABE = (F -ABE .Setup,F -ABE .Encrypt,F -ABE .KeyGen,F -ABE .Decrypt)
is described below.

F -ABE .Setup(Σ, κ): Generate a composite order pairing G = (p1, p2, p3,G,GT , e,G) according to

the security parameter κ. Choose elements P,Hstart,Hend
U←Ð Gp1 , P3

U←Ð Gp3 , α
U←Ð ZN and

Hσ,Uσ
U←Ð (ZN)smax×tmax for all σ ∈ Σ.
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The public parameters and master secret are given by

PP : (Gpub,Σ, P,Hstart,Hend,Hλ, (Hσ,Uσ)σ∈Σ, e(P,P )α),
MSK: (−αP,P3).

F -ABE .KeyGen(MSK,M = (Q,Σ, q0, qf , δ)): For each x ∈ Z∣Q∣, pick Dx
U←Ð Gp1 . Choose elements

rstart, for all t ∈ T , rt and rend uniformly and independently at random from ZN . Let Rstart,1,Rstart,2,
(Rt,1,Rt,2,Rt,3)t∈T and Rend,1,Rend,2 be randomly chosen elements of Gp3 . Compute the elements
of the key as follows.

Kstart,1 =D0 + rstartHstart +Rstart,1, Kstart,2 = rstartP +Rstart,2,

For all t ∈ T with t = (qx, qy, σ) and σ ∈ Σ,
Kt,2 = rtP +Rt,2,

(Kt,1,i = −Dx + rtUσ[i,nk[σ, t]] +Rt,1, Kt,3,i =Dy + rtHσ[i,nk[σ, t]] +Rt,3)i∈[1,smax],

Kend,1 = −αP +Df + rendHend +Rend,1, Kend,2 = rendP +Rend,2.

Here Df corresponds to the final state qf . The secret key for automaton M is given by SKM =
(Kstart,1,Kstart,2, (Kt,1,Kt,2,Kt,3)t∈T ,Kend,1,Kend,2).

F -ABE .Encrypt(PP,w = w1⋯w`,m): Choose randomisers s0, s1, . . . , s`
U←Ð ZN . Compute the ci-

phertext elements as follows.

Cm =m ⋅ e(P,P )αs` ,

C0,0 = Cstart,1 = s0P, Cstart,2 = s0Hstart,

For i = 1, . . . , `,
Ci,0 = siP, (Ci,j = siHwi[nc[w, i], j] + si−1Uwi[nc[w, i], j])j∈[1,tmax],

Cend,1 = C`,0 = s`P, Cend,2 = s`Hend.

The ciphertext is given by C = (Cm,Cstart,1,Cstart,2, (Ci,0,Ci,j)i∈[1,`],j∈[1,tmax],Cend,1,Cend,2,w).
F -ABE .Decrypt(C,SKM): Suppose that Accept(M,w) = 1 and w = w1⋯w`. Then there exists a
sequence of transitions t1, t2, . . . , t` with ti = (qxi−1 , qxi ,wi) where x0 = 0 and x` = f . Decryption
consists of several stages of computation. First compute

A0 = e(Cstart,1,Kstart,1)e(Cstart,1,Kstart,2)−1

= e(P,D0)s0

Then compute intermediate values Ai (for i = 1, . . . , `) as follows. Pick Ci,nk[wi,ti] and
Kti,1,nc[wi,i],Kti,3,nc[wi,i]. Such components exist and are unique.

Ai = Ai−1 ⋅ e(Ci−1,0,Kti,1,nc[wi,i])e(Ci,nk[wi,ti],Kti,2)−1e(Ci,0,Kti,3,nc[wi,i])
= e(P,Dxi)si

With any other pair of Ci,j and Kti,1,k,Kti,3,k it is not possible to cancel out e(P,Dxi−1)si−1 . The
last intermediate A`+1 is computed as

A`+1 = e(Cend,1,Kend,1) ⋅ e(Cend,2,Kend,2)−1 = e(P,P )−αs`e(Df , P )s` .
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Using A` and A`+1 the message is unmasked as shown below.

m = Cm ⋅A`+1 ⋅A−1
` .

