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Abstract

In this work, we propose D3 — a distributed approach for the detection of “dumb” nodes in 1reless sensor
network (WSN). A dumb node can sense its surroundings, but is unable to transmit e sensed data to any other
node, due to the sudden onset of adverse environmental effects. Howevergsuch & node ri es its normal operations

with the resumption of favorable environmental conditions. Due ence _of/dumb nodes, the network is

other nodes, so that sensed data can be reliably transmitte@yto the sink. ¢ the re-establishment of connectivity,

a node needs to confirm its actual state of being dumb. Dum havior is dynamic in nature, and is, thus, distinct

from the traditional node isolation problem considered WSNs. Therefore, the existing schemes for the
detection of other misbehaviors is not applicable te a dumb node in a WSN. Considering this temporal

behavior of a dumb node, we propose an approac 3 /for the detection of dumb nodes. The propose scheme we

uses Cumulative Sum (CUSUM) test, whi Ips in detecting the dumb behavior. The simulation results show

that, there is 56% degradation in defecti ercentage with the increment in the detection threshold whereas energy

consumption and the messagef@uerheadgrcreases by 40% with the increment in detection threshold.
Index Terms

Dumb Node, ironmental Effect, Detection, CUSUM, Markov Chain.

I. INTRODUCTION

levelopment of Micro-Electro-Mechanical Systems (MEMS) technology has made deploy-

t of low-cost wireless sensor networks (WSNs) feasible. Currently, WSNs are used extensively, in
vari@lls application domain such as surveillance [13], [25], [35], health care monitoring [26], disaster
management [21], and fire detection [18]. The sensor nodes deployed over an area to sense data in a

distributed manner and transmit these to a centralized unit, termed as the sink [3], [4]. A WSN consists



of a set of low-power sensor nodes, and limited transmission range. Consequently, the intermediate nodes
forward the sensed information to the sink. Communication in a WSN takes place over network with
single- or multi-hop connectivity. Therefore, active participation and collaboration of each node in the
network is essential. WSNs are resource-constrained and are vulnerable to various types of misbehaviors
and attacks such as Denial of Service (DoS) attacks, environmental effects, and faults. Tofhan

issues of misbehaviors and faults, a number of schemes exist in literature [7], [10], [14], [1 wly

explored type of misbehavior is the dumb behavior [23], [29], [30]. When a node exhibits vior,

the node unable to transmit its sensed data packet to any other nodes, due the shri communication
range in the presence of adverse environmental effects. Thus when a node behave umb, it can sense
its surrounding but unable to transmit the sensed data packet. As the adv, environmental effects are

temporal in nature, a node resumes its normal operation on the onsgt of I vironmental conditions.

A. Motivation

The presence of a dumb node causes detrimental effects on t rmance of the networks. Therefore,

the detection of dumb nodes in the network is important§Dumb nodes continue their sensing operation in

the presence of environmental effects, but are unab unicate with other nodes. On the resumption
of favorable environmental conditions, the dim s start performing normal operations. As dumb
behavior is not permanent in nature, it isA iblesto eliminate dumb nodes from the network permanently.
Subsequently, the connectivity betwéen mb and other nodes requires re-establishment, so that such

nodes can transmit the sensedadata to the sink. Before re-establishment of connectivity of a dumb node

with other nodes, it is ess 1 toWdetect whether a node is dumb. The temporal nature of dumb behavior

of a node makes ctio n-trivial issue. We consider the activity of node’s behavior in different

time instants and progide a solution for dumb node detection.

B. Contribz&
hi centers around the newly proposed concept of the existence of dumb nodes. It is caused
to the sudden onset of adverse environmental effects, while the nodes behave normally with the

res tion of these effects. The specific contributions in this work are summarized below:

« We propose a scheme for dumb node detection in WSN using the cumulative sum (CUSUM) approach.

o We analyze the detection problem using Markov chain.



o The proposed solution has been rigorously theoretically characterized.
o The concept of aperiodic HELLO message has been introduced, considering the energy-constrained
nature of WSNs.
The rest of the paper is organized as follows. Section II describes the related work done in this ar
Section III includes the details of the problem description. Theoretical analysis of the solutiofiyap
is performed in Section IV. The performance of the proposed scheme is shown in Section V__Fin we

conclude the work in Section VI, giving directions for future research.

