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Abstract— In sensor-cloud framework, the concept of virtual
sensor provisioning is applied to serve the end-users, who requests
sensing information from the deployed sensor network. In a
multi-hop sensor-cloud framework, the information collection
from the physical sensors to the virtual sensor needs to acti-
vate additional nodes for information forwarding to the Cloud
Service Provider (CSP). The existing works mainly consider the
activation of these nodes from the same sensor owner (SO) and
exhibit higher energy consumption. Although, in a sensor-cloud
framework, multiple SOs co-exist naturally, and consequently,
the service area of these SOs overlap. In this paper, contrasting
to the existing works, we argue that the collaboration between the
CSP and SOs can improve dynamic virtual sensor provisioning.
We propose a scheme named Intelligent Dynamic Virtual Sensor
Provisioning (iDVSP) to enable optimal selection of nodes in
a multi-hop path with different SOs. We employ multi-unit
single-item combinatorial reverse auction to model the interaction
between the CSP and SOs. The auction based scheme facilitates
the CSP to dynamically negotiate with the SOs, and ensure cost-
effective node selection for virtual sensor provisioning. Simulation
based results indicate that the proposed scheme is 46.51% energy-
efficient compared to existing literature. Furthermore, we observe
that the proposed scheme employ fair policy for node selection
from different SOs. Therefore, we can argue that the proposed
scheme enforces cooperation between the SOs in the sensor-cloud
framework.

Index Terms—Virtual sensor, energy-efficiency, sensor-cloud,
sensor owner cooperation, auction theory

I. INTRODUCTION

Recent years saw the emergence of a new paradigm named
sensor-cloud, which provides an improved infrastructure com-
bining the benefits of cloud computing with traditional Wire-
less Sensor Networks (WSNs) [1]–[4]. The use of sensor-cloud
based architecture provides multiple advantages over the tradi-
tional WSNs based deployment of sensors. Using the notion of
sensor virtualization, the sensor-cloud infrastructure enhances
the real-time information processing and storage abilities of
the WSNs. The framework offers ubiquitous information sens-
ing and access to multiple end-users from sensors deployed
by different sensor owners over a vast geographical area.
Few promising applications of sensor-cloud are in the area

of precision agriculture, environmental monitoring, health-care
and military.

Yuriyama et al. [1], Evenson et al. [5] defined the basic
framework of sensor-cloud, and characterized the various
requirements to enable sensing-as-a-service. Madria et al.
[3] presented a three-layer protocol stack for sensor-cloud
framework. In this protocol stack, the top and bottom layers,
namely client-centric and sensor-centric, are responsible for
connecting with the users and the deployed physical sensors,
respectively. The middleware layer is responsible for provi-
sioning of virtual sensors as per user’s request. Additionally,
the middleware layer performs the task of managing user
accounts and billing. A mathematical model for sensor vir-
tualization in sensor-cloud is presented by Misra et al. [6].

A. Motivation

In sensor-cloud, the end users are relieved from the task of
network deployment, management and maintenance, which are
typically executed by the sensor owners. The Cloud Service
Providers (CSPs), using the WSN deployed by different sensor
owners (SOs), offer various services for the end users. For
each user query, the CSP creates a virtual sensor based on the
required parameters mentioned in the query. The middleware
layer provisions the allocation of the physical sensors to the
virtual sensor. In the literature, the existing schemes [7],
[8] consider the allocation of redundant nodes present in
region of interest mentioned by the user query. However, such
selection of physical sensor nodes is not energy-efficient for
the deployed nodes. This technique will increase the main-
tenance cost of the deployed nodes, and thereby, increasing
the price to the end-users. In addition to this, in a multi-
hop sensor deployment, the information collection from the
selected physical sensor node to the virtual sensor needs to
activate additional nodes for information forwarding to the
CSP. The existing schemes [9]–[11] mainly consider activation
of the nodes from one sensor owner only. [12] proposes a
pricing model for sensor-cloud framework which considers
a multi-hop topology of sensor deployment with different
owners. However, in this work, any deployed node itself
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select the node for the consecutive hop for transmission of
sensed information from the source node to the base station.
Thus, such technique increases the energy consumption of the
deployed sensor nodes, and increases the overall communi-
cation overhead involved in the virtual sensor provisioning.
Therefore, it is evident from the existing works, that the
virtual sensor provisioning process faces challenges in terms
of energy consumption of the deployed nodes. Motivated
by this problem, in this paper, we propose a virtual sensor
provisioning scheme which exploits the cooperation between
the sensor owners and computes an optimal selection of the
sensor nodes for virtual sensor provisioning.

