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Abstract—In this paper, we propose an architecture for UAV
virtualization with the primary aim of providing virtualized
UAV services to multiple users by envisioning the concept of
UAV-as-a-Service. In contrast to traditional UAVs, which are
resource-constraint in nature and exhibit shorter flight times,
our proposed UAV virtualization overcomes the limitations of
short flight time of traditional UAVs, in turn allowing them
to provide persistent and ubiquitous services. We achieve the
virtualization of a UAV through multiple collaborating real-
life UAVs performing various tasks in tandem. In this work,
we focus on the placement and selection of UAVs to achieve
virtualization. We use a social welfare-based approach to select
suitable UAVs, from the available ones, and map the UAV to a
virtual one. This work enables the provision of different UAV
services to multiple end-users, without actual procurement of
the UAVs by the end-users. We compare the results for optimal
placement, normal maximum energy-based UAV selection, and
Atkinson-based selection method. We also compare the virtual
model and simple UAV-to-task model to physical UAV usage,
task completion ratio, and residual energy of the system. Our
proposed model outperforms the traditional model with a task
completion efficiency of 94.26%. The residual energy of the
system also increases with an increase in the number of tasks.

Index Terms—Unmanned Aerial Vehicle, persistent service,
virtualization, scheduling, task allocation, social welfare.

I. INTRODUCTION

THE In this paper, we propose an architecture to provide
persistent and ubiquitous UAV services to the end-users,

unlike the traditional UAV services, which are intermittent and
short-lived. To enable the proposed architecture, we introduce
the concept of UAV virtualization. Fig. 1 depicts the overall
system architecture of the proposed UAV virtualization, along
with the involved actors. The architecture not only facilitates
the services but also provides monetary benefits to the actors
involved in this system. Virtualization allows multiple similar
UAVs, that may or may not belong to the same owners, to
take up a requested task. Additionally, Virtualization makes
it possible to perform long-duration tasks without any phys-
ical involvement of the end-user. The proposed architecture
consists of three actors– 1) the UAV owners, 2) the service
provider, and 3) the end-users. We consider the UAVs are
heterogeneous in terms of the number of connected sensors,
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types of sensors, and battery capacity. The proposed archi-
tecture uses the cloud as the backend infrastructure for its
implementation. The available UAVs in the range of the tasks

Fig. 1: The proposed system architecture for UAV virtualiza-
tion.

form a group called the local UAV society (socilocal), specific
to that task. These groups are used to select physical UAVs
and map it to the virtual UAV. A social welfare-based selection
scheme is used to maximize the overall residual energy (Eres)
of the society. For simplicity, we consider only the energy
consumption for UAV traversal and task performance by the
sensors.

A. Motivation

UAVs are being used to serve a plethora of applications.
However, it is not feasible and economical for an end-user to
procure different application-specific UAVs. The operation of
multiple UAVs typically requires a team of skilled personnel
to deploy, collect, and recharge the UAVs. Additionally, the
requirements of prior permission from the government and
regulatory bodies before initiating any UAV operations also
complicates UAV ownership. The cost of procuring, main-
taining, and operating the UAVs are highly prohibitive and
cumbersome to manage for a majority of the end-users. In a
traditional UAV service, a UAV owner can serve only a single
end-user at a time. The flight time served by the UAV is not
sufficient enough to perform long-duration tasks in a single
stretch. The existing shortcomings motivate us to propose
the architecture of UAV virtualization to provide seamless
UAV services to the end-users. In the proposed architecture, a
UAV can serve multiple end-users based on their preferences.
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The architecture enables an end-user to receive the necessary
UAV services without procuring any physical UAVs. The UAV
owners and service provider receive monetary benefits for their
services to the end-users.

B. Contribution
The proposed architecture provides UAV-as-a-service to

end-users through the implementation of UAV virtualization.
The specific contributions of our work are as follows:

• A generalized UAV virtualization architecture to enable
persistent UAV services for long-duration missions and
decrease the redundancy in task performance.