Discussion. The construction essentially converts a DFA and string to a basic form by mapping
each occurrence of a symbol σ to a different representation in the group. Consider a ciphertext for
string w and automaton M. In the full ABE scheme, w and M are encoded so that there exists a
unique sequence of decryption operations that result in the correct message ifM accepts w. Given
this, correctness of decryption follows.

For example, consider Σ = {0,1}. Public parameters would then consist of matrices
H0[smax, tmax] and H1[smax, tmax]. Suppose encryption is to be done for the string 10100 ∈ {0,1}∗.
This string is encoded as 1101120203 so that each occurrence of 0 (or 1) is treated separately. 11 is
mapped to H1[1, ⋅] and 12 to H1[2, ⋅]. Similarly, each occurence of 0 can be mapped to a unique
row in H0. For the key, let M be an automaton over {0,1}. Suppose there are two transitions
t1 = (qx1 ,1, qy1) and t2 = (qx2 ,1, qy2) appearing in the same order without any other 1-transition
in between. Then the group elements used to encode t1 will correspond to a unique column in
H1 given by H1[⋅,1]. Transition t2 would correspond to the column H1[⋅,2]. Suppose symbol 11

triggers the transition t2. Decryption is done using the ciphertext and key component pair corre-
sponding to the (unique) entry H[1,2] of H present in both the ciphertext portion for the symbol
11 as well as the key portion for transition t2.

Suppose there were only one public parameter corresponding to σ, say Hσ. Then in the second

reduction, Hσ would be computed as vσP where P ∈ G× and vσ
U←Ð ZN . The simulator must also

be able to create a properly distributed semi-functional ciphertext. For a single occurence of σ in
the challenge string ŵ1, the value of vσ (mod p2) can be used to create the semi-functional term in
the ciphertext corresponding to σ. But for more than one occurence vσ (mod p2) does not provide
sufficient entropy to argue about the independence of semi-functional terms corresponding to all
the occurrences of σ. Therefore, while arguing about security, the existence of smax × tmax distinct
representations for a symbol σ in the public parameters ensures that the semi-functional components
for all occurrences of σ are independent of each other. Furthermore, the same rerandomisation
technique can be employed to ensure proper distribution of keys and ciphertexts in the proof.

Stated formally below is the security guarantee we obtain for F -ABE .

Theorem 8.4.1. If the (ε1, t
′)-DSG1, (ε2, t

′)-DSG2, (ε3, t
′)-SGDH assumptions hold, then F -ABE

is (ε, t, ν)-IND-STR-CPA secure where

ε ≤ ε1 + 2νε2 + ε3

and t = t′−O(ν∣Σ∣ρ ⋅max(smax, tmax)), where ρ is an upper bound on the time required for one scalar
multiplication in G.
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Chapter 9

Conclusion

This thesis contains several practical contributions to identity-based cryptography.

We started with converting Waters dual system IBE scheme from the setting of symmetric
pairings to that of asymmetric pairings. This has been done in a systematic manner going through
several stages of simplifications. The simplification resulted in two IBE schemes (IBE1 and IBE6).
Security of IBE1 is based on standard assumptions and reduces the sizes of ciphertexts and keys by
2 elements each from the original scheme of Waters. IBE6 is quite simple and minimal in the sense
that both encryption and key generation use one randomiser each. The security of IBE6 is based
on two standard assumptions and a natural and minimal extension of the DDH assumption for G2.

