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Abstract—In this paper, the problem of optimal energy dis-
tribution by dynamically changing the size of coalition, which
consists of one micro-grid and several customers, is studied using
the theory of Markov Decision Process (MDP) — a discrete
optimization method. In this paper, the micro-grid, which acts
as one of the players, needs to decide the size of the coalition
for utilizing the generated energy optimally. On the other hand,
the customer, which acts as another player, needs to decide its
strategies, so as to optimize a trade-off between the associated
cost, i.e., communication cost and energy distribution cost, and
effective power supply. Using MDP, it is shown how dynamically
coalition can be formed and the customer can be assured of an
efficient power distribution.

Index Terms — Power economy revenue, Smart Grid, customer,
game theory, coverage, coalition, energy exchange.

I. INTRODUCTION

Due to the growing concerns for energy conservation and
environment, smart grid [1] has been visualized to be a cyber-
physical system that can augment the efficiency, reliability,
and robustness of power and energy of the grid by integrating
advanced techniques such as PHEVs and Advanced Metering
Infrastructure (AMI). In existing power systems, electricity
is delivered to the customer by a main electrical grid that
delivers power over the low-voltage distribution network. In
the presence of micro-grids, it is desirable to allow the micro-
grids to service some small geographical areas or group of
customers based on their demand, so as to relieve the demand
on the main grid [2].

Let us consider a distribution network composing of one
substation, which is connected to the main grid, as well as to
M micro-grids in the set N , where M ∈ N . Each micro-grid
i ∈ N services a certain demand and the difference between its
generation and demand is represented as Qi. At a given period
of time, depending on the customers’ demand and generated
power, a certain micro-grid i ∈ N may have either a surplus of
power (Qi > 0) to sell or a need to acquire power to meet its
demand (Qi < 0). Therefore, some cooperation exists between
the micro-grid and the customer [3].

In this paper, we introduce a suitable cooperation scheme
that can help in dynamic coalition formation for proper uti-
lization of energy. The coalition is considered to be consisting
of one micro-grid and the customers to whom that micro-grid
can distribute energy optimally. Inside the coalition, the micro-

grid can transfer power locally to its customers, but unable to
transfer energy directly to the other coalition. Therefore, we
propose to form dynamic coalition, so that energy could be
distributed properly with less amount of energy loss.

The rest of the paper is organized as follows. We briefly
present the related literature in Section II. Section III describes
the system model. In Section IV, we formulate the stochastic
optimization method using MDP [4]–[6], and, thereafter, we
discuss its properties. We also propose a distributed algorithm
and discuss the performance of the algorithm in Section V.
Finally, we conclude the paper while citing few research
directions, in Section VI.

II. RELATED WORKS

In the last few years, lot of research work on smart grid
emerged, viz., [7]–[13]. The early works considered that each
micro-grid i ∈ N exchanges the amount of power Qi with the
main grid using the main substation, in the absence of storage
and cooperation [3]. The transfer of power is accompanied
by power loss over the distribution lines inside the micro-grid
network. The total loss over the distribution line due to power
transfer is given by [3]:

L(i) = −wiP
loss
i (1)

In Equation (1), P loss
i is the power lost during power exchange

between i and the substation, and wi is the price paid by i per
unit of power loss. The power loss, P loss

i , is a function of
several factors such as the distance between the micro-grid
and the substation (due to resistance), the power Qi that is
being transferred, as well as the losses at the transformers of
the substation.

In [2], the authors proposed a method for coalition for-
mation in which a coalition consists of multiple micro-grids.
In such a design the customer had no choice to change the
coalition. One grid having excess energy can transfer that
amount of energy to another grid, which is energy deficient
[2]. In that scenario, there will be some loss of energy due
to local transfer of energy. Mathematically, the loss can be
expressed as [2]:

Loss(si, sj) =
∑
i 6=j

wijP
loss
ij (2)



Further, it may be stated that although [2] and [3] considered
the concept of coalition games in the context of smart grid, our
work differs from them in that we use coalition game theory
to form the coalition themselves. On the other hand, the above
mentioned existing works use the theory to distribute energy
between grids.

In [14], the authors proposed a distributed load management
scheme. They assumed that the customers know their energy
usages and can schedule their consumption priority according
to the new pricing policy. The customers make their own
bid by broadcasting their energy demand vector when a
new customer is included in the network. They proposed an
algorithm to bid the energy vector. Once the convergence
reaches the demand distribution, it is fixed and is executed
according to defined schedule.