• We design an appropriate task-specific UAV selection
scheme using social-choice theory, analyze the UAV
occupancy and coverage analysis for both homogeneous
and heterogeneous UAV types in a defined region.

• We evaluate the performance of the proposed architecture
and the selection schemes through rigorous emulation.

II. RELATED WORK

This section highlights the recent developments and research
concerning our proposed problem. We identify these works
separately and link them at the end of this section to provide
a clear insight into the evolution of the presented idea.

A. Sensor Cloud and Virtualization
Sensor cloud has been one of the most demanding areas

of research and application since its inception. Yuriyama and
Kushida [1] proposed the idea of making the sensors available
and ubiquitous through the sensor cloud infrastructure. Bose
et al. Misra et al. [2] proposed theoretical modeling of the
sensor cloud infrastructure with detailed comparative feature
analysis.

B. UAV Cloud
Mahmoud et al. [3] proposed integrating UAVs with cloud

and incorporated its basic advantages of scalability, high
computation resource, high storage, and ubiquity. Luo et al.
[4] proposed offloading data from the UAVs to the cloud,
which releases the onboard memory space for data acquisition.
Similarly, other approaches include NFV-based UAV-cloud
integration [5] and UAV cloudlets [6]. Tang et al. [7] proposed
an architecture for using UAVs mounted cloudlets for location-
based social networks (LBSN) services with highly mobile
users. The architecture utilized the UAV-based cloudlets to
implement an adaptive recommendation model for LSBN.

C. Persistent UAV services
Increasing the capacity of the UAV flight time to produce

persistent coverage is a challenging aspect of UAV operation.
Lee et al. [8] developed a robotic operating system (ROS)-
based tracking system, where multiple UAVs can be connected
to a central computer and a system for task allocation and
handoff among UAVs during a mission, autonomously. Sim-
ilarly, Park et al. [9] implemented a prototype for providing
continuous security presence of a UAV, using multiple UAVs
in sequence, for a customer in an outdoor scenario.

D. UAV Selection and Task Allocation

Task allocation in a multi-agent system is a well-studied
area and is under continuous exploration for various cyber-
physical systems. Various algorithms are used for UAV selec-
tion [10] and task allocation, focusing on the different network
and flight parameters [11]. Kim et al. [12] [13] proposed
a social choice theory-based selection process focused on
the overall resource consumption of a group of robots or
UAVs. Galkin et al. [14] proposed UAV positioning strategies
for wireless access points. The positions are based on user
hotspots, interference due to coexisting UAVs in the network,
and other parameters in the urban location scenario.

Synthesis: The works discussed so far are indepen-
dently simulated and implemented, with most of them being
application-specific. Also, the implementation of the works
done so far is limited by various factors like ground control
station, LoS operation, and autonomous control. A more
generic architecture is required with the capability to deal with
the issues in a single platform. Towards this aim, we propose a
novel scheme in this area targeting the gaps discussed earlier.

III. SYSTEM ARCHITECTURE

Fig. 1 shows the proposed architecture, subdivided into
three layers. These layers encompass different components and
actors. We discuss the three layers in details below.

Layer 1: Fig. 2 shows the basic sub-system and the
interconnections in a UAV. A traditional UAV consists of a
processor-controller board, rotors, GPS module, and a power
source. An additional secondary processor is attached to the
traditional UAV to connect the sensors, actuators, and add
decision making capability to the UAV. A communication
module is connected to the secondary processor to establish
the connection between UAV and the cloud server through
the Internet. A physical UAV is equipped with a necessary

Fig. 2: UAV sub-systems and their interconnections.

communication module that can use both WiFi and cellular
networks. The module efficiently switches its mode of con-
nectivity based on the availability and strength of the network
throughout its operation. Due to highly dynamic nature of
the architecture, the data transfer may suffer considerable
delay due to the delay in processing, queue, transmission and
propagation, given as δtotal = δproc+δque+δtrans+δprop. The
continuous connectivity and communication with the cloud
platform also increase energy consumption.
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Assumption 1. A UAV is assumed to be always within the
coverage range of a wide-area wireless network (such as WiFi
or cellular), which enables the UAV to be connected to the
cloud.