II. RELATED WORKS

WSNss are vulnerable to different type of attacks, faults, and misbehaviors. Faults in S 1S a common
issue that impede a sensor node to perform normal operations. Different eXxisting}piece of literature [14],

[17], [22], [31] have studied different aspects of this issue i S ma et al. [31] proposed a

fault detection scheme with the help of a real test-bed. T ocuSed on collecting faulty sensor

readings. Subsequently, faults are detected through a combinati@m, of four method — Rule-based methods,
Estimation methods, Time series analysis-based methNLearning—based methods. All of the methods

are dependent on data measurement of the sen t al. [22] proposed another fault detection

I

scheme that primarily focuses on noise relat asufement error and sensor fault. Krishnamachari et

al. [17] proposed a distributed Bayesi ﬁgor detecting sensor measurement, following which

the correlation of those faults is ¢ Qne authors detected faults using the heuristic that a faulty
1

sensor node produces abnorma , whereas a normal-behaved node produces low value for their sensing

activity. A fault detection e'@alled Sequence-Based Fault Detection (SBFD), was proposed by Kamal

W

is high due to its d

et al. [14]. Acco

t ors, SBFD is lightweight in terms of communication, the detection rate

buted nature, and finally, SBFD detects fault with low latency. Guiyun et al. [12]
have developéd an indiCator kriging estimator for predicting the unknown observation of data from fusion
center j . ¢ Further the authors form an optimization problem in order to maintain the tradeoff
ation performance and energy consumption.

all of these works, the authors considered faults in the sensing unit of a node. In these works, after
the recovery of actual data by a node itself using some algorithm, a node needs to transmit the data to

the sink for further processing. Another process to recover actual data by the sink from the faulty data

received from sensor nodes. Therefore, here the communication gets equal importance as data sensing. If



in the existing work, we consider the existence of dumb nodes in the network, it is difficult to transmit
such data to the sink or to any other node. This issue promogulates the significance of the problem of
detection of dumb nodes, so that within those nodes, the connectivity re-establishment algorithm can be
executed in order to recover the actual data.

Misbehaviors [7], [15] affect the performance of WSNs in the same way as faulty no d

et al. [7] proposed a cluster-based hierarchical trust management scheme for WSNs. The_schéme is

applicable to selfish and malicious nodes. An analytical framework was proposed b
for quantifying the impact of energy misbehavior on other nodes. In this work, t mifnimize the
power consumption in two steps. First, they propose strategic power optimization, the nodes act
as agents and work strategically to minimize the power consumption. Seco@int power optimization

scheme, in which a node jointly reduces the power consumption of n . Soltanmohammadi et

al. [32] proposed a solution for the detection of malicious ing, the' theory of binary hypothesis

testing. In the proposed solution, honest node transmits a b
a malicious node transmits fictitious messages to usion center. Further, the fusion center is used
to identify the misbehaving nodes. Rajasegara et [28Tyidentified different types of anomalies, and

thereafter, developed a statistical mode using lonti et al. [11] studied clone attack, in which

y decision to the fusion center, whereas

replicated nodes affect network activities. authors proposed a solution for the detection of these
replicated nodes in a distributed man et al. [20] proposed a scheme for the detection of nodes
under attack using spatial correl t%nc assume there exist no prior knowledge about the node. The

Dempster Shafer etection of internal attacks. Sometimes nodes act in a non-cooperative

scheme is applicable in large e sefiSor networks. A work has been propose by Ahmed et al. [2] using
2

manner by not tra ing data packets sent by others. This type of selfish behavior and different solutions

are reported in.the exis literature [19]. Abid et al. [1] proposed a game theoretic scheme that encourages

a node to cooperate in the network with goal of detection and prevention of selfish behavior of a node.
eetection schemes of misbehaving, faulty, and selfish nodes are incapable for use with dumb
es. This is because, due to its dynamic nature, it is difficult to communicate continuously with a node

whi€lr’is dumb.