In [13], the authors proposed a non-cooperative game ap-
proach for controlling both loads and energy sources in a
small-scale power set ℵ = L ∪ S, which represents the group
of loads L and power sources S, and the strategy of each
player depending on its type. The objective functions of the
load and the source are application dependent. However, in
general, they are functions of the strategies, the currents, the
voltages, and the impedance, as discussed in Reference [13].

III. SYSTEM MODEL

In Figure 1, the schematic view of a typical smart grid
is shown. Let us consider a power system consisting of S
substations. Every substation k ∈ S consists of Mk number
of macro-grids and there are (Nj)k micro-grids under each
macro-grid j ∈ M . Hence, N number of coalitions will be
formed. Assuming that each coalition i ∈ N has an area ai,

(
∑
i∈Nj

ai)j = αj (3)

where, Nj is the total number of coalitions under the jth

macro-grid and the jth macro-grid has a total area of αj .

Fig. 1: Smart Grid

We have another equation for macro-grids,

(
∑
j∈M

αj)k = Ak (4)

where, Mk is the total number of macro-grids under the kth

substation and the total area of the kth substation is Ak.
We also assume that the ith micro-grid has a generation

capacity of Gi at a certain time t. This generated energy, Gi,

can be sold to the Φ number of customers that are within the
ith coalition, thereby allowing them to meet their demand. The
grid will set an appropriate price p (per unit energy) for selling
the generated energy to optimize its power economy revenue.

Each customer n ∈ Φ, where Φ is the set of all the
customers, will request a certain amount of energy xn from
the micro-grid, so as to meet its energy requirements. This
demand of energy may vary temporally based on different
parameters such as the energy storage capacity, the price p
per unit of energy and the nature of usage of energy. Since
the net energy generation capacity for the ith micro-grid is
fixed, the demand of customers must satisfy

(
∑

xn)i≤Gi (5)

where ∀i ∈ N and ∀n ∈ Φ.
To successfully complete energy trading, the customers and

the micro-grid interact with one another and agree on whether
a customer joins a coalition or not. Here, the grid tries to utilize
the generated energy properly and increase its power economy
revenue. On the other hand, the customer tries to fulfill its total
energy requirement efficiently and economically.

IV. PROPOSED MDP-BASED OPTIMIZATION METHOD

A. Game formulation

To formally study the interaction between the grids and
the customers, we use MDP [15] to design a multi-level
decision making process, as shown in Figure 2, for forming
the coalition in a dynamic way. In Figure 2 it is shown how
the customer and the grid play games with one another. We
consider the customer as Player 1, and the grid as Player 2.
Based on the decision of Player 1, the Player 2 chooses its
strategy and so on. This game is defined by its strategic form,
τ = [(Φ∪G), (Xn)n∈Φ, (Un)n∈Φ, p], having the following
components:

i) The customers in Φ act as players in the game and respond
to the inclusion request by the grids.

ii) The strategy of each customer n∈Φ, which corresponds
to the amount of energy xn ∈ Xn from the grid satisfying the
constraint

∑
n∈Φ xn ≤ G.

iii) The utility function Un of each customer n that captures
the benefit of consuming demanded energy xn.

iv) The price p is the per unit of energy charged by grids.

Fig. 2: Multi-level Decision Making Process



Utility function of a coalition: For every coalition n ∈
Φ, we define a utility function Un(xn, x−n, Gi, si, ai, dn, p),
which represents the level of will of a customer to join a
coalition. Here, Gi is the total amount of energy generated by
the grid i ∈ N , and si is the satisfaction parameter of the ith

grid, which is the measure of satisfaction the grid can achieve
by selling energy relative to the generated energy. For example,
Grid 1 (G1) and Grid 2 (G2) generate the same amount of
energy at a certain point of time, but G1 is able to sell more
energy than G2. We can infer that the satisfaction of G1 is
more than the satisfaction of G2 (i.e, s2 < s1). Therefore,
the properties that utility of a customer must satisfy are as
follows:

i) The utility function of the customers are considered to be
non-decreasing, as each customer is interested in consuming
more energy. Mathematically,

δUn(xn, x−n, Gi, si, ai, dn, p)