Layer 2: The paper proposes a cloud-based architecture
for providing UAV-as-a-service by incorporating the concept
of virtualization. The end-users and the UAV owners register
to the platform to avail of the platform services. Layer
2 comprises of the cloud infrastructure which handles the
database, hosts the platform server, manages the virtual UAV
provisioning, and other operations during any UAV flight. This
layer mainly handles the dynamic processes of the architecture
and maintains the abstraction.

Layer 3: Layer 3 comprises of the actors involved in the
proposed architecture – UAV owners, end-users, and service
providers. The end-user registers to the web application, hosted
in layer 2, with personal and task details. The UAV owner
registers with detailed information about the UAV. Each end-
user application is assigned a virtual UAV to complete the
requested task. A service provider provides the necessary
infrastructure to implement the platform and enable UAV
services. A service provider monitors the administration and
coordination among various components of the proposed ar-
chitecture, such as database management, UAV maintenance,
and virtual UAV provisioning. An end-user or a UAV owner
may anytime withdraw their requests and services from the
platform.

Technologies such as SDN and NFV can be used to further
implement the proposed architecture [15] [16]. We further dis-
cuss two different aspects of the virtualization problem. First,
we discuss the optimal placements of UAVs in our defined
region of interest. Second, the virtualization architecture for a
UAV system is defined, supported by a social-welfare-based
UAV selection scheme.

IV. PHYSICAL UAV PLACEMENT

The target region for UAV services is considered to be a
n×n grid space. The placement and operation of the UAVs in
a defined grid space are ruled by the conditions and constraints
of the architecture. A grid can be populated by only one UAV.

Definition 1. A n-hop is defined as the distance between a
grid and its nth adjacent grid.

The movement of a UAV is restricted to 1 − hop, where
1 − hop is the distance between two adjacent grids. Each of
the UAVs has a threshold value of energy-level, Ethr, below
which the UAVs are unable to serve any application.

Let a UAV travel the distance, Lmax, with a constant
velocity v. Also, the maximum energy capacity of the UAV
is Ecap. To determine the energy consumption during UAV’s
traversal from one point to another in a mission, we define a
metric as follows:

Definition 2. The per unit energy consumption for the distance
traveled by a UAV with its full energy capacity is defined as
a metric called energy index, λenergy, of the UAV such that
λenergy = EcapL

−1
max.

The total time taken by a UAV during a mission is divided
into two parts- ttravel be the time required to travel to the
target location and thover be the hovering time utilized for per-
forming the assigned task. The total time required and energy
consumed for traversal during a mission by a UAV is given by
Ttotal = thover + ttravel and Etravel = v × Ttotal × λenergy ,
respectively. Let, energy consumed for performing a task be
Etask and the total, Etot, consumed by a UAV during a
mission is given by Etot = Etravel + Etask.

Our objective is to minimize the number of UAVs being
used for completion of the overall tasks, reduce the overall
energy consumption for the tasks generated, and maximize
the number of tasks completed subject to certain constraints.

min

Tasks∑
i=1

ui,max

grid∑
i

pcomp,min
∑

Etravel + Etask (1)

subject to
1− hop 6

√
2L (2)

xj .uij =

{
ui, Eres(ui) > Ethr

0, Otherwise,
(3)

grid∑
i=1

ui 6 1 (4)

UAVs in a group with the same service providing capabilities
are termed as homogeneous UAVs, while the UAVs with
different service providing capabilities are referred to as het-
erogeneous UAVs. The following subsections discuss the UAV
placements of the two categories in a n× n grid-space where
each UAV can travel a distance of p− hops.