B. Contributions

In this paper, we present a scheme named Intelligent Dy-
namic Virtual Sensor Provisioning (iDVSP) to enable optimal
selection of nodes in a multi-hop path consisting of multiple
SOs in sensor-cloud framework. We model the interaction
of the CSP and the SOs using multi-unit single-item com-
binatorial reverse auction [13]. In this scenario, the CSP
and the SOs act as the buyer and sellers respectively. The
CSP has the knowledge about the node deployments by these
different owners. Thereby, based on the information of the
provisioned sensors, the CSP can easily find out different route
options to aid information collection from these provisioned
sensors to the cloud. However, these routes are formed with the
nodes from different sensor owners. As the cost of the route
is private information to the corresponding SO, the overall
route’s cost cannot be computed by the CSP single-handedly.
In our proposed scheme, the final decision is made by the CSP
based on the information from the various SOs involved. The
proposed scheme exploits the cooperation between the SOs, as
the selected route may constitute of nodes from different SOs.
Therefore, the commodities in the auction are these routes,
and the sellers (the SOs) are asked to quote the price for the
corresponding route segment only. Therefore, in our model,
for each item of commodity there are multiple units. Finally,
the CSP, after receiving quotation from different SOs, selects
the optimal route. Consequently, the SOs are paid according
to the amount (or quantity) of commodity taken from them. In
the following, we enlist the contributions made in this work.
• We model the interaction between the CSP and the

SOs using multi-unit single-item combinatorial reverse
auction. This model facilitates the CSP to dynamically
negotiate with the SOs for virtual sensor provisioning to
the end-users.

• Our proposed scheme enables energy-efficient node selec-
tion for the CSP and SOs. Thereby, ensuring prolonged
network lifetime and long term service availability.

• We device the scheme in such way that the SOs are
assured with fair node selection policy.

The rest of the paper is organized as follows. Section II
discusses the related works in the literature. We discuss the
considered system model for our proposed work in Section
III. In Section IV, we present the proposed combinatorial
reverse auction based scheme. The performance evaluation of

the proposed scheme is presented in Section V. Finally, we
conclude the paper in Section VI, citing directions for future
works.

II. RELATED WORKS

To enable energy-efficient sensor selection in sensor-cloud
framework, a dynamic duty scheduling scheme was proposed
by Ojha et al. [14]. By employing dynamic duty scheduling,
the authors show that the lifetime of the deployed nodes
enhance. A scheme for enabling optimal composition of virtual
sensor from a set of deployed physical sensor nodes, was
proposed by Chatterjee et al. [8]. The authors employ a
goodness factor, which is used to map the selection of a
physical node to a virtual sensor. An adaptive data caching
scheme for sensor-cloud was presented by [7]. In this scheme,
the objective was to achieve energy-efficiency of sensor nodes,
and thereby enhancing the network lifetime. With the change
in physical sensor nodes, the scheme can adaptively select
an optimal data caching interval. However, all these schemes
did not consider a multi-hop deployment of sensor nodes in a
sensor-cloud framework with multiple SOs.