Environmental impacts cause disruption in communication. The factors responsible for breaking of

link among nodes, as reported in the literature [5], [6], [27] are temperature, rainfall, and fog. Boano et



al. [9] showed how communication range gets affected due to increase in temperature. In the existing
literature, it is reported that due to the presence of such environmental impacts, the communication range
of a sensor node gets reduced, and it is unable to communicate with the other nodes. This affected
node is characterized as dumb [23]. A node gets dumb when it can sense its surrounding, but is unable
transmit the sensed data. This misbehavior is not considered in existing literature. This makes p
challenging. Therefore, the existing misbehavior and fault detection schemes are inapplicable forfdumb

node detection.

III. PROBLEM DESCRIPTION
A. Objectives

In WSN, sensor nodes work in a collaborative manner to transmit data, to'the sink with single- or multi-

hop connectivity. Due to the sudden onset of adverse environmental e sithe communication range of
the sensor nodes decreases, and as a consequence of whic may not be able to communicate with the
nearest active neighbor node. This results in a node bging vulne o getting isolated from the network.

It is a major concern to re-establish connectivity betweemydumb and other nodes, in order to get efficient

services from the network. The connectivity re- ent algorithm needs to starts either from an
affected node or from a sink. Therefore, itfi§ p to identify whether or not a node is dumb. The
temporal nature of dumb behavior ma iffietlt to identify an affected node and, thus, its detection
is a challenge. This work attempt this challenge by providing a solution for the detection of

dumb nodes in a WSN. &
B. System Model 6

1) Network Arc

cture: We consider a static WSN consisting of homogeneous sensor nodes, i.e.,
each node haging the same sensing and transmission characteristics. These nodes are GPS enabled and
are depl ’ mly over a terrain. We consider adverse environmental changes resulting in sever affects
n the nication range of sensor nodes. Examples of environmental adversities include increased
perature, rainfall, and fog, which results in the shrinkage of communication range of sensor nodes.
2)"Dumb Node: This work focus on the existence of dumb behavior [23] in sensor nodes. We propose

a scheme to detect these nodes. A sensor node that can sense physical phenomena in its surroundings,

and cannot transmit the sensed data to any other nodes at a certain instant of time due to the presence



of adverse environmental conditions, but is able to transmit at a later instant with the resumption of

favorable environmental conditions, is termed as a dumb node [23]. Such behavior is denoted by W,.

Mathematically,
v 1, {(O < dpin < Tc(ti) < R)} N {0 < T’C<tj) < dpmin < R)} VtNt] t; 7é
d p—
0, otherwise
When the communication range of a node shrinks below the distance to its neare i e, it
continues its sensing operation, but is unable to transmit the sensed data to @ . Let the

specified communication range of a node be R. At time instant ¢;, the commu pange is 7.(t;).
Due to the presence of adverse environmental effects at a latter time insta the communication range
a

becomes 7.(t;), such that r.(t;) < dyin. Let d,,;,, be the distance to th ive neighbor of a node.

In such a situation, the node is unable to transmit the sensed data\to a her node. Consequently, the

node becomes dumb.

currence of dumb node

<Elf
Fig. 1 pictorially depi%&urrence of dumb node in a WSN. In Fig. 1(a), let node B be the

O

effects of environment

nearest active ne o) A. The distance between A and B is d,,;,. In this case, the adverse
is not present. Consequently, node A can sense as well as communicate with its
active neighbor nodes.”’However, Fig. 1(b) shows the situation when the adverse effect of environment is
presen is'§ituation, the sensing range of node A is not affected due to the adverse environmental
effects. other hand, the communication range gets affected and becomes r.(¢;). Thus, 7.(t;) < dpin.

sequently, node A cannot communicate with any of its active neighbor nodes. As a result, node A

becomes dumb.



C. Dumb Node Detector

To re-establish connectivity, it is essential to identify the dumb nodes in the network. In a saturated
network, a node always has data packets to send. In this situation, a dumb node causes major impacts on

the performance of the network. When a node exhibits dumb behavior, it gets isolated from the netwo.

Consequently, the sink node is unable to communicate with the dumb node. In such a sc
difficult to detect a dumb node using a centralized approach. Therefore, a node detects itse
is dumb or not.