Definition 3. A UAV coverage unit is the number of grids that
is within its allowed hop distance and can be served for any
task.

A. Homogeneous UAV

First, we define the area covering capacity for a single UAV.
Any grid-space can be divided into multiple UAV coverage
units.

Theorem 1. For a p-hop coverage, number of UAVs, U to

cover a n× n grid can be given as U =
(⌈

n
2p+1

⌉)2
Proof. For a p-hop coverage, the UAV coverage unit consists
of (2p + 1)2 grids. An n × n grid space can be seen as a
combination of multiple UAV coverage units represented by a
linear combination as:

n = (2p+ 1)k +m, k ∈ R+ and m ∈ mod (2p+ 1)
(5)

To cover any n×n grid space, it is represented as a multiple
of the UAV coverage unit. The UAV coverage unit-based grid
space represents the minimum number of UAVs required to
cover the grid space. We use the ceil value of 2p+1 to include
the case where n is not a multiple of 2p+ 1. Let p = 1, then
U =

(⌈
n
3

⌉)2
. Fig. 3a shows the UAV coverage unit p = 1.

For n = 4 the minimum number of UAVs is 4 as shown in
Fig. 3b.
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TABLE I: Comparison of the proposed architecture with similar technologies.
Parameters WSN MWSN Virtual Sensor Cloud Traditional UAV Virtual UAV Service

Field of Operation Ground, 2D Ground, 2D Ground, 2D Aerial, 3D Aerial, 3D
Operation Range Local Short Range Global LoS, Short Range Global

Energy Source
Cell/Li-based

Battery
Automotive

Battery
Rechargeable
cell/Battery Lipo Battery Lipo Battery

Lifetime Limited Limited Limited Limited Unlimited
Metadata modelling SML SML SML MAVLink MAVLink
Mobility Static Mobile Static Highly mobile Highly mobile
Deployment Range Small Limited Relatively larger Limited Relatively larger
Operating Frequency 2.4/5/ - - 2.4GHz/5.8GHz 2.4GHz/5.8GHz
Ad-hoc network X - - - -
Hybrid network support × X X X X

(a) UAV coverage unit for 1-
hop.

(b) 4×4 grid space coverage
using minimum number of
UAVs.

Fig. 3: Grid coverage using UAV coverage unit.

B. Heterogeneous UAV

In the case of heterogeneous UAVs, there is a trade-off
between the number of UAVs and types of UAVs that can
be placed in a grid space. However, the idea is to provide
each type of service to all the grids in the grid space.

Theorem 2. For a p-hop UAV, maximum number of heteroge-
neous UAVs that can be placed in a n×n grid space with no
wastage of coverage area is

(
n− (2p+ 1) + 1

)2
.

Proof. A UAV at the boundary of a grid space or a distance
less than its hop distance from the boundary wastes some of
its coverage grid. We find all the grids that are at a minimum
distance of p-hop from the boundary of the grid space. This
quantity can be expressed in terms of the hop distance p and
grid size n as Umax = (n− (2p+ 1) + 1)

2. The shaded grids
in Fig. 4a represents the possible UAV placements for different
values of n with p=1. Emphasizing on the type of UAVs, each
of these grids can be occupied by a different type of UAV.

Lemma 1. Number of under-utilized grids if all the grids are
covered is given by W = (n+ 2p)2 − n2.

Proof. Let all the grids at the edges in Fig. 4b be occupied
by UAVs. The UAVs at the edges of the grid space cover only
the area inside the grid space while the other half is under-
utilized, i.e., the grids are under the coverage of a UAV but
are not being served. Fig. 4b represents the total under-utilized
grids if the UAVs are placed at the specified locations in a 3×3
grid-space.

(a) Possible placement of
UAVs to ensure no wastage
of grid coverage.

(b) Under-utilized UAV cov-
erage for one-hop UAV.

Fig. 4: Placement of UAVs in a grid-space with full utilization
and partial utilization by UAV coverage.