Lemos et al. [10], [11] propose virtual sensor provisioning
by enabling selection of physical sensors based on similarity
of heterogeneous sensors. As a result of such selection, the
energy consumption of the nodes reduces. The node selection
scheme is based on similarity of measurement between the
nodes and not just the inter-node distance. However, these
schemes do not consider multi-hop deployment of sensors in
a multi-SO sensor-cloud scenario. The “pricing for Hardware
(pH)” scheme proposed by Chatterjee et al. [12] considers
multi-hop topology of sensor deployment with different own-
ers. In this work, the deployed nodes participate in the node
selection for the consecutive hop to enable transmission of
sensed information from the source node to the base station.
However, this technique increases the energy consumption of
the deployed sensor nodes, and increases the overall commu-
nication overhead involved in the virtual sensor provisioning.

Therefore, it is evident from the existing works, that vir-
tual sensor provisioning faces challenges in terms of energy
consumption of the deployed nodes.

III. SYSTEM MODEL

Our proposed system is a sensor-cloud framework with a
CSP χ having total N number of sensor nodes deployed by
m sensor owners represented by the set Θ = {θ1, θ2, · · · , θm}.
We denote the nodes associated with any sensor owner θi as
N i
θ. In this framework, each SO has different gateway Gi ∈ G

for providing connectivity between the deployed nodes and
the CSP. The deployed nodes for any SO form a multi-hop
topology among themselves. The CSP has the knowledge of
the whole topology which comprises of nodes deployed by all
SOs. Therefore, the CSP has a global view of the topology
while each SO can only have the knowledge of the topology
consisting of nodes deployed by itself. Although, the cost
related information remain private to each SO only.
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The user request to the CSP for sensor information is
considered as a query (sk). The CSP processes the query,
creates a virtual sensor for this query, and assigns the physical
sensor which can serve the demand. Consequently, for all such
user requests ∀sk ∈ S, the CSP selects a set of nodes from
various SOs. We name this set as CSP selected Duty Nodes
(CDNs). However, being a multi-hop topology, the information
collection from the CDNs need additional nodes to route the
information to the CSP. Typically, such routes are considered
to be computed by the corresponding SO. In our proposed
scheme, we consider cooperation between the SOs, allowing
the CSP to select routes with nodes involved from different
SO. The set of all routes for the node i at time t, as computed
by the CSP, is denoted by λti = {λti,1, λti,2, · · · , λti,ri}. Here,
ri = |λti| denote the number of routes for the node i.

In Figure 1, we depict the problem scenario discussed in
this paper. Here, a provisioned node has three different routes
available to send the information to the CSP. Each of these
routes consist of nodes owned by different SOs. Also, the SOs
can have different number of nodes in different routes. In the
proposed reverse auction framework, such routes are the mul-
tiple units for any single item or the corresponding provisioned
node. The CSP, using the proposed framework, computes the
total cost for each route with the price information quoted by
the involved SOs.

Fig. 1: The problem scenario

IV. IDVSP: INTELLIGENT DYNAMIC VIRTUAL SENSOR
PROVISIONING

In this section, we discuss the proposed combinatorial re-
verse auction [13] based scheme in detail. In the combinatorial
reverse auction process, the CSP is the buyer and the SOs are
the sellers. As mentioned previously, the CSP processes the

user requests, and provisions the deployed sensor information
to them. Consequently, for each such selected node, multi-hop
routes are to be formed from the rest of the nodes. Therefore,
the commodity in this marketplace are these routes formed
by nodes from different SOs, and for each item (provisioned
node) there will be multiple units (routes).

The reverse auction process is performed in the following
steps. First, the CSP finds the nodes requested by the users
in each round. For each such node, the CSP finds different
route options with nodes from various SOs. These SOs are
termed as potential sellers. Consequently, it prepares request
for quotation (RFQ) for each SO, filled with information on
different route options for each items, mentioning the required
units of the item for each route. The SOs, prepare quotation
table (QT) for each RFQ for different requested units of the
item. Based on the received QTs from different SOs, the CSP
decides the units of the items to be procured from them, with
the objective of minimizing the cost paid to the SOs.