1) Observation: The communication between a node and its neighbor nodés depend§ on the links
present between them. The presence of different types of interference causes link b We assume that
there is no interference present, apart from the environmental interferenc@ network, due to which
the links between any two nodes break. Let the number of neigh 0

rs of a be represented as N. In

the proposed approach, Observation is an indicator O,,, whether a nede wreceives any acknowledgment

against aperiodic HELLO message. Node n detects itself whether or ot it is dumb. Node n broadcasts

aperiodic HELLO messages, and it receives acknowl ents from each of its neighbor nodes. Let the
probability of not receiving an acknowledgment fr its neighbors be p,,. When the node becomes
dumb, it is able to broadcast HELLO mess bu unable to reach any of its neighbor node, and
consequently, a dumb node does not r nowledgment from any of its neighbor nodes. The

packet format of the HELLO message % n in Fig. 2.
| Source_id | Type | Sequence_no |
4byte Ibyte 1byte

@i > 2: Packet format of HELLO message
The probability Qibution of O,, is given by:

Pn, it p=+1
P{O, = p} = (D
1—p,, if p=-1

1Scussion. In WSNs, the sink plays a crucial centralized role for controlling network functionality.
Thetefore, centrally controlled algorithms run on the sink. On the other hand, distributed algorithms run
on individual nodes and control the overall network operations collaboratively. As a dumb node isolates

from the network, the detection of such nodes using a centralized approach is non-trivial. Therefore, a



node detects itself as dumb and initiates the distributed connectivity re-establishment procedure. A node
uses a Detector, which is mentioned in the following section

2) Detector: A node observes the value of O,, at each time, when it broadcasts a HELLO message. The
Detector is based on the well-known method, Cumulative Sum (CUSUM) (8], [16], [33]. D is initializ

with 0, and then it updates its own value by adding the observation value O,,.

Definition 1. Detector: Detector is a counter that is initialized with 0, and then updates g

adding O,,. The detection of dumb nodes is decided, when the value of the dete

threshold. The detector of a node is denoted by D.

The behavior of the detector D is mathematically expressed as:

SN %8
+1 (D + Oy) 2)

D() == 0
In the proposed work, we assume that D > 0. Thus, if t etectgr value is already 0, and then the

value does not decrease despite the node receiving a acknowledgments against the HELLO message.
Thus, the value of D always fluctuates around a aluépin a normal situation. Correspondingly, if a
node behaves abnormally, i.e., it does not recgi r;&mowledgment from any of its neighbor nodes,
it accumulates a large value.

In Fig. 3, three cases, which descridifferent possibilities of receipt of acknowledgments, are

shown receiving. In Case 1, the %icaﬁon range of node A is denoted by 7!, and all the neighbor
nodes of node A are in this unication range. So, in an ideal network condition, node A receives all
the acknowledgm r@ing to the broadcasted HELLO messages. In Case 2, the communication
range reduces an omes 72 (where, r! > r2). In such a case, only one neighbor node (node B) is

in the commumication fange of node A. So, in an ideal condition, node A receives the acknowledgment

from node. . oainst the broadcasted HELLO message. Finally, in Case 3, the communication range of
es to 73 (where, 2 > r3), and all the neighbor nodes are outside the communication range

Consequently, node A is unable to receive any acknowledgment form any of its neighbors.

Definition 2. Detection Threshold: When a node broadcasts a HELLO message, the observation indicator
is set to +1 or —1. Accordingly, the value of the detector D, changes. Continuing this process of

broadcasting the HELLO message, the value of D,, reaches a value which determines whether the node



Case 1 Case 2 Case 3

Fig. 3: Possibilities of receipt of acknowledgments

is dumb. This value is known as the Detection threshold, which is denoted by k.

Clearly, Equation (2) is a non-parametric CUSUM detector. Let £ be the d threshold. The

detector decides at step n whether the node is dumb. We have,

1, if,D,, >k, 6
V= 3)
0, if,D,, <k,
Where, 7 is the indicator function of whether the detection event ocgurs or not. The detection procedure

starts over again when D reaches the value k, and thefeafter, D is reset to 0.
Aperiodic HELLO message: For updating t ue D,,, a HELLO message is needed to be

broadcasted at certain intervals of time. In , this interval is dynamic and is dependent on
periodic broadcasting of HELLO messa nacceptable. This signifies the importance of an aperiodic
HELLO message. The time w %ELLO message is required to be broadcasted depends on the
frequency at which a nodesbecOmes dumb and this is measured in the system with the parameter [3,.