We then considered constant size ciphertext HIBE. The first construction LW -AHIBE was ob-
tained by extending the Lewko-Waters IBE scheme using asymmetric pairings to a constant-size
ciphertext HIBE. In addition to CPA-security the HIBE scheme possesses anonymity. Security is
based on the assumptions LW1, LW2, DBDH-3 and a new assumption A1 that we introduce. The
assumptions used are static but non-standard. LW -AHIBE is the first example of an anonymous,
adaptively secure, constant-size ciphertext HIBE which can be instantiated using Type-3 pairings.
We went on to study the problem of obtaining more efficient constant size ciphertext HIBE scheme
based on standard assumption. Starting from the IBE scheme of Jutla and Roy, we obtain two
HIBE schemes with constant-size ciphertexts and full security. One achieves anonymity while the
other is non-anonymous with shorter keys. Compared to previous HIBE schemes, our constructions
provide very good efficiency with just 3 pairings for decryption and 3 group elements in the cipher-
text. At the time they were proposed, these were the only CC-HIBEs achieving security under
standard assumptions and degradation independent of the HIBE depth. In HIBE-related literature
focused on either constant-size ciphertexts or anonymity or both, we believe that our constructions
completed the picture.

Another primitive we explored is identity-based broadcast encryption. We presented new IBBE
schemes which achieve both theoretically satisfying security (i.e, security against adaptive-identity
attacks based on simple assumptions) and practical efficiency at the same time. The new schemes
are obtained by developing on the currently known most efficient IBE scheme due to Jutla and
Roy [103].

Finally, as an application of dual system techniques, we obtained an attribute-based encryp-
tion scheme for DFAs based on composite order pairings that has adaptive security under static
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assumptions. This was obtained by adopting Waters’ DFA-based ABE [160] in the composite order
setting. Certain restrictions were imposed on the DFAs in order to obtain a dual system proof.
This limited the set of regular languages that can be supported by the ABE scheme. We showed
how to relax the restrictions and thus support a larger sub-class of regular languages. The cost of
achieving this is an increase in the sizes of the ciphertext and keys.

Open Problems and Future Directions. We point out some interesting problems to pursue
for further research. As with most prior work, the new schemes are proved secure against chosen-
plaintext attacks. It is of interest to obtain efficient variants of our schemes which are secure against
chosen-ciphertext attacks. Also, actual implementation studies will take some of the works further
along the path of actual deployment.

Recent works have shown how to construct (hierarchical) identity-based encryption schemes
with a tight security reductions based on simple assumptions. An important future direction is
to obtain tightly secure anonymous HIBE. Further, the IBE schemes proposed by these works
have public parameters of the size O(n) where n is the bit-length of identities. The problem of
obtaining a tightly secure IBE based on simple assumptions with constant size public parameters
remains wide open. Another important future direction is to obtain an anonymous HIBE with
prefix decryption. As we noted in Chapter 6, it seems impossible to build a HIBE scheme with all
three of the following properties – anonymity, prefix decryption and constant-size ciphertext. It
would be interesting to explore this further and either formally prove that this is indeed the case
or find a counter-example.

We proposed an IBBE scheme with O(m)-size public parameters (m is the maximum number
of privileged users), ciphertexts of length O(∣S∣) (where S is the set of intended recipients) and
constant sized secret keys. An important open problem is to build an IBBE scheme with constant-
size ciphertexts and keys and adaptive security under simple assumptions. Let #pp, #cpr and #key
denote the sizes of public parameters, ciphertexts and keys. Some interesting questions related to
PKBE schemes are as follows.

• Is it possible to construct an adaptively secure PKBE scheme under simple assumptions with
#pp = O(n), #cpr = O(1) and #key = O(1) (where n is the total number of users)?

• Do BE schemes with #pp = O(1), #cpr = O(∣S∣) and #key = O(1) and adaptive security
from simple assumptions exist?

The most interesting problem is to construct an adaptively secure (IB)BE scheme having
O(poly(logn)) sized public parameters, ciphertexts and keys from pairings. (Here, poly denotes
some polynomial and n is the total number of users).

With reference to DFA-based ABE schemes, it would be interesting to obtain adaptive security
without restricting the number of occurrences of symbols in either the strings or transitions of
automata based on static assumptions. An important future direction is to build ABE schemes
supporting more sophisticated functionalities.

Many of the above-mentioned problems may not have solutions based on bilinear maps. They
might require richer structures such as multilinear maps. On the other hand, it is of immense
interest to know how much can be achieved with pairings.
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