Lemma 2. Maximum number of type of UAVs in a n×n grid
space, if no same type of UAV are allowed to overlap their
coverage is given as (2p+ 1)2, ∀ n ≥ (2p+ 1).

Proof. Considering the smallest unit, i.e., the UAV coverage
unit, the maximum number of heterogeneous UAVs that are
placed without any similar overlapping grids is the total num-
ber of grids in the coverage unit. For a 3×3 grid space, the total
number of different types of UAV is nine since there are nine
grids in the unit. As discussed earlier, any grid space can be
represented as a combination of multiple UAV coverage units.
Therefore, the maximum number of heterogeneous UAVs for
any grid space is always equal to the number of grids in its
UAV coverage unit.

V. VIRTUALIZATION

A UAV owner is denoted as oi ∈ O, where O is a set of
all the UAV owners. UAV owners lease their respective UAVs
to the service providing platform. These UAVs are used in
the composition of the virtual UAV for the end-users. Each
UAV, registered with the UAV service providing platform is
assigned a unique uidi ∈ UID. A UAV contains multiple
homogeneous or heterogeneous sensors. A set of sensor types
is defined as ST = {st1, st2, st3 . . . , stn}. A set of sensor is
defined as S = {s1, s2, s3 . . . sk} where each sensor s is a 3-
tuple represented as s = 〈id, st,S〉, st ∈ ST . The tuple- id is
a unique identifier allocated by the system to the sensor. Any
location is represented as a 2-tuple loc = 〈lat, lon〉, where the
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lat and lon represent the latitude and longitude values of the
location, respectively. The availability of a UAV for certain
application depends on its state, U holding values 0, 1, and
−1 for unavailable, available and in-flight status, respectively.
Based on the different UAV-related attributes, a UAV and an
application are defined as:

Definition 4. A UAV is defined as a 5-tuple and represented
as uavi = 〈uid, Si, Loc, Eres,Ui, Loch〉, where Loch is the
home location of the UAV. A UAV can have multiple sensors,
represented as a set Suav = si, Suav ⊂ S. Similarly, an appli-
cation is represented as a 3-tuple App = 〈Aid, Atype, Aloc〉.

Aid is the application ID provided by the system at the time
of registration, Atype is the type of application depending on
the task requested by the application. It may be any kind of
sensing or actuation, capturing image, atmospheric sensing,
mainly related to the type of sensors to be used for the
application. Aloc is the location of the task requested by the
end-user. The set of physical UAVs and virtual UAVs are
denoted as pUAV and vUAV , respectively.

A. UAV Selection and Allocation

The inputs from the end-user in their application, along
with the system data about the available UAVs are used for
the selection and allocation of UAVs to an application. Fig.

Fig. 5: UAV selection and task completion process.

5 represents the flow for the selection process at different
components level. First, the end-user initiates a request for
a UAV service through its application. The system uses the
input from the end-user and determines the type of sensors
required for the application. The system goes through several
transitions, selects the most suitable UAV for the task through
the selection algorithms, and maps it to the virtual UAV in the
application.

We use a function f for selecting suitable sensor nodes
for the application, requested by the end-user. Function f is
represented in EquationV-A, where Atype is the application
type STapp is a subset of ST ,

f(Atype) = {STj | STj ∈ ST = STapp} (6)

After carefully selecting the type of sensors for an application,
a set of UAVs is selected from the available UAVs with the
service provider. The function g1 finds all the UAVs with the

type of sensors required and the home location in the range
of the location of the application. It also checks for the state
of the UAV to avoid selecting the unavailable UAVs.

g1(STapp, Aspan) = {uavi | uavi.s.st ⊂ STapp, uavi ∈ UAV
uav.loc ∈ range(Aloc), uav.us 6= −1}

= UAVapp
(7)

The output of function g1 is a set of UAVs, UAVapp, which
is the set of all possible UAVs that are eligible for use in the
application, also called the local UAV society.