[, increases its y @nitygonly when a node does not receive an acknowledgment from any of its

whether or not a node receives an ack' yle t. In an energy-constrained WSN, the unnecessary

neighbor nodes, othéfwise remains unchanged.

Bn_1+ 1 if, ACK not received from any

QO Bn = of its neighbor nodes, “4)

Br_1 if, at least one ACK is received,

Total number of HELLO messages broadcasted is counted by M,,. The time for sending the HELLO

message is dependent on the time when the previous HELLO message was sent, and against the current
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HELLO message, if the node has received an ACK or not. Mathematically,

M,
fot = 1+ (E) o )

where « is a constant and the value of a = 1. Analytically, a plot is shown describing how the value
the next time interval changes with M,, and j,.

20
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Fig. 4: Time instants of HEBLO messagé®roadcasting

D. Markov Chain-Based Model of the Detector Cb

Let us consider the sequence {O;,t = 0, s a discrete random process taken from a finite set

X ={0,1,2,--- ,k}. Let t and (t + 1) c secutive time instant when the broadcasting of HELLO
messages takes place. The proces§ is_said™0 be in state 7 at time instant ¢, if D, = ¢, and in state j at
time instant (¢ + 1), if Dy whewe’ 7, 7 € X. According to equation (2), the conditional distribution

of future state Dy, only On the current state D, given that Dy, D, --- , D;_; represent the past

states. Thus, the m process { D, } satisfies the Markov property and can be modeled as a discrete-time

Markov Chain.

The stat sition probability from state ¢ to j, of the Markov Chain, is:

Py =P{Dy1 =j|Dy=1,Dy_1 =iy_1, -+, Dy =11,Dy =iy}

The Markov-Chain is then described as a (k + 1) x (k + 1) transition probability matrix, where £ is

the threshold of the detector D.
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Fig. 5: State transition of the detector
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We divide all the transition probabilities into three distim€t groupsibased on the functionality of the

proposed CUSUM-based dumb node detection scheme.

e Group 1: According to Equation (2), the transition ability P;; is defined, where, 7 = 0 and j = 1.

The state transition happens only when a nodéd: receive any acknowledgment from any of its
neighbor node. Another possibility is t remains the same, i.e., it remains in state 0, and
which possible only when it recel one acknowledgment from any of its neighbor nodes.
Thus, these state transition p % re expressed as:
& (1=pa), if j=0,
@ " if j=1, (6)
0, otherwise.

« Group 24This group consists of the state transition probability P;;, where ¢ € (1,k—1) and j = (i—1)

this case, the state transition happens when the node receives or does not receive any

edgment from any of its neighbor nodes. However, in this case, a state cannot return to the
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same state. Thus, these state transition probabilities are expressed as:

(1—p), if j=(—1) and i >0

Pij =19 pn, if j=(i+1) and i >0 (7
0, otherwise.

o Group 3: This group consists of state transition probability Py, where ¢ = k£ and j = n this
case, the state transition happens because D reaches the maximum threshold k. Thus, e State
transitions probabilities are expressed as:

1, if i=k,
Py = (8)

0, otherwise.

Algorithm 1 shows the proposed detection scheme of dumb ngdes.

Algorithm 1 D3:Distributed approach for detection of du nodes\ A

Inputs:
n; < it" active node, [i = 1,2,3,--- , N4|, where N4 is the total number of
active nodes
N (n;) < neighbor list of the i*" active node
To < timeout
Dy < 0// detector
My, < 1// counter for HELLO message
Bn < 1/ counter if any ACK is not received an the Nj(n;)
a 1/ constant
k < x // detection threshold

T; < Lifetime of node n;
Output:

Predict if node n; is dumb
Begin

while true do
Node n; starts to broadcast HELLO megSag
tn
My =M, +1

if ACK received by n; from i) 7o then
37, =Tp +
if D, #0t

if t,, > 7; then
break
d if
end while
End
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IV. THEORETICAL ANALYSIS

In this section, the theoretical analysis of the detector is described. In a realistic situation, the transition
probability between states S and S+ 1 depends on many factors such as the strength of impact of adverse
environmental effects, distance between a node and its nearest neighbor node, and the residual energy 6f
the node. The state transition probability from a state to the next state is computed by consi

factors.

