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Abstract— To improve reliability in energy management
of smart grid, micro-grids provides electricity without any
interruption and reduces the load on the main grid. However,
if a micro-grid fails and cannot provide energy, the load on the
main grid increases. Hence, in presence of micro-grid failure,
there is a need for proper energy management scheme for
uninterrupted energy service with coalition extension. In order
to address this problem, we design a scheme for the dynamic
coalition extension (DCoE) in smart grid using evolutionary
game theory. The competition among the micro-grids to share
the energy load and make a profit in presence of micro-
grid failure is constructed as a dynamic evolutionary game,
and Pareto optimal solution is ensured as an evolutionary
equilibrium. From the simulation, we yield that using DCoE,
energy service to the customers are ensured with proper load
distribution, while paying less up to 15%. Additionally, the
evolutionary equilibrium is ensured with 17-19 iterations.

Index Terms—Evolutionary Game, Replicator Dynamics,
Coalition Extension, Grid Failure, Micro-Grid, Smart Grid

I. INTRODUCTION

To ensure reliability of energy management systems,

traditional electrical grids is visualized to integrate with

sustainable models of energy production, distribution, and

usage [1]–[3], and termed as smart grid. Additionally, it

integrates advanced techniques such as advanced meter-

ing infrastructure (AMI), automatic meter reading (AMR),

distributed energy resources (DER), energy management

systems (EMS), intelligent electronic devices (IEDs), and

plug-in hybrid electric vehicles (PHEVs) [4]. In traditional

energy management, the main grid with a centralized

system distributes energy unidirectionally to the customers.

However, in the presence of duplex communication infras-

tructure in smart grid, the large-scale traditional electrical

grid is divided into micro-grids [5] having bi-directional

electricity exchange facility with the substation, and the

main grid. In smart grid, each customer selects one micro-

grid for getting energy supply in a distributed manner.

Thereby, smart grid relaxes the load on the main grid. One

of the important features in a smart grid is the demand-

side energy distribution, which gives the opportunity for

flexible energy demand according to the requirements of

the customers.

In smart grid, each micro-grid uses renewable energy

resources — biomass energy, solar energy, wind power,

and geothermal heat for generating energy. Therefore, each

micro-grid generates energy of different amounts in each

slot of a day. Hence, if a micro-grid fails to distribute energy

due to malfunction, the customers connected with that

micro-grid cannot get any energy service. Moreover, there

is a need of addressing the problem of energy distribution in

presence of micro-grid failure. Additionally, the customers,

who are connected with the failed micro-grid, needs to be

distributed properly among the available functional micro-

grids in order to ensure quality of service (QoS). However,

in existing literature, there is no such work, as of our

knowledge, which considers the load distribution in the

presence of micro-grid failure.

In this paper, we introduce an evolutionary game theo-

retic approach for designing the scheme, dynamic coalition

extension (DCoE), in presence of micro-grid failure in smart

grid. We use a dynamic evolutionary game to select the

appropriate strategies for the customers to choose the ap-

propriate micro-grid in order to maintain the quality service.

On the other hand, the strategies for the micro-grids to max-

imize their profit by supplying the requested energy, while

assuring proper utilization of the generated energy. We

find out the evolutionary equilibrium solution, i.e., Pareto

optimal solution of the proposed scheme, DCoE. To reach

the equilibrium, we propose a centralized algorithm for

DCoE, where the meter data management system (MDMS)

acts as a centralized coordinator. Each customer, who is

earlier connected with the failed micro-grid chooses a new

micro-grid for energy service. Therefore, population share

of each micro-grid is the partial value of the total amount

of energy requested by the customers associated with the

failed micro-grid. Additionally, each micro-grid evaluates

the price per unit energy depending on the aggregated

energy demanded by the customers within the coalition

using dynamic pricing. In summary, our contribution in this

paper as follows:

i) We present the dynamic coalition extension (DCoE)

scheme for energy service to the customers in the

presence of a micro-grid failure in smart grid.

ii) Dynamic evolutionary game theory is used to decide

the Pareto optimal strategies, while considering the

proper energy distribution to the available micro-grids.



iii) To obtain the Pareto optimal solution of DCoE, we

present a centralized algorithm based on dynamic evo-

lutionary game theory. We ensure evolutionary equi-

librium of the proposed scheme, DCoE.