A. Price Charged by Sensor Owners

Each RFQ (RFQn,i) sent to a SO (θi) consists of different
options for the routes (λtn,j ∈ λtn) for any sensor node (n)
which needs to be provisioned. Therefore, each such RFQ
is for a specific item, and its multiple options contains the
different units of the item requested. These different units
are the different nodes required for forming these paths.
Each SO finds out the different nodes asked in the RFQ
RFQn,i for each item. Then, the SO also computes the energy
consumption status of the requested nodes. In the following,
we present the set of regulations for the SO to compute the
prices and prepare the QT.

Let the price for kth request in RFQn,i is Pin,k, and the
SO sells the nodes represented by N rfq

i,n,k, where N rfq
i,n,k =

N i
θ ∩ λtn,k, ∀k ∈ RFQn,i.

• The price charged by the SO increases with higher num-
ber of nodes required from this SO (|N rfq

i,n,k|). Therefore,

δPin,k
δN rfq

i,n,k

> 0 (1)

Definition 1. Previous selection (PSωj ) of any node (j ∈
N i
θ) at round ω refers to the number of times the node

was activated till round (ω − 1).

• The SO charges higher price for requested nodes which
has higher usage than that of the others. The SO can
compute the PS (PSωj ) value of the nodes requested in
this round (∀j ∈ N rfq

i,n,k). Therefore,

δPin,k
δPSωj

> 0 ∀j ∈ N rfq
i,n,k (2)

Definition 2. Request uncertainty factor (µi,n,k) for any
SO is defined as the difference between the maximum and
minimum value of the nodes requested in the received
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RFQ from the CSP.

µi,n,k =
N rfq
i,n,k|max −N

rfq
i,n,k|min

N rfq
i,n,k

where N rfq
i,n,k|max = max

∀k∈RFQn,i
{N rfq

i,n,k|} and

N rfq
i,n,k|min = min

∀k∈RFQn,i
{N rfq

i,n,k|}

• The price is increased when uncertainty (µi,n,k) is higher.
Such model incorporates lower risk for SOs.

δPin,k
δµi,n,k

> 0 (3)

Based on the Equations (1), (2), and (3), we device the price
Pin,k as,

Pin,k = |N rfq
i,n,k|×ec(i, t)+

∑
j∈N rfqi,n,k

PSωj

PSi,ωθ
+µi,n,k×ηi,t (4)

where ec(i, t) and ηi,t denote the unit price for energy cost
per node and compensation factor for SO θi, respectively. Any
SO increases the value of the compensation factor, if the units
(of commodity) bought from this SO are less than the average
number of units requested during previous tη times.

Each SO prepares a QT QTn,i for each received RFQ
RFQn,i and send it back to CSP. For any kth request in
RFQn,i, the elements are < Pin,k, din,k >. Here, din,k refers
to the delay of the part of route estimated by the cloud. The
computation of the delay is presented below.

din,k = d×
∑
j ρj

|N rfq
i,n,k|

∀j ∈ N rfq
i,n,k (5)

where ρj is the number of RFQs associated with this node,
and d is the unit processing delay for a single request.

B. Route Selection by CSP

The CSP, analyzes the received QTs (∀QTn,i ∈ QTn), and
decides the route (λt,∗n ) to select for each of the user requested
nodes by procuring optimal units of items from different SOs.
For each item or the node n ∈ Nω

CSP , the CSP computes cost
(C(λtn,k)) for each route λtn,k ∈ λtn. The cost calculation of
the CSP is governed by the following set of rules.