A. Average False Positive Rate

We define the average false positive rate, F'PR, as the rate that the detector va ts the state k,
even if the node is not dumb. We have formulated this rate with the help of.the steady-state probability
distribution of the Markov chain model. According to the theory on the di§Cretestime Markov chain, the
rate F'PR is equal to the steady state probability that the Markowch cribing the detector stays in
state k, when the node is not dumb.

According to Equation (1), the probability of mot receivi nowledgment against the HELLO

message is p,, whereas 1 — p,, is the probability of recéiing the acknowledgment (at least from one of

the neighbor nodes. Further, the transition probabilit ix P follows Equations (6)-(8).
The steady state probability of the Markev chain,is denoted as (g, - - - , k), and thus, it can be solved
as:
©)
i=0
<& k
d =1 (10)
j=0
We have; average false positive rate is:

FPR =g, (11)

ig. 6, the results of the variation of F'PR with k are shown analytically. how the F'PR changes
with k. For simplicity, we consider the communication range and the distance d,,;, to its nearest neighbor

for calculating the state transition probability. As an example, the initial communication range of a sensor
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Fig. 6: False positive rate (FPR) vs detection threshold (k)

node r. is taken as 2m, and d,,;;, as bm. The state transition probability is calcu

TC
P, = (1 _ dm> 6 (12)

Equation 12 indicates that the probability of not receiving th ent depends on the current

communication range of the sensor node. Further, the re

value of k yields smaller false positive rate, as expegted.
B. Complexity analysis of the dumb node detectio x

Lemma 1. The best and the average case c exity of the dumb node detection algorithm is
O(k f(dist(n, himaz)))

in Fig. 6. We observe that larger

Proof. Best Case: Consider a nodesn. h " number of neighbors, where h™ = {hy, hg, hg, -+ , hp}.
The distance from node n to ighbornode h; is denoted by dist(n, h;). Let hy,q, be a node, which is
the farthest neighbor nod . S,

Q hmaz = max(dist(n, h;)), i=1,2,3,--- ,m (13)

The timefgequired to receive an acknowledgment from a neighbor h; to n depends on the distance

betwe . Phe time to receive an acknowledgment from A, is expressed as f(dist(n, Az )). The
i uired to hit k is kf(dist(n, hmar))-

Fig. 7: Condition for best case time complexity

totalnt
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In the best case, that a node broadcasts HELLO messages all the time, if it does not receive an
acknowledgment and the detector hits the detection threshold. The condition for the best case is shown
in Fig. 7. Therefore, the total time complexity expressed as O(kf(dist(n, hpmaz))) = Of(dist(n, hmaz))-

Average Case: The average case occurs when the detector of a node returns to its previous state a
then it proceeds towards the next state. Specifically, the detector at state S goes to the next gtate

because of not receiving acknowledgment from any of its neighbor nodes. Again, when the detectogis at

state S+ 1, it receives at least one acknowledgment from any of the neighbor nodes 3 g the

HELLO messages. Thus, the detector returns to state S. Further, for two conseg oadcast HELLO
messages if it does not receive an acknowledgment from any of its neighbor nodes, §'to state S+ 2.

This state transition continues for each state and it hits the detection thres . The pictorial illustration

for average case is shown in Fig. 8. : q

Fig. 8: Condition for averag@ycase time complexity

The time required to hit & is the same as the b st., kf(dist(n, hmaz)). At each iteration, the state

of the detector returns to its previous state, i mplexity being (k—1) f(dist(n, hmas)). Therefore,

the total time complexity for the avera ((k=1)4+k)f(dist(n, hmaz))) = O(f(dist(n, hmaz)))
: )

C. Iterations required for &

Theorem 1. A @ as a dumb node if and only if, the node does get any acknowledgment

from any of its neighbor nodes for equal times or higher than the numeric value of ‘k’.

Proof Eachfmnode broadcasts a HELLO message periodically. Let a node broadcast a HELLO message p
ceive an acknowledgment for (p — ¢) times. The dumb detector, D,,, reaches k, which is

how many times a node receives acknowledgment against HELLO message. Thus, the node

ot receive the acknowledgment against the HELLO message for ¢ times. For successfully dumb

node detection, the value of D,, must be equal to k. Therefore, we have,

q—(p—q) =k (14)
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Thus,
p=(2q—k) (15)

For successful detection of dumb node, the number of times the HELLO message are to be broadcasted

must be greater than or equal to the threshold value k.
p=>k 0)

By combining equations (15) and (16), we have,

q>k (17)

Hence, from Equation (17), the statement of the theorem is proved. %6 O]
Lemma 2. With the increase in numeric value k, the ti apsed fer a node to be detected as dumb
node increases.