δxn
≥ 0 (6)

ii) The marginal benefit of a customer is considered to be a
decreasing function, as the satisfaction-level of grid gets satu-
rated as more energy is sold to the customer. Mathematically,

δ2Un(xn, x−n, Gi, si, ai, dn, p)

δx2
n

< 0 (7)

iii) Assuming that each grid generates the same amount
of energy, a larger value of

∑
n∈Φ xn will lead to higher

satisfaction. So, we have,

δUn(xn, x−n, Gi, si, ai, dn, p)

δsi
< 0 (8)

iv) The utility function Un of a customer is inversely pro-
portional to the radial distance, dn, as with the increase in the
distance, the delay for communication and power transmission
increases. Mathematically,

δUn(xn, x−n, Gi, si, ai, p)

δdn
< 0 (9)

Therefore, in this work, we consider the following specific
utility:

Un(xn, x−n, Gi, si, ai, p) = Gixn+pxn−
1

2
six

2
n−aidn (10)

where dn is the radial distance of the nth customer, d = γxn,
and γ is a constant. xn ∈ [0, G −

∑Φ
q=1,q 6=n xq] and x−n =

[x1, x2, .., xn−1, xn+1, .., xN ].

B. Algorithm

In order to reach the equilibrium in energy distribution from
the grid to the customer, the customer and the grid must take
their strategy choices with a small communication overhead
between one another to form the coalition. In this work, we
propose two different algorithms. The customers and the grids
individually follow different algorithms. The customer follows
its own algorithm to get uninterrupted power supply with less
cost per unit, whereas the grid follows its own algorithm to
increase its revenue, and tries to utilize the generated energy

properly. By executing the two algorithm sequentially, we
infer how dynamically coalition will be formed. First, the grid
broadcasts its payoff function to customers and the priority of
including any customer to form the new coalition will be based
on the radial distance of that customer from the micro-grid.
After knowing the payoff function of each grid, those micro-
grids, which want to include a particular customer n ∈ N ,
the customer n will decide whether to accept the proposal of
joining the coalition or to decline the proposal based on the
consumption of its utility function, Un.

Algorithm for Dynamic Coalition Formation:

1) Algorithm for Grids: Each grid i ∈ N calculates its
excess energy by evaluating the function E(i) = Gi −∑Φ

q=1,q 6=n xq . A grid broadcasts its payoff function having the
amount of excess energy, E, and the cost per unit, p. After
getting these values, the customer n ∈ Φ makes a decision
based on its utility function. In case a customer is unwilling
to join the coalition, then the grid receives that information and
modifies its previously assigned cost per unit p, to maximize its
revenue. Thereafter, it broadcasts that message. This process
continues until the grid makes the proper utilization of its
generated energy and gets the maximum revenue by selling
the generated energy to the customer. Mathematically,

Ug∗
i (G,

Φ∑
n=1

xn + xnew, p∗) > Ug
i (G,

Φ∑
n=1

xn, p) (11)

In Equation (11), Ug
i is the utility function of the ith grid, p∗

is the modified cost per unit energy, and p is the cost per unit
energy prior to the modification.

Algorithm 1: Algorithm for Grid
Input: Amount of generated energy Gi by grid i ∈ N
Output: Request customer n ∈ Φ to join its coalition
while Gi >

∑
n∈Φ xn do

evaluate
∑Φ

n=1 xn;
if (Gi −

∑Φ
n=1 xn) > 0 then

evaluate satisfaction factor si, where
si =

∑Φ
n=1 xn

Gi
;

request a new customer, j /∈ Φ to join its
coalition;

else
energy generated by grid i, Gi, is properly
utilized; system is stable, so formed coalition is
fixed;

2) Algorithm for Customers: Each customer has two
choices. One of its options is to join the coalition of the
requested grid, i. Another option is that it will not join that
coalition and will remain in the same coalition l, where l ∈ N ,
and l 6= i). Before making this choice, the customer calculates
its utility function Un(xn, x−n, Gi, si, ai, p) = Gixn + pxn−
1
2six

2
n, and chooses the grid having a better utility factor at



that time instant t, to ensure an uninterrupted power supply in
an efficient way. Mathematically,

U∗n(xn, (x−n)i, Gi, si, ai, (dn)i, p∗) >
Un(xn, (x−n)j , Gj , sj , aj , (dn)j , p)

(12)

where, U∗n is the modified utility function of customer n.