• The cost (C(λtn,k)) is non-decreasing with increased price
(Pin,k) for any route λtn,k. Therefore,

δC(λtn,k)

δPin,k
≥ 0 ∀θi ∈ Θ (6)

• With the increase in the delay (din,k) of any route λtn,k,
the cost of the CSP increases,

δC(λtn,k)

δdin,k
> 0 ∀θi ∈ Θ (7)

Based on the Equations (6) and (7), the cost for the CSP is
computed as,

C(λtn,k) =
∑

∀θi∈Θ:Niθ∩λ
t
n,k 6={∅}

wi ×
(
Pin,k + din,k

)
(8)

where wi =
|Niθ∩λ

t
n,k|

∩θi∈Θ|Niθ∩λ
t
n,k|

is the weight associated with
the price quoted by the corresponding SO, and signifies the
number of nodes from this SO compared to the total number
of nodes in this route.

The optimal route is selected as,

λt,∗n = arg min C(λtn,k) ∀n ∈ Nω
CSP , λ

t
n,k ∈ λtn (9)

C. Algorithms for Sensor Owners and CSP

The procedures followed by the SOs and CSP are presented
in Algorithm 1 and 2, respectively. The CSP first computes
the different route options (λtn,k ∈ λtn) for the node (n) to be
provisioned as per user request. Then, for each route (λtn,k),
the CSP creates a list (Li,t) for each SO (θi) and add the nodes
for which the information is needed. Thereafter, RFQn,i is
populated with information for all route options for any SO
θi, and send to the SO requesting for QTs. Based on the QTs
received from all SOs, the CSP selects the optimal route which
provide lower cost among all such options. On the other hand,
the SO computes the price (Pin,k) and delay (din,k) for each
RFQ.

Algorithm 1: Algorithm for any SO θi ∈ Θ

Inputs: N i
θ, PSωj , Li,t.

Output: QTn,i.
Receive request for quotations RFQn,i and Li,t;
for each kth request in RFQn,i do

Find out nodes requested N rfq
i,n,k = N i

θ ∩ λtn,k;
for each node j ∈ N rfq

i,n,k do
Compute PSωj ;
Compute the number of requests (ρj) for j;

Compute price Pin,k;
Compute delay din,k;
Add entry < Pin,k, din,k > to QTn,i;

Send QTn,i to CSP;
Wait for notification on selected nodes (Nθ

i ∩ λt,∗n ) from
CSP;
Update PSωj ,∀j ∈ {Nθ

i ∩ λt,∗n };
ω ←− ω + 1;

V. PERFORMANCE EVALUATION

A. Simulation Settings

The proposed scheme was simulated using NS-3
(http://www.nsnam.org/). Table I lists the simulation
parameters used in our experiments. We considered a
single CSP and 5 SOs each with 20 nodes randomly deployed
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Algorithm 2: Algorithm for CSP

Inputs: N i
θ, Nω

CSP .
Output: Optimal route λt,∗n .
Get CDN information;
for each node n ∈ Nω

CSP do
Find out routes options for node n, λtn;
for each route λtn,k ∈ λtn do

for each SO θiΘ do
if N i

θ ∩ λtn,k 6= {∅} then
Add N i

θ ∩ λtn,k to Li,t;

for each SO θi ∈ Θ do
Send Li,t information in RFQn,i;

for each node n ∈ Nω
CSP do

for each route λtn,k ∈ λtn do
Compute C(λtn,k);

Compute optimal route for node n,
λt,∗n ←− arg min C(λtn,k);
for each SO θi do

if N i
θ ∩ λt,∗n 6= {∅} then
Notify about selected nodes N i

θ ∩ λt,∗n ;

ω ←− ω + 1;

TABLE I: Simulation Parameters

Parameter Value
Number of nodes 100
Simulation Area 500 m × 500 m
Transmission power 24.75 mW [15]
Reception power 13.5 mW [15]
Idle power 13.5 mW [15]
Data rate 40 kbps [15]
Initial energy of a node 10 J

over the simulation area. The users randomly request for
provisioning of any deployed node’s information.