Let us consider k; and £, to be two detection @ where, ky > k;. Let the time required to

change the detector from one state to the next be

When the detection threshold is kq, the t ti 1)) taken to detect the dumb node is:

01 = (ki — 1)t (18)

Again, Tj is the total time takempto detect the dumb node when the detection threshold is k;. Mathemat-
ically:
Ty = (ke — 1)t (19)

As ko > kyMrom Equations (18) and (19), we conclude that T, > T}.

0 V. PERFORMANCE EVALUATION

Simulation Design

In"this Section, we evaluate the performance of the proposed scheme for the detection of dumb nodes
in WSNs. To simulate our scheme, we consider that the sensor nodes are deployed randomly over in the

terrain. This work is one of the first attempts of its kind that detects dumb nodes. Thus, comparative
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TABLE I: Simulation Parameters

Parameter Value
Number of nodes (V) 100-350
Simulation area 500 m x 500 m
Sensing range 25 m
Communication range 20-60 m
Data rate 250 kbps
Constant value (&) 0.0005
Power consumption of transmitting circuitry (Prg) | 15.9mW
Power consumption of receiving circuitry (Prg) 22.2mW
Drain efficiency (1) 15.7 %
Path loss exponent (o) 2.5

Successful transmisiion
Successful transmission
Successful transmission

| | | m |
o 0
25 30 0 5 10 [} 5 10 15 20 25 30
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Fig. 9: Difference in packet delivery in dedd, selfi

analysis with prior work is out of scope. However, f e sake of completeness, we present few results as
the justification of the same. Fig. 9 depicts how the, sgena f a dumb node is different from selfish and
dead nodes. In figure, different time instants age, sho ong X-axis. Along Y-axis two points, 0 and 1,
are shown. 1 signifies that a data packet fro nod@”can reach the destination, and 0 signifies otherwise.

Fig. 9(a) depicts the scenario of a dead is figure, we observe that at each time instant, the node

sends the data, but is unable to r destination. Therefore, the dead nodes cannot communicate
with any other node and it i rmafitnt. Fig. 9(b) shows the scenario of a selfish node. We observe
only few data pac t erenttime instants (10, 18,24, 26) that were unable to be transmitted to the
destination. Thes ccessful data transmissions are quite normal in a communication system. However,

in case of a selfish nodéywe reach it very easily, and decides that the node is selfish. The case of a dumb

node is showlyin Fig. 9(c). In this figure, we observe the dynamic situations in data packet delivery

¢ instants. The packet delivery to the destination in case of dumb nodes depends on the
nsity of the adverse environmental effects. Therefore, dumb behavior is completely distinct from the
g behavior. Consequently, the detection scheme of a dumb node is not comparable to any other
misbehavior detection scheme.

We provide the results in terms of the following performance evaluation parameters:
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o Percentage of dumb nodes: The number of occurrences of dumb nodes per 100 nodes in the network,
due to the shrinkage in communication range in the presence of adverse environmental effects.

e Percentage of detection: The number of dumb nodes detected per 100 dumb nodes. Mathematically,
Percentage of detection = % x 100 where,
Ny Total number of dumb nodes detected
NZ°t: Total number of dumb nodes present in the network

o Message overhead: Number of bytes required to detect (all possible detection) th deS¥present
in the network. The message overhead includes HELLO and ACK message

o Energy consumption: The amount of energy required to detect (all possible dumb nodes

in the network.