II. RELATED WORKS

In the past few years, many research works on smart

grid emanated, viz., [1]–[3], [6]–[17]. Some of the existing

literature are discussed in this section. Misra et al. [6]

proposed a dynamic pricing scheme for PHEVs. They

proposed two different types of pricing policies — local

and roaming. Farzan et al. [3] formulated a distributed

energy management scheme, while forecasting the energy

consumption model of the customers based on two dif-

ferent schemes such as an adaptive model for short-term

and a historical-data analysis model for long-term load

calculations. Kamyab et al. [11] studied two different

non-cooperative algorithms for energy distribution having

multiple service providers and multiple customers. In one

algorithm, the price per unit energy is decided centrally.

In the other algorithm, by knowing the price decided by

the data center, customers decide the optimal load profile.

Samadi at al. [13] proposed a game theoretic scheme where

the excess energy generated by customers can be supplied

to micro-grids having energy deficiency, which, in turn,

helps the customers to maximize their profit. Mondal et al.

[15] proposed an energy management system, where cus-

tomers are equipped with storage devices. Each customer

tries to consume energy for storage, which will supply

the needful energy at on-peak hours. In another work,

Mediwaththe et al. [16] proposed a system where customers

are equipped with energy generation units. Excess energy

generated by customers can be supplied to the grid or a

centralized energy storage. However, none of these works

considers un-interrupted energy management scheme with

coalition extension in presence of micro-grid failure.

In contrast to the previous works, a dynamic game

theoretic model is used in this paper to explore the ef-

fects of micro-grid failure, in the smart grid. We use the

evolutionary game to develop the Pareto optimal solution

for deciding the coalition extension of the well-performing

micro-grids in a distributed manner.

III. SYSTEM MODEL

We consider a energy management system with multiple

micro-grids and multiple customers. Each customer is con-

nected with a single micro-grid for energy supply. In case

of a micro-grid failure, the customers connected with that

micro-grid needs to be connected with the available nearby

micro-grids. We consider that each micro-grid m ∈ M,

where M is the set of available micro-grids in a geograph-

ical area, and the connected customers getting service, i.e.,

Nm ⊆ N , where N and Nm are the set of customers

and the set of customers connected with micro-grid m,

respectively, form a coalition. Therefore, in case of micro-

grid failure, the coalition associated with that micro-grid,

i.e., Nm, needs to be dispersed among the other available

coalitions of other micro-grids, i.e., (M−{m}), as shown

in Figure 1. We consider that each customer n ∈ N has

an energy requirement of xn(t) amount at time instant t.

Therefore, at time instant t, the total energy requested to

each micro-grid m, χm(t), is defined as follows:

χm(t) =
∑

n∈Nm

xn(t), ∀m ∈ M (1)

Fig. 1: Schematic Diagram of DCoE

Total energy requirement of |N | number customers is

defined as follows:
∑

m∈M

χm(t) =
∑

m∈M

∑

n∈Nm

xn(t) (2)

Equation (1) has to follow the following constraint:

Gm(t) ≥ χm(t) (3)

where Gm(t) is the amount of energy generated by micro-

grid m at time instant t. Gm(t) varies in different time

instant, as it only depends on renewable energy resources.

Here, Equation (3) signifies that the amount of energy

consumed by the connected customers cannot be more than

the amount of energy generated by the micro-grid m. In

case of failure of micro-grid m, the each customer n ∈ Nm

has to choose a new energy service provider, i.e., new

micro-grid m̃ 6= m, in order to ensure uninterrupted energy

service. We consider that the set of customers choosing

micro-grid m̃ due to failure of micro-grid m is denoted

as Nm→m̃, where Nm→m̃ ⊆ Nm. Hence, for each micro-

grid m̃, the proposed scheme, DCoE, needs to ensure the

following constraint:

Gm̃(t) ≥ χm̃(t) +
∑

n∈Nm→m̃

xn(t) (4)

On the other hand, the price per unit energy decided

by micro-grid m, pm(t), is decided based on a dynamic

pricing scheme [18], while considering the amount of

energy requested to micro-grid m, i.e., χm(t). The price



per unit energy, pm(t), is calculated as follows:

pm(t) = Am[χm(t)]2 + Bmχm(t) + Cm (5)

where Am, Bm, and Cm are constants. Therefore, any

micro-grid having high energy request will set the price

per unit energy high. Thereby, among the micro-grids,

the amount of energy consumed by the customers gets

distributed properly. Additionally, the customers consume

energy while paying less.