Algorithm 2: Algorithm for Customer
Input: Amount of energy, xn, required for customer

n ∈ Φ
Output: Energy requirement of customer n ∈ Φ is

fulfilled
while U∗n ≥ Un do

evaluate utility function Un according to Equation
(10) ;
if (U∗n(xn, (x−n)i, Gi, si, ai, (dn)i, p∗) >
Un(xn, (x−n)j , Gj , sj , aj , (dn)j , p)) then

join ith coalition, i ∈ N ;
else

remain in the same coalition;

V. RESULTS AND DISCUSSIONS

We considered randomly generated positions of the grids
and the customers using the MATLAB simulation platform.
Based on the distance between a customer and a grid, a matrix
is generated. From that matrix, the customer decides to join
the coalitions of the grid which has the minimum distance
from the customer. In this work, we have considered that the
payoff value of all the grids is unity. As the payoff of the
grids changes with time, according to that payoff, a customer
calculates its utility factor. If the customer gets a higher utility
factor for one of the grids, the customer decides to join the
coalition of that grid. Thus, we have modified the coalition
dynamically and studied its effect on different parameters.

TABLE I: Simulation Parameters

Coalition 1 Coalition 2

Number of Grids Scenario 1 50 50
Scenario 2 2 2

Number of Customers Scenario 1 100 100
Scenario 2 10 10

Payoff of each Grid Scenario 1 1 ≤1
Scenario 2 1 ≤1

A. Change in Coalition
In Figure 3, dynamic coalition formation is shown. We have

taken two different scenarios. In Coalition 1 a customer n ∈ Φ
chooses a coalition of grid i ∈ N as a service provider. But
at a certain point of time, the customer i joins the coalition of
grid j ∈ N , where i 6= j, as grid j provides better consistent
energy supply with less cost per unit. Mathematically,

Ug
i (Gi,

Φi∑
k=1

xk) ≤ Ug
j (Gj ,

Φj∑
k=1

xk) (13)

Fig. 3: Dynamical formation of coalition

In Figure 1, we have such a scenario, where one customer,
x4, has the option to choose two different coalitions. How-
ever, depending on its utility function, U4, it decides to join
Coalition 1 over Coalition 2.

The results for Scenarios 1 and 2 are shown in Figures 3
and 4 respectively.

Fig. 4: Dynamical formation of coalition

B. Utilization of Energy

In Figure 5, the satisfaction factor, si, of the ith grid, where
i ∈ N , is chosen randomly. Based on the parameter si, the
customer n generates its utility function, Un. Accordingly the
customer chooses its service providing grid k ∈ N . It may
happen that i 6= k. Figure 5 shows how the customers change
their service providing grid and get better facilities.
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Fig. 5: Utilization of Energy

In Figure 5, the average energy distribution cost per unit for
all the grids is less in Coalition 2 than Coalition 1. By varying
the number of grids and the number of customers, we have
shown in Figure 6 that the energy production cost of grids



change. In both the Figures, the grids will have much higher
revenue and satisfaction parameter.
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Fig. 6: Utilization of Energy

Due to random deployment, the grids and the customers
are not uniformly distributed. The abrupt change in energy
production cost and quality of energy service is due to the
randomness of the grids and the customers in Figures 5 and
7.

C. Quality of Energy Service

Figure 7 shows how the Quality of Service (QoS) for the
customers can be improved by using this dynamic coalition
formation scheme. In Figure 7, the reliability and the amount
of energy distributed to the customers is obtained to be much
more higher in the dynamically formed coalition, Coalition
2, than Coalition 1. So, it can be inferred that the QoS of
Coalition 2 is much higher than the QoS of Coalition 1 in
Figure 7.
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Fig. 7: Quality of Service
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Fig. 8: Quality of Service

In Figure 8, we showed how the QoS changes with the
change in the number of customers, and the number of grids.
The QoS in Coalition 2 is much better than the QoS in
Coalition 1.

VI. CONCLUSION

In this paper, we formulated an MDP-based approach to
study the problem of optimum energy distribution between
the customers of the micro-grids. Based on this optimization
method, we showed how the coalitions can be formed, and
energy can be properly utilized. The simulation results show
that the proposed approach yields improved results. Future ex-
tension of this work includes understanding how the coalition
can be formed in a more optimal way, so that the services
provided by the grids to the customers can be improved,
thereby yielding utilization of smart grids.
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