B. Social Welfare Function
The social-welfare function, borrowed from the social-

choice theory of Economics, is widely used in different
applications. In a social welfare function, a group of agents
votes for their preferable options, among the available ones.
This function aims to make the voting and selection process
unbiased and equally distributed towards the holistic welfare
of the society. We use the Atkinson index-based social welfare
function [17] to analyze the resource utilization of the UAVs.
Atkinson index-based welfare function has been used for
multi-robot task allocation problems [12] [13]. Atkinson wel-
fare function model offers the flexibility to vary the magnitude
of the penalty for maintaining equal resource utilization in
a society. Based on the Atkinson index [13], we derive our
welfare function as:

ws =
1

nu

∑
(rui )

(1−ak) (8)

where nu, ru and, ak are the number of UAVs in the local
society, resource value for each UAV in the society and the
Atkinson inequality aversion parameter, respectively. When
ak=1, the welfare function is represented as:

ws = exp

(
1

nu

∑
(rui )

)
(9)

The eligible set of UAVs is further refined by selecting a
UAV in any other application with similar task assignment
and location. If any such UAV is found, it can be assigned
to multiple applications. Finally, the allocation function falloc
selects the UAV based on the social welfare function and
allocates it to the application.

falloc(App) = f(g1((UAVapp))

= {uavi | uavi ∈ UAVapp, uavi,
Eres > Ehop + Eth, d(uavi, Aloc) = dmin}

= UAVvir

(10)

The eligible set of UAVs and the finally selected UAV are
recorded in the application for any future requests. The appli-
cation is updated periodically or on-demand depending on the
frequency of application usage.

During each cycle of request triggered by the end-user
through the application, a UAV from the set of physical UAVs
is mapped to the virtual UAV created for that application, UAV
→ vUAV.

fvirtual(UAVvir) = {vuavapp | UAV → vUAV } (11)
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In case of long duration mission, the mapping of virtual UAV
is repeated when a UAV is worn off its energy and needs
another UAV to take over. This is done without notifying the
end-user.

As depicted in Fig. 5, the selection process is followed by
the completion of a task, requested by an application. After
the successful mapping of physical to virtual UAV, the UAV
flies to the target location and performs the task until it is
complete. The platform keeps a check on the energy level of
the UAV to prevent the UAV from depleting its battery below
the threshold level. When single UAV is unable to complete
the task, it is replaced by another physical UAV. The cloud
platform manages the handover of UAVs, autonomously, by
analyzing the data from the UAV and selecting a replacement
UAV, without any discontinuity in the service.

C. Simulation

We simulate the proposed architecture in our developed
python environment. We generate tasks in an application area
split into n× n grid-space.

Algorithm 1 UAV Selection
INPUT: n : Specified n×n grid space, p : Number of tasks, u : Number of UAVs
,
OUTPUT: Tasks completed by UAVs

1: for Each task do
2: Find the local UAV society
3: end for
4: for Each local UAV society do
5: if Local UAV society is not empty then
6: for For each UAV in local UAV society do
7: main UAV = UAV
8: Calculate the residual energy of the society
9: if eres > emax then

10: emax = eres
11: end if
12: Task completed
13: end for
14: end if
15: end for

Algorithm 2 Virtualization
INPUT: n : Specified n×n grid space, p : Number of tasks, u : Number of UAVs,
OUTPUT: Tasks completed by Virtual UAVs

1: for i = 1 to p do
2: Assign virtual UAV to each task
3: end for
4: for Each task do
5: Find the local UAV society
6: Assign list of UAV society to Virtual UAVs
7: end for
8: for For each task do
9: if Task location not served already then

10: Find physical UAV and map to virtual UAV
11: Check energy
12: while Task not complete do
13: Find physical UAV and map . Persistent service
14: Check energy level and perform remaining task
15: end while
16: end if
17: end for

For each task, a local UAV society is generated. The UAV
selection algorithm 1 uses the Atkinson index-based welfare
function to calculate the overall welfare value for each UAV in
the society. The UAV with maximum welfare value is selected
for the task.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our selection algorithm for
the four parameters- number of UAVs, number of tasks, size
of the grid-space, and the Atkinson aversion parameter (ak).
For different values of the aversion parameter, the penalty
imposed upon the society for equal distribution of resource
increases. From the plots in Fig. 6, we observe that an aversion
value between 1.75 and 2.25 yields the maximum number of
completed tasks for our architecture with virtual UAVs.