IV. PROPOSED DYNAMIC COALITION EXTENSION

GAME

A. Game Formulation

To study the dynamics of coalition extension and interac-

tion between the micro-grids and the customers, we use an

evolutionary game theoretic approach [12]. In the proposed

dynamic coalition extension scheme, named as DCoE, we

consider that the micro-grids and customers generate the

player pool. In DCoE, each micro-grid provides energy

service to the customers and decides the price per unit

energy to be paid the customers. On the other hand, each

customer chooses the optimal micro-grid with optimum

price per unit energy. The customers form a population

of players. Additionally, the set of customers connected

with each micro-grid forms population share of that micro-

grid. We consider that customer n ∈ N chooses micro-grid

m ∈ M, and contributes in the population share of micro-

grid m. Hence, we define the population share of micro-grid

m ∈ M, πm(t), as follows:

πm(t) =

∑

n∈Nm

xn(t)

∑

m∈M

∑

n∈Nm

xn(t)
=

χm(t)
∑

m∈M
χm(t)

(6)

In DCoE, we propose to distribute the total population,

i.e., the energy demand of the customers connected with

the failed micro-grid, among the available micro-grids.

Therefore, we emphasize on developing a utility function

for the customers in order to ensure that each micro-grid has

an optimum population share. We define the utility function

of each customer in the following section.

1) Utility Function of Each Customer: Utility func-

tion of each customer n, ψn,m(t), signifies the payoff

of customer for choosing micro-grid m. In the proposed

scheme, DCoE, each customer tries to optimize his/her own

payoff, while assuring the the payoff of each customer is

same as the average payoff of the overall population. We

define the utility function of each customer n, ψn,m(t), as

the difference of the quantized quality of service (QoS),

i.e., Un,m(t), and the price to be paid for consuming

xn(t) amount of energy from micro-grid m, i.e., Pn,m(t).
Mathematically,

ψn,m(t) = Un,m(t)− Pn,m(t) (7)

The quantized QoS function, Un,m(t), varies propor-

tionally with the amount of energy generated by micro-

grid m, and the energy to be consumed, xn. Addi-

tionally, value of the quantized QoS function, Un,m(t),
decreases with the increase in energy demand of the

customers (except customer n) connected with the same

micro-grid m, i.e.,
∑

xi,m, where {xi,m} ∈ x−n, and

x−n = {x1,m, x2,m, · · · , xn−1,m, xn+1,m, · · · , x|Nm|,m}.

Therefore, we consider that with the increase in total energy

demand of the customer to the micro-grid, the payoff of

the quantized QoS function decreases. Hence, we formulate

Un,m(t) as follows:

Un,m(t) = Gm(t)xn(t)−
1

2
αm[χm(t)]2 (8)

On the other hand, the cost function, Pn,m(t), has a

negative impact on utility function ψn,m(t). Here, the cost

function signifies the price to be paid by the customer n

to micro-grid m by consuming xn(t) amount of energy.

Additionally, the price per unit energy to be charged by

micro-grid m is calculated using Equation (5).

Pn,m(t) = pm(t)xn(t) (9)

Hence, we get the utility function of customer n for

choosing micro-grid m, ψn,m(t), is as follows:

ψn,m(t) = Gm(t)xn(t)−
1

2
αm[χm(t)]2−pm(t)xn(t) (10)

2) Utility Function of Each Micro-Grid: For each micro-

grid m ∈ M, the utility function ψm(t) signifies the overall

payoff for providing energy service to Nm set of customers.

Therefore, we define the utility function of micro-grid m,

ψm(t), as follows:

ψm(t) =
∑

n∈Nm

ψn,m(t) (11)

With the increase in the payoff value of ψm(t), the num-

ber customer served by micro-grid m increases. Thereby,

the micro-grid earns high revenue by selling high amount

of energy. Hence, from Equation (11), we get:

ψm(t) = Gm(t)χm(t)− |Nm|
2

αm[χm(t)]2 − pm(t)χm(t)

(12)

Definition 1. The transferable utility is calculated with

average payoff values of the utility function of the available

micro-grids. Using the transferable utility, we consider the

average payoff of the utility functions of the available

micro-grids, in spite of considering the individual payoff

of the micro-grids.

Thereafter, in DCoE, we find the transferable utility,

which is defined in Definition 1, for the available micro-

grids M. In DCoE, we define the transferable utility of the

micro-grids, i.e., ψ(t), as follows:

ψ(t) =
∑

m∈M

ψm(t)πm(t) (13)

Using the proposed scheme, DCoE, each micro-grid tries



to maximize the transferable utility of the micro-grids. In

other words, DCoE ensures high revenue for each micro-

grid, while maintaining the high quality of energy service

with less price.