Energy consumption model: The proposed algorithm uses consumption model as

was used in [24], [34]. In this model, the energy consumipti ired for transmitting a packet

(20)
where,
o+ S @)
o Simulation time: This para e%c es the simulation time required to run the proposed algorithm.
B. Results &
Fig. 10 indica 1 ncreasing communication range, the percentage of dumb nodes decreases

in the network. Agamm,if the number of nodes in the network is more in number, the possibility of getting

neighbor nodgs is more? Thus, with the increase in the total number of nodes in the network, the percentage

of du e reases.
i gmcts how the percentage in detection of dumb node changes with the detection threshold, by
idering total number of nodes in the network, 150,250, and 350. The detection threshold is plotted
along the X-axis from 10 to 20, with the step of 1. In this figure we observe that with the increasing
value of detection threshold k, the percentage of detection decreases. The reason behind this degradation

of the percentage of detection is that the possibility of hitting a lower value of detection threshold is more



19

n w
o (=]

=
o

Percentage of dumb nodes (%)
85

R
I\JO
8

45

=
o
o

55 0
Re (m)

z
8
3

Fig. 10: Percentage of dumb nodes with Communication range

100 T T T T T T T T T T 700 -
90 |- N =150 —=2—

=

wm

>
T

80 -

600 -

70 -

w

wn

=}
T

60 -
500
50

P

wm

>
T

40 -

Percentage of detection

N =150 >~
N =250 —eo—
N =350 =]

E

(=3

=]
T

30

Message overhead (byte)

10 1 1 1 1 1 1 1 1 1 1 300 1 E 1 1 1 1 I I I
11 12 13 14 15 16 17 18 19 20 3 14 15 16 17 18 19 20
Detection threshold Detection threshold

Fig. 11: Percentage of detection with & ig. 12: Message overhead with &

than that of a higher value of detection thres ‘me life-time of a node. The plot also depicts that
the increasing number of nodes in the Kk, detection percentage decreases. The probable reason
for this pattern is that the possibilitywo g a neighbor node increases with increase in total number

of nodes in the network. Con ently, the probability of a node behaving as dumb also decreases. The

detection percentage degr b © with increase in the detection threshold value.

The variation e overheads with the detection threshold for varying number of nodes is

shown in Fig. 12. In figure, the message overhead increases gradually with the increase in the detection
threshold. Adso, we obServe that the message overhead increases with higher value of detection threshold.
The re e this nature of the plot is that for a higher value of detection threshold a node need
to broa e HELLO message for more number of times than a lower detection threshold value. The

also depicts that the overhead increases with the increase in total number of nodes in the network.

With the increase in total number of nodes in the network, the number of broadcasted HELLO messages

also increases, which, in turn, increases the overhead in the network. With the increase of detection
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threshold, the message overhead in the network increases by 40%. Fig. 13_depicts the variation in the
energy consumption for detecting the dumb nodes in the network wit ectign threshold for varying
hown along the X-axis. The

the energy consumption increases

of dumb node detected using our scheme. The plots also'shows that the increase in total number of nodes
in the network increases energy consumption of rk. Increasing detection threshold and total

number of nodes in the network increases thg,overhead in the network as shown in Fig. 12. Consequently,
inCreases

the energy consumption of the networ due to increase of the number of transmitted and

received packets. However, the enétgy mption increases by 40% with the increase of detection
threshold.

In each of the plots, i@&ed that different network parameters dependent on the value of the
e

detection thres h e, the value of detection need to set as per the user requirement. For

example, detection ofjdumb node is very much crucial for a certain situation then the value of k& should

vagiation in simulation time with the total number of node (N) in the network. In this plot, we consider
three detection thresholds (k = 10, 15,20). We observe that in each of the cases the simulation time

increases with total number of nodes in the network. The simulation time also increases with increasing
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value of detection threshold, k. However, the average, maximum, and minimufh on times are

0.2701,0.282717093, 0.257482907 seconds, respectively, irrespective of k.

VI. CONCLUSION

In this work, we have considered a newly identified misbehavi ensor nodes — dumb behavior

[23]. Due to the shrinkage in the communication range, a is unable to transmit its sensed
data to any other node. Consequently, the re-establisfiment of connectivity between dumb and the other

nodes is essential. Prior to the re-establishment of cennectiyity, a node has to detect itself as dumb. The

detection of dumb behavior of a node is chal
this work, we have proposed a scheme for detégtion of dumb nodes in a WSN using the cumulative
sum (CUSUM) approach.
In the future, we plan to extend % y enabling the detection of dumb nodes by the sink. Further,
c

we want to propose an opti ohrfectivity re-establishment scheme for dumb nodes. In order to re
establish the connegtimity eén dumb and other nodes, we plan to propose a node placement algorithm.
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