Fig. 6: Tasks completed for
varying aversion parameter.

Fig. 7: Tasks completed for
varying grid size.

A. Effect of Grid size

We evaluate the trend of task completion for varying grid-
size, with a fixed number of 1000 UAVs and 1000 tasks.
We observe a gradual decrease in the number of completed
tasks with increasing grid-size in Fig. 7. We attribute this
behavior to the distribution of tasks and UAVs placed over the
grids. Smaller grid-size allows dense placement of UAVs and
locations of tasks. Due to the compact placement of UAVs,
local UAV societies have more UAVs available to serve the
tasks. In the case of large grid-size, the distribution of tasks
and UAVs becomes sparse. The sparse distribution of UAVs
results in smaller local UAV societies, often resulting in no
UAV available to complete a task. Therefore, we see a gradual
decrease in the number of completed tasks in Fig. 7. However,
it is possible to have the UAVs concentrated in a smaller area
of the total grid-size and result in an increased number of
completed tasks despite the large grid-size.

B. Effect of Task Count

We analyze the task completion ratio for varying numbers
of task count in Fig. 8, keeping the number of UAVs and grid-
size fixed. The plot follows an increasing trend with increasing
number of tasks. The cause of this phenomenon is explained
by the increasing number of tasks available within the range
of UAVs. For fixed grid-size, increasing the number of tasks
results in dense task location distribution. However, the task
completion ratio goes down as the number of tasks increases.
This is because of the restricted or fixed availability of UAVs.
Hence we evaluate the trend for three different values of UAV
count. For UAV count =n, the number of completed tasks is the
highest. It is because more number of UAVs are available to
complete the tasks. The distribution of UAVs in the grid-space
plays a major role in deciding the task completion ratio. Hence,
real-life scenarios can be represented as multiple subsets of the
proposed architecture.
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Fig. 8: Tasks completed for
varying task count.

Fig. 9: Task completed for vary-
ing UAV count.

C. Effect of UAV Count

We study the effect of varying UAV count on task com-
pletion in Fig. 9. The phenomenon follows an almost linear
trend as the number of UAVs increases, keeping the number
of tasks and grid-size fixed. We further analyze the variations
for three different grid-sizes. The smallest grid-size of 50×50
shows the maximum task completion. As the number of UAVs
increases, the probability of a UAV being part of a local UAV
society increases. As nu for a task increases, more UAVs are
available to complete the task associated with the UAV society.
With small grid-size, the location of tasks and UAVs are closer
to each other, most of them being at 1 − hop distance. As
a result, the number of completed tasks is more for small
grid-size. While increasing the number of UAVs will always
result in an increased number of completed tasks, UAV and
its resources are limited and constrained in nature. Hence, the
number of UAVs has to be decided to maximize the UAV
resource utilization and serve maximum tasks efficiently. In
Fig. 10 we analyze the trend of task completion with varying
numbers of UAVs with fixed grid-space of 50× 50 and 1000
tasks, for both with and without virtualization. The proposed

(a) Task completed without Virtu-
alization

(b) Task completed with Virtual-
ization

Fig. 10: Tasks completed for varying number of UAVs.

architecture achieves a higher task completion ratio in Fig10b.
The general increasing trend in both the architecture is due to
more number of available physical UAVs that can accomplish
the tasks. However, we attribute the difference between the
virtualization architecture and non-virtualization architecture
to the fact that virtualization allows similar tasks with common
interests such as location and sensor type to be completed as
one mission, physically. More UAVs can serve more tasks,
thereby increasing the total number of completed tasks. Since
a UAV can serve a task only within its 1 − hop range in the
proposed architecture, the location of UAVs also affects the
task completion. As an example, there can be UAVs available

with desired sensors and battery level at the unreachable
location.