3) Replicator Dynamics of DCoE Scheme: We define

a replicator for each micro-grid. Here, each replicator

acts as a player in the evolutionary game theory based

proposed scheme, DCoE. It evolves over time and has

ability to reproduce itself. A replicator with high payoff

value has a high preference. We model the behavior of a

replicator using an ordinary differential equation, named

replicator dynamics. We define the replicator dynamics of

the proposed scheme, DCoE, as follows:

∂πm(t)

∂t
= πm(t)[ψm(t)− ψ(t)] (14)

where
∂πm(t)

∂t
defines the change in population share of

micro-grid m over time ∂t, i.e., lim
∆t→0

∆t, and πm(t) defines

current population share of micro-grid m at time instant t.

B. Existence of Evolutionary Equilibrium Solution

We define the evolutionary equilibrium solution of the

proposed scheme, DCoE, as the Pareto optimal solution.

In DCoE, Pareto optimal solution, defined in Definition 2

is the set of tuples < {x∗n(t),x∗
−n| n ∈ Nm}, pm(t) >,

where x−n = {xñ|n 6= ñ, ∀ñ ∈ Nm}.

Definition 2. The solution of DCoE,

< x∗n(t),x
∗
−n, pm(t) >, is considered to be a Pareto

optimal solution, if for every tuple < xn(t),x−n, pm(t) >,

where xn 6= x∗n, we get:

ψn,m(t)|x∗

n
(t) ≥ ψn,m(t)|xn(t) (15)

After obtaining the evolutionary equilibrium solution, we

consider that there will be no change in players’ strategies.

Therefore, we get:

∂πm(t)

∂t
= 0 (16)

From Equations (14) and (16), we get:

ψm(t) = ψ(t) =

∑

m 6=m̃

ψm̃(t)πm̃(t)

1− πm(t)
(17)

For simplicity, considering that micro-grids m and m̃ are

homogeneous in nature, we get that ψm(t) = a(t)χm(t) +
b(t)[χm(t)]2 + c(t)[χm(t)]3, where a(t), b(t) and c(t) are

constants; and a(t) = (Gm(t)−Cm, b(t) = Bm− |Nm|
2 αm,

and c(t) = −Am. Therefore, we get the evolutionary

equilibrium points are as follows:

χm(t) =











−(b+cχm̃)+
√

(b+cχm̃)2−4c(a+bχm̃+cm[χm̃]2)

2c ,

if χm(t) 6= χm̃(t)
χm̃, otherwise

(18)

C. Algorithm

In order to reach the evolutionary equilibrium solution,

each customers connected with the failed micro-grid needs

to distribute themselves, and join coalition of other micro-

grids available. Te dynamic coalition extension scheme,

DCoE, handles the coalition extension in the presence

of micro-grid failure using Algorithm 1. In DCoE, ini-

tially, each customer chooses a micro-grid randomly, and

thereafter performs Algorithm 1. DCoE ensures proper

distribution of the affected customers among the available

micro-grids. Finally, using DCoE, we yield the optimal

distribution vector of the affected customers, i.e., the pop-

ulation share at evolutionary equilibrium point.

Algorithm 1 Algorithm of the Proposed Scheme, DCoE

INPUTS:

1: xn(t), ∀n ⊲ Amount of energy requested by customer

n

2: Gm(t), ∀m ⊲ Amount of energy generated by

micro-grid m

3: Am,Bm, Cm, ∀m ⊲ price constants from micro-grid m

4: αm, ∀m ⊲ Utility constant factor of micro-grid m

OUTPUT:

1: π(t) = {π1(t), · · · , πm(t), · · · , π|M|} ⊲ Population

share vector

PROCEDURE:

1: do

2: for each m ∈ M do

3: Calculate pm(t) using Equation (5);

4: Calculate πm(t) using Equation (6);

5: for each n ∈ Nm do

6: Calculate Un,m(t) using Equation (8);

7: Calculate Pn,m(t) using Equation (9);

8: Calculate ψn,m(t) using Equation (10);

9: end for

10: Calculate ψm(t) using Equation (11);

11: end for

12: Calculate transferable utility ψ(t) using Equation

(13);

13: for each m ∈ M do

14: Calculate π̇m(t) using Equation (14);

15: end for

16: while (π̇m(t) 6= 0|∀m);

17: return π(t);

V. PERFORMANCE EVALUATION

A. Simulation Parameters

For performance evolution, we considered randomly gen-

erated values for the location of customers over the terrain,

as shown in Table I, on a MATLAB simulation platform.

For simulation, we consider the randomly generated values

for amount of energy required for the customers and the

amount of energy generated by the micro-grids, as shown

in Table I. We vary the number of customers in the range of
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100-250, and observe the change in profit and population

share of each micro-grid.