We compare the performance of the proposed scheme with
‘Pricing for Hardware’ (pH) scheme [12]. We discuss the
results for both the schemes with respect to the following met-
rics – communication overhead, energy consumption, network
lifetime, and fairness for SOs.

B. Results

1) Communication overhead: Figure 2(a) presents the re-
sults for the communication overhead occurred in individual it-
erations for both pH and iDVSP. In pH, a node selects the next
hop node among its neighbors such that the utility of the sender
node is maximum. On the other hand, in iDVSP, the CSP
and the SOs jointly participate in node and route selection.
In such scenario, the communication overhead for the node
selection refers to the number of communications required by
the deployed sensor nodes. In our proposed scheme, iDVSP,

the total number of such communications is lower compared
to the pH scheme. Thereby, the communication overhead in
the proposed scheme in 58.56% lower than pH. In Figure 2(b),
we present the cumulative communication over the iterations.
It is evident from the results that communication overhead for
the pH scheme increases than that of the iDVSP in the long
run.
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Fig. 2: Communication overhead

2) Energy consumption: We present the results for energy
consumption of the deployed nodes in Figure 3(a) and 3(b).
The results signify that iDVSP is 46.51% energy-efficient
compared to pH, on an average. In both the schemes, the
main reason of energy consumption is the communication
overhead, i.e., the additional number of message transmission
for enabling sensor provisioning. Consequently, the energy
consumption of the nodes vary in different iterations. In
long-term, the energy consumption of the nodes increase
significantly for pH compared to iDVSP.
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Fig. 3: Energy consumption
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3) Network lifetime: The results for the network lifetime
for the deployed nodes in the network is presented in Figure
4. In the experiments, we measure the energy consumption of
the nodes for communication overhead in route selection and
during information transmission for the provisioned sensors.
Consequently, we compute the network lifetime in each iter-
ation for both pH and iDVSP. As evident from the energy
consumption profile of the nodes, the remaining network
lifetime in iDVSP is higher compared to pH in long-term.
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Fig. 4: Network lifetime

4) Fairness for Sensor Owners: We measure the fairness
for SOs in the proposed scheme. It is defined as the average
number of selection for each SO over the iterations. Figure
5(a) and 5(b) present the number of selections for each SO for
the first 50 iterations and in the higher iterations, respectively.
The results show that the number of selection for each SO vary
nearly 10.84–51.45% in the initial iterations. However, in the
higher iterations, the number of selection for each SO becomes
nearly equal (difference <1%). Therefore, it is observable
that the proposed scheme employ fair policy for the SOs.
Furthermore, we can argue that the proposed scheme enforces
cooperation between the SOs in the sensor-cloud framework.
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Fig. 5: Fairness for sensor owners

VI. CONCLUSION

In this paper, we present a scheme named Intelligent Dy-
namic Virtual Sensor Provisioning (iDVSP) to enable optimal
selection of nodes in a multi-hop path with different SOs. To
enable virtual sensor provisioning, the existing works consider

the activation of nodes from the same SO only. Although,
in a sensor-cloud framework, multiple SOs co-exist naturally.
In iDVSP, we exploit this information. In contrast to the
existing works, we argue that the collaboration between the
CSP and SOs can improve the virtual sensor provisioning. In
the proposed scheme, we model the interaction between the
CSP and SOs using the multi-unit single-item combinatorial
reverse auction [13]. The auction based scheme facilitates the
CSP to dynamically negotiate with the SOs, and ensure cost-
effective node selection for virtual sensor provisioning. NS-3
based simulation results show the effectiveness of the proposed
scheme. Compared to pH [12], iDVSP is 46.51% energy-
efficient. Additionally, iDVSP implements fair policy for node
selection from different SOs in long-term. In future, we plan
to expand the proposed scheme with detailed mathematical
model and evaluate the performance by considering various
deployment scenarios.
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