D. Residual Energy Comparison and Analysis

We compare the performance of simple non-virtualization
architecture with the proposed virtualization architecture. In
the simple non-virtualization architecture, we assume that only
a single UAV can complete a task, i.e., a UAV with energy
greater than or equal to the required energy can take up a
task without distributing it to multiple UAVs. The physical

(a) Number of physical UAVs
used

(b) Residual energy of the sys-
tem

(c) Tasks completed (d) Total cost analysis
Fig. 11: Comparison of virtual architecture with simple non-
virtualization architecture.

UAVs are selected and assigned to the virtual UAV based on
Equation (10). With an increasing number of tasks, multiple
tasks are generated on the same grid location. In virtualization
architecture, the same physical UAV is mapped to virtual
UAVs of different applications with the same requests. As a
result, the number of physical UAVs used for task completion
decreases in Fig. 11a. As a result, the overall residual energy of
the system increases, as evident in Fig. 11b. Fig. 11c compares
the number of tasks completed for the two architectures. The
essence of the proposed architecture holds for scenarios with
multiple tasks in a grid location. For a condition with one
task per grid location, the number of physical UAVs for
both the architectures is similar. We speculate this as the
cause for the behavior of our plots in Fig. 11a and Fig. 11b,
where values are the same for both the architectures with
task count of 20 and 100. However, the number of tasks
completed in virtualization architecture surpasses the same in
the other architecture because of its ability to perform a partial
task by a UAV. Thus, the proposed virtualization architecture
allows UAVs to perform tasks that require multiple UAVs. The
proposed architecture uses multiple UAVs for a task involving
heterogeneous sensors or a task that requires longer UAV flight
time.

E. Cost Comparison and Analysis

Next, we analyze the total cost involved in performing the
assigned task for the two architectures. We compare the cost
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for varying number of tasks in the range of 10 to 100 and
UAVs ranging from 30 to 450 placed inside a grid-space of
30× 30. Fig. 11d shows the difference in cost where UAVV
and UAVS are the number of physical UAVs in the grid
for virtualization and simple non-virtualization architecture,
respectively. Virtualization allows multiple users to be served
simultaneously using the same resources, whereas, for the sim-
ple non-virtualization architecture, individual UAV performs
individual tasks. Additionally, in the case of virtualization
architecture, the cost of a task is distributed among multiple
end-users. In the case of simple non-virtualization architecture,
each individual end-user bears the total cost of the task. As a
result, we see that the cost procured for task completion in the
proposed virtualization architecture reduces by approximately
46.5% of the cost incurred by the simple non-virtualization
architecture. With an increasing number of tasks, we speculate
further reduction in task completion cost, giving more margin
for monetary benefits to all the actors involved.

VII. CONCLUSION

In this paper, we proposed a novel scheme for persistent
and ubiquitous UAV services through the virtualization of
physical UAVs. Our work enables the provision of UAV-as-
a-service, overcoming the barrier of short flight time of a
single UAV. Virtualization also increases the utilization of
resources, avoiding multiple UAVs for redundant services. We
incorporate a social welfare-based selection process for UAV
selection. In the future, we plan to extend the work considering
heterogeneous types of UAVs with different sensors onboard.
This will challenge the selection algorithms and find the
best possible UAVs within the target range. SDN-IoT and
NFV can be explored as the enabling technologies for the
proposed UAV virtualization architecture. A detailed energy
consumption model and analysis should be carried out. It is
important to note that UAV operations with virtualization may
raise other concerns and issues that need to be addressed.
Service provisioning related parameters can be evaluated, and
more robust schemes can be introduced.
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