TABLE I: Simulation Parameters

Parameter Value

Simulation area 10×10 km2

Number of micro-grids 5

Number of Customers 100-250
Customer’s minimum requested energy 65 MWh

Customer’s maximum requested energy 110 MWh

Micro-grid’s minimum generated energy 500 MWh

Micro-grid’s maximum generated energy 750 MWh

Generation cost per MWh energy 10-20 USD

B. Benchmark

The performance of the proposed scheme, DCoE, is

evaluated by comparing with an scheme, WoDCoE, that is

capable of coalition extension without any game theoretic

approach. In WoDCoE, the customer, who belongs to the

coalition of failed micro-grid, chooses the new energy

service providing micro-grid based on the available energy,

sequentially. However, WoDCoE does not use any game

theoretic approach for coalition extension.

C. Performance Metrics

We have evaluated performance of the proposed scheme,

DCoE, using following metrics.

Energy Demand: Amount of energy requested by the

customers to the micro-grids. Here, the amount of requested

energy to the micro-grids needs to satisfy the constraint that

the micro-grid can not supply higher amount of energy than

the amount of energy generated.

Population Share: In evolutionary game theory, we con-

sider that the players or individuals form a population and

decide their corresponding strategies. Thereby, the players

choosing the same strategy contributes to the population

share of that strategy.

Price to be paid: Each player tries to consume energy

with high QoS and lower rate. Hence, each customer tries to

minimize the price per unit energy to be paid for consuming

energy from the micro-grids, and chooses the micro-grid for

energy supply, accordingly.

Price per Unit Energy: The micro-grid decides the opti-

mum price per unit energy in order maximize its revenue

by selling the amount of generated energy to the customers.

In DCoE, we consider that the price per unit energy

decided by the micro-grids depends polynomially, while

distributing the load among the available micro-grids in a

proper fashion.

D. Results and Discussions

For simulation, we consider that each micro-grid calcu-

lates the real-time supply and energy demand of connected

customers at the beginning of each time slot.

From Figure 2, we get that the average utility of the

system is same in different iteration. However, we observe

that the average utility reduces at the iterations close to 100
iteration. This is due to reduction in the energy requirement

of the customers and the amount of energy requested to

the micro-grids reduces at the same time. On the other

hand, Figure 3 depicts that the customers choose the micro-

grids for energy supply randomly. Hence, the average

energy demand to each micro-grid varies significantly.

However, within 17-19 iterations, the energy demand to

the micro-grids reach the equilibrium. Hence, we claim

that using the proposed scheme, DCoE, the customers

reach the evolutionary equilibrium within a few iteration.

Similarly, the population share of each micro-grid reaches

evolutionary equilibrium with a few iteration as shown in

shown in Figure 4. Hence, the proper load distribution is

ensured using the proposed scheme, DCoE. Additionally,

we observe that the change in population share of each

micro-grid per iteration depends on the deviation from the

average transferable utility. The population share of each

micro-grid does not vary after reaching the evolutionary

equilibrium point, which is a Pareto optimal solution of

DCoE.

From Figure 5, we observe that using the proposed

scheme, DCoE, the customers get the required energy while

paying 12-15% less than using WoDCoE. On the other

hand, we yield that the price per unit energy decided by

the micro-grids are almost same using the proposed scheme,

DCoE, as shown in Figure 6. However, the price decided

per unit energy decided by the micro-grids using WoDCoE

varies significantly. Though the schemes — DCoE and

WoDCoE, use same polynomial equation while deciding the
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price per unit energy, using DCoE, the price per unit energy

decide by the micro-grids is almost same, as the energy

requested by the customers, who were earlier connected

with the failed micro-grid, distributed properly among the

available micro-grids. Figure 7 depicts the payoff value

of the utility function of the micro-grids. From Figure

7, we observe that the payoff value reaches close to the

equilibrium position within 10 iterations. However, using

DCoE, 17-19 iterations are needed in order to reach the

Pareto optimal solution.

VI. CONCLUSION

In this paper, we formulated an evolutionary game

theoretic approach in oder to ensure proper load distri-

bution in smart grid, in presence of micro-grid failure.

Based on the proposed approach, DCoE, we yield that

within 17-19 iterations, evolutionary equilibrium solution,

i.e., Pareto optimal solution, is achieved. Additionally, the

proposed scheme, DCoE, ensures proper distribution of the

customers’ demand, while paying less up to 15%. The

simulation result also shows improved results.

Future extension of this work includes understanding

how the presence of storage devices at the micro-grid end

will influence the situation where the micro-grid fails to

distribute energy. This work also can be extended while

considering the presence of the plug-in electric vehicles

(PEVs). Additionally, we can extend this work considering

the infrastructure for vehicle to grid energy transfer in

presence of PEVs and micro-grid